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Abstract. We present a method for object categorization in real-world scenes.

Following a common consensus in the field, we do not assume that a figure-
ground segmentation is available prior to recognition. However, in contrast to
most standard approaches for object class recognition, our approach automati-
cally segments the object as aresult of the categorization.

This combination of recognition and segmentation into one process is made pos-
sible by our use of an Implicit Shape Model, which integrates both into acommon
probabilistic framework. In addition to the recognition and segmentation result, it
also generates a per-pixel confidence measure specifying the area that supports a
hypothesis and how much it can be trusted. We use this confidence to derive anat-
ural extension of the approach to handle multiple objects in a scene and resolve
ambiguities between overlapping hypotheses with anovel MDL-based criterion.

In addition, we present an extensive evaluation of our method on a standard
dataset for car detection and compare its performance to existing methods from
the literature. Our results show that the proposed method significantly outper-
forms previously published methods while needing one order of magnitude less
training examples. Finally, we present results for articulated objects, which show
that the proposed method can categorize and segment unfamiliar objectsin differ-
ent articulations and with widely varying texture patterns, even under significant
partial occlusion.

1 Introduction

The goal of our work is object categorization in real-world scenes. That is, given some
training examples of an object category, we want to recognize a-priori unknown in-
stances of that category and assign the correct category label. In order to transfer this
capability to new domains, it is especially important that class characteristics be learned
instead of hard-coded into the system. Therefore, we aim to learn solely from example
images.

We pursue a two-staged approach. In the first step, we learn a Codebook of Local
Appearance that contains information which local structures may appear on objects of



the target category. Next, we learn an Implicit Shape Model that specifies where on the
object the codebook entries may occur. As the name already suggests, we do not try to
define an explicit model for all possible shapes a class object may take, but instead de-
fine*allowed” shapesimplicitly interms of whichlocal appearancesare consistent with
each other. The advantages of this approach are its greater flexibility and the smaller
number of training examplesit needsto seein order to learn possible object shapes. For
example, when learning to categorize articulated objects such as cows, as described in
Section 6, our method does not need to see every possible articulation in the training
set. It can combine the information of a front leg seen on one training cow with the
information of a rear leg from a different cow to recognize a test image with a novel
articulation, since both leg positions are consistent with the same object hypothesis.

Thisideais similar in spirit to approaches that represent novel objects by a com-
bination of class prototypes[12], or of familiar object views [22]. However, the main
difference of our approach is that here the combination does not occur between en-
tire exemplar objects, but through the use of local image patches, which again allows
a greater flexibility. Also, the Implicit Shape Model is formulated in a probabilistic
framework that allows us to obtain a category-specific segmentation as a result of the
recognition process. This segmentation can then in turn be used to improve the recog-
nition results. In particular, we obtain a per-pixel confidence measure specifying how
much both the recognition and the segmentation result can be trusted.

In [13], we describe an early version of this approach. However, this earlier paper
contains only limited experimental evaluation, and the approach is restricted to scenes
containing only one object. In this paper, we extend the method to handle multiple ob-
jectsin a scene, effectively resolving ambiguities between overlapping hypotheses by
anove criterion based on the MDL principle. We also extensively evaluate the method
on two large data sets and compare its performance to existing methods from the liter-
ature. Our results show a significant improvement over previously published methods.
Finally, we present results for arti cul ated objects, which show that the proposed method
can categorize and segment unfamiliar objectsin different articulations and with widely
varying texture patterns. In addition, it can cope with significant partial occlusion.

The paper is structured as follows. The next section discusses related work. Af-
ter that, we describe the recognition approach and its extension to generate category-
specific segmentations. Section 4 then presents an evaluation on a car detection task.
Using the segmentation obtained in the previous step, Section 5 extends the approach
to resolve ambiguities between multiple object hypotheses with an MDL-based crite-
rion and compares our performance to existing methods. Finally, Section 6 shows ex-
perimental results for the recognition and segmentation of articulated objects. A final
discussion concludes our work.

2 Redated Work

Various shape models have been used for the recognition of object classes. When regu-
larly textured objects are used, the shape can be modelled by spatial frequency statistics
of texture descriptors[20]. For detection and recognition of more general object classes,
many current methods learn global or local featuresin fixed configurations[21, 19, 23].



Since they treat the object as a whole, such approaches need a large number of training
examples. Others learn the assembly of hand-selected object parts using configuration
classifiers [18] or by modelling the joint spatial probability distribution [4]. Weber &
Perona [24] also learn the local parts and explicitly compute their joint distribution.
Fergus et al. [9] extend this approach to scale-invariant object parts and estimate their
joint spatial and appearance distribution. However, the complexity of this combined es-
timation step restricts their methods to a small number of parts. Agarwal & Roth [1]
keep alarger number of object parts and apply afeature-efficient classifier for learning
spatial configurations between pairs of parts. However, their learning approach relies
on the repeated observation of cooccurrences between the same partsin similar spatial
relations, which again requires alarge number of training examples.

Theideato use top-down knowledge to drive the segmentation process has recently
developed into an area of active research. Approaches, such as Deformable Templates
[26], or Active Appearance Models [7], are typically used when the object of interest
is known to be present in the image and an initial estimate of its size and location
can be obtained. Borenstein & Ullman [3] generate class-specific segmentations by
combining object fragmentsin a jigsaw-puzzle fashion. However, their approach is not
integrated with arecognition process. Yu & Shi [25] present aparallel segmentation and
recognition system in a graph theoretic framework, but only for a set of known objects.

Our approach integrates the two processes of recognition and segmentation in a
common probabilistic framework. Given a set of training examplesfrom an object class,
it is ableto automatically learn a category representation and recognize and segment a-
priori unknown objects of this class in novel settings. By representing allowed part
configurations in terms of an implicit modél, it retains high flexibility while making
efficient use of the available training data. The following sections describe how this
combination is achieved.

3 Approach

An Implicit Shape Model 1SM (C) = (Ic, Pr,c) for agiven object category C' con-
sists of a class-specific aphabet 1 (in the following termed a codebook) of local ap-
pearances that are prototypical for the object category, and of a spatial probability dis-
tribution Pr ¢ which specifies where each codebook entry may be found on the object.

In our definition, we impose two requirements for the probability distribution Py .
Thefirst is that the distribution is defined independently for each codebook entry. This
makes the approach flexible, since it allows to combine object parts during recognition
that were initially observed on different training examples. In addition, it enables us
to learn recognition models from relatively small training sets, as our experiments in
Sections 4 and 6 demonstrate. The second constraint is that the spatial probability dis-
tribution for each codebook entry is estimated in a non-parametric manner. The method
is thus able to model the true distribution in as much detail as the training data permits
instead of making an oversimplifying Gaussian assumption.

Therest of this section explains how thislearning and modeling step isimplemented
and how the resulting implicit model is used for recognition and segmentation.
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Fig. 1. The recognition procedure. Image patches are extracted around interest points and com-
pared to the codebook. Matching patches then cast probabilistic votes, which lead to object hy-
potheses that can later be refined. Based on the refined hypotheses, we compute a category-
specific segmentation.

3.1 A Codebook of Local Appearance

In order to generate a codebook of local appearances of a particular object category,
we use an approach inspired by the work of Agarwa and Roth [1]. From a variety
of images, patches of size 25 x 25 pixels are extracted with the Harris interest point
detector [11]. Starting with each patch as a separate cluster, agglomerative clustering is
performed: the two most similar clusters C'; and C, are merged as long as the average
similarity between their constituent patches (and thus the cluster compactness) stays
above a certain threshold ¢:
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This clustering scheme guarantees that only those patches are grouped which are visu-
aly similar, and that the resulting clusters stay compact, a property that is essential for
later processing stages. From each resulting cluster, we compute the cluster center and
storeit in the codebook.

Rather than to use this codebook directly to train a classifier, asin [1], we use them
to define our Implicit Shape Model. For this, we perform a second iteration over all
training images and match the codebook entries to the images using the N GC measure.
Instead of taking the best-matching codebook entry only, we activate all entries whose
similarity is above t, the threshold already used during clustering. For every codebook
entry, we store all positionsit was activated in, relative to the object center.

NGC(p,q) = 2




During recognition, we use thisinformation to perform a Generalized Hough Trans-
form[2, 15]. Given atest image, we extract image patches and match them to the code-
book to activate codebook entries. Each activated entry then casts votes for possible
positions of the object center. Figure 1 illustrates this procedure. It is important to em-
phasize that we use a continuous voting space in order to avoid discretization artefacts.
We search for hypotheses as maxima in the continous voting space using Mean-Shift
Mode Estimation [5, 6]. For promising hypotheses, all patchesthat contributed to it can
be collected (Fig. 1(bottom)), therefore visualizing what the system reactsto. Moreover,
we can refine the hypothesis by sampling all the image patches in its surroundings, not
just those locations returned by the interest point detector. As a result, we get a repre-
sentation of the object including a certain border area.

3.2 Probabilistic Formulation

In the following, we cast this recognition procedureinto a probabilistic framework (ex-
tending the framework from [13]). Let e be our evidence, an extracted image patch
observed at location ¢. By matching it to our codebook, we obtain a set of valid interpre-
tations I;. Each interpretation is weighted with the probability p(I;|e, £). If a codebook
cluster matches, it can cast its votes for different object positions. That is, for every I,
we can obtain votes for several object identities o,, and positions z, which we weight
with p(o,,, z|I;, £). Formally, this can be expressed by the following marginalization:

p(onaw|e7€) = ZP(0m$|e7 Izag)p(lz|eag) (3)

Since we have replaced the unknown image patch by a known interpretation, the first
term can be treated as independent from e. In addition, we match patches to the code-
book independent of their location. The equation thus reduces to

p(0n, |6, 0) = Zp(on,:nui,é)p(fne). @)

= Zp(x|on>Iiag)p(0n|li7€)p(1i|e)' ®)

Thefirst termis the probabilistic Hough vote for an object position given itsidentity
and the patch interpretation. The second term specifies a confidence that the codebook
cluster is really matched on the object as opposed to the background. This can be used
to include negative examplesin the training. Finally, the third term reflects the quality
of the match between image patch and codebook cluster.

By basing the decision on single-patch votes and assuming a uniform prior for the
patches, we abtain

score(on,m)zz Z P(0n, Tjl€, lk)- (6)
k xz;eW(x)

From this probabilistic framework, it immediately followsthat the p(1;|€) and p(z|oy, I;, £)
should both sum to one. In our experiments, we assume a uniform distribution for both
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(meaning that we set p(1;|e) = ‘}—‘ with |I| the number of matching codebook en-
tries), but it would aso be possible, for example, to let the p(Z;]e) distribution reflect
the relative matching scores.

By this derivation, we have embedded the Hough voting strategy in a probabilistic
framework. In this context, the mean-shift search over the voting space can be inter-
preted as a Parzen window probability density estimation for the correct object loca
tion. The power of this approach lies in its non-parametric nature. Instead of making
Gaussian assumptions for the codebook cluster distribution on the object, our approach
is able to model the true distribution in as much detail asis possible from the observed
training examples.

3.3 Object Segmentation

In this section, we describe a probabilistic formulation for the segmentation problem
(asderived in[13]). As astarting point, we take a refined object hypothesish = (0, )
obtained by the algorithm from the previous section. Based on this hypothesis, we want
to segment the object from the background.

Up to now, we have only dealt with image patches. For the segmentation, we now
want to know whether a certain image pixel p is figure or ground, given the object
hypothesis. More precisely, we are interested in the probability p(p = figure|o,, z).
Theinfluence of a given patch e on the object hypothesis can be expressed as

p(OTH $|ea Z)p(e7 6) — EI p(0n7 $|I, 6)p([|e)p(e, é)
p(on, x) p(on, x)

p(e:aomﬂf) = (7)
where the patch votes p(o,,, z|e, £) are obtained from the codebook, as described in the
previous section. Given these probabilities, we can obtain information about a specific
pixel by marginalizing over al patches that contain this pixel:

p(p = figurelo,, x) = > p(p = figurelo,,, z, e, £)p(e, {|on, x) )
pe(&e)

with p(p = figure|o,,, z, €, £) denoting patch-specific segmentation information, which
isweighted by theinfluence p(e, £|o,,, z) the patch has on the object hypothesis. Again,
we can resolve patches by resorting to learned patch interpretations I stored in the
codebook:

p(p = figurelo,,z) = > Y p(p=fig.lon, =, 1,0)p(e, I, oy, z) ©)
pee) I
= > S plp=figlo,.z, 1,0 RURED (10
pees I P(On, T

Thismeansthat for every pixel, we build aweighted average over all segmentations
stemming from patches containing that pixel. The weights correspond to the patches
respective contributions to the object hypothesis. For the ground probability, the result
is obtained in an analogue fashion.
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Fig. 2. Results on the UIUC car database with and without the MDL hypothesis verification stage.

The most important part in this formulation is the per-pixel segmentation infor-
mation p(p = figure|o,,, z, I, £), which is only dependent on the matched codebook
entry, no longer on the image patch. In our approach, we implement this probability
by keeping a separate segmentation mask for every stored occurrence position of each
codebook entry. These patch figure-ground masks are extracted from a reference seg-
mentation given for each training image. Further, we assume uniform priors for p(e, £)
and p(o,,, x), SO that these elements can be factored out of the equations. In order to
obtain a segmentation of the whole image from the figure and ground probabilities, we
build the likelihood ratio for every pixel:

_ p(p = figure|o,,, z)
L= p(p = ground|o,, ) (11)

Figure 7 shows example segmentations of cars, together with p(p = figure|o,, z),
the system’s confidence in the segmentation result. The darker a pixel, the higher its
probability of being figure. The lighter it is, the higher its probability of being ground.
The uniform gray region in the background of the segmentation image does not con-
tribute to the object hypothesis and is therefore considered neutral. The estimate of how
much the obtained segmentation can be trusted is especially important when the results
shall later be combined with other cues for recognition or segmentation. It is also the
basis for our MDL-based hypothesis selection criterion described in Section 5.

4 Results

In the early version presented in [13], our method has only been evaluated on small
datasets. In the rest of this paper, we therefore present an extensive evaluation on two
large databases, as well as anovel hypothesis verification stage based on the MDL cri-
terion, which resolves ambiguities between overlapping hypotheses and handles scenes
containing multiple objects

In order to compare our method’s performance to state-of-the-art approaches, we
applied it to the UIUC car database [1]. Thistest set consists of 170 images containing
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Fig. 3. (left) Two examples for overlapping hypotheses (in red); (middle) p(p = figure|h) proba-
bilities for the front and (right) for the overlapping hypotheses. As can be seen, the overlapping
hypothesis in the above example is fully explained by the two correct detections, while the one
in the lower example obtains additional support from a different region in the image.

a total of 200 sideviews of cars. The images include instances of partially occluded
cars, cars that have low contrast with the background, and images with highly textured
backgrounds. In the dataset, all cars are approximately the same size.

Together with the test set, Agarwal & Roth provide atraining set of 550 car and 500
non-car images. In our experiments, we do not use this training set, but instead train
on a much smaller set of only 50 hand-segmented images (mirrored to represent both
car directions) that were originally prepared for a different experiment. In particular,
our training set contains both European and American cars, whereas the test set mainly
consists of American-style sedans and limousines. Thus, our detector remains more
general and is not tuned to the specific test conditions. The original data set is at a
relatively low resolution (with cars of size 100* 40 pixels). Since our detector is learned
at a higher resolution, we rescaled all images by a constant factor prior to recognition
(Notethat this step does not increase theimages’ information content). All experiments
were done using the eval uation scheme and detection tolerances from [1].

Figure 2 shows a recall-precision curve (RPC) of our method's performance. The
plot was generated using the evaluation scheme and the detection tolerances from [1].
As can be seen from the figure, our method succeeds to generalize from the small train-
ing set and achieves an excellent performance with an Equal Error Rate (EER) of 91%.
Analyzing the results on the test set, we observed that alarge percentage of the remain-
ing false positives are due to secondary hypotheses, which contain only one of the car’'s
wheels, e.g. the rear wheel, but hypothesize it to be the front whedl of an adjoining
car (see Figure 3 for an example). This problem is particularly prominent in scenes
that contain multiple objects. The following section derives a hypothesis verification
criterion which resolves these ambiguities in a natural fashion and thus improves the
recognition results.

5 Multiple-Object Scene Analysis

As already mentioned in the previous section, alarge number of the initial false posi-
tives are due to secondary hypotheses which overlap part of the object. Thisis a com-
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Fig. 4. Comparison of our results on the UIUC car database with others reported in the literature.

mon problem in object detection. Generating such hypothesesis a desired property of
a recognition algorithm, since it alows the method to cope with partial occlusions.
However, if enough support is present in the image, the secondary detections should be
sacrificed in favor of other hypothesesthat better explain the image. Usually, this prob-
lemis solved by introducing a bounding box criterion and rejecting weaker hypotheses
based on their overlap. However, such an approach may lead to missed detections, as
the examplein Figure 3 shows. Here the overlapping hypothesisreally correspondsto a
second car, which would be rejected by the simple bounding box criterion (Incidentally,
only the front car is labeled as “car” in the test set, possibly for exactly that reason).
However, since our algorithm provides us with an object segmentation together with
the hypotheses, we can improve on this. In the following, we derive a criterion based on
the principle of Minimal Description Length (MDL), inspired by the approach pursued
in[14].

The MDL principle is an information theoretic formalization of the general notion
to prefer simple explanations to more complicated ones. In our context, a pixel can be
described either by itsgrayvalueor by its membership to asceneobject. If it isexplained
as part of an object, we al so need to encode the presence of the object (“model cost”), as
well as the error that is made by this representation. The MDL principle states that the
best encoding is the one that minimizes the total description length for image, model,
and error.

In accordance with the notion of description length, we can define the savings [14]
in the encoding that can be obtained by explaining part of an image by the hypothesis
h:

Sh - KOSarea - Klsmodel - KZSerror (12)
Inthisformulation, S, correspondsto the number N of pixelsthat can be explained
by h; Se..o denotes the cost for describing the error made by this explanation; and

Smoder describes the model complexity. In our implementation, we assume a fixed cost
Smodet = 1 for each additional scene object. As an estimate for the error we use

Serror = Z (1 — p(p = figure|h)) (13)
peSeg(h)
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Fig. 5. Example detections on difficult images from the test set.

that is, over all pixelsthat are hypothesized to belong to the segmentation of h, we sum
the probabilities that these pixels are not figure.

The constants K, K1, and K, are related to the average cost of specifying the
segmented object area, the model, and the error, respectively. They can be determined
on a purely information-theoretical basis (in terms of bits), or they can be adjusted in
order to express the preference for a particular type of description. In practice, we only
need to consider the relative savings between different combinations of hypotheses.
Thus, we can divide Eq(12) by K and, after some simplification steps, we obtain

- K1 K2 K2 _ i
Si=—gp T - PIN+ 5 > p(p = figure|h). (14)
PesSeg(h)

This leaves us with two parameters: % which encodes the relative importance that
is assigned to the support of a hypothesis, as opposed to the area it explains; and K—;
which specifies the total weight a hypothesis must accumulate in order to provide any
savings. Good values for these parameters can be found by considering some limiting
cases, such as the minimum support a hypothesis must have in the image, before it
should be accepted.

Using this framework, we can now resolve conflicts between overlapping hypothe-
ses. Given two hypotheses h; and hs, we can derive the savings of the combined hy-
pothesis (hy U hy):

Shluhz = Sh1 + Shz - Sarea(hl N h2) + Serror(hl N h2) (15)

Both the overlapping area and the error can be computed from the segmentations ob-
tained in Section 3.3. Let h; be the stronger hypothesis of the two. Under the as-
sumption that »; opaquely occludes ho, we can set p(p = figure|hs) = 0 wherever
p(p = figure|hy) > p(p = ground|h, ), that is for all pixelsthat belong to the segmen-
tation of h, . Rather than to search for the globally optimal solution, which may become
untractable, it is sufficient for our application to consider only pairwise combinations,
asarguedin[14].
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Fig. 6. All missing detections (above) and false positives (below) our algorithm returned on the
car test set. The last picture contains both a false positive and a missing detection.

5.1 Experimental Results

Figure 2 shows the results on the UIUC car database when the MDL criterion is ap-
plied as a verification stage. As can be seen from the figure, the results are significantly
improved, and the EER performance increases from 91% to 97.5%. Without the veri-
fication stage, our algorithm could reach this recall rate only at the price of a reduced
precision of only 74.1%. This means that for the same recall rate, the verification stage
manages to reject 64 additional false positives while keeping all correct detections. In
addition, the results become far more stable over awider parameter range than before.
Thiscan beillustrated by the fact that even when theinitial acceptancethresholdislow-
eredto 0, the MDL criterion does not return more than 20 false positives. This property,
together with the criterion’sgood theoretical foundation and its ability to correctly solve
cases like the one in Figure 3, makes it an important contribution.

Figure 4 shows a comparison of our method's performance with other results re-
ported in the literature. The adjacent table contains a comparison of the equal error
rates (EER) with three other approaches. With an EER of 97.5%, our method presents
a significant improvement over previous results. Some example detections in difficult
settings can be seen in Figure 5. The images show that our method still works in the
presence of occlusion, low contrast, and cluttered backgrounds. At the EER point, our
method correctly finds 195 of the 200 test cases with only 5 false positives. All of these
cases are displayed in Figure 6. The main reasons for missing detections are combina-
tions of several factors, such aslow contrast, occlusion, and image plane rotations, that
push the object hypothesis below the acceptance threshold. The false positives are due
to richly textured backgrounds on which a large number of spurious object parts are
found.

In addition to the recognition results, our method automatically generates object
segmentations from the test images. Figure 7 shows some example segmentations that
can be achieved with this method. Even though the quality of the original images is
rather low, the segmentations are reliable and can serve as a basis for later processing
stages, e.g. to further improve the recognition results using global methods.

6 Recognition of Articulated Objects

Up to now, we have only considered static objects in our experiments. Even though
environmental conditionscan vary greatly, carsare till rather restricted in their possible
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Fig.7. (left) Example object detections, segmentations, and figure probabilities automatically
generated by our method; (right) Some more detections and segmentations (white: figure, black:
ground, gray: not sampled).

shapes. This changes when we consider articul ated objects, such aswalking animals. In
order to fully demonstrate our method's capabilities, we therefore apply it to a database
of video sequences of walking cows originally used for detecting lamenessin livestock
[16]. Each sequence shows one or more cows walking from right to left in front of
different, static backgrounds.

For training, we took out all sequences corresponding to three backgrounds and
extracted 113 randomly chosen frames, for which we manually created areference seg-
mentation. We then tested on 14 different video sequences showing atotal of 18 unseen
cows in front of different backgrounds and with varying lighting conditions. Some test
sequences contain severe interlacing and MPEG-compression artefacts and significant
noise. Altogether, the test suite consists of a total of 2217 frames, in which 1682 in-
stances of cows are visible by at least 50%. This provides us with a significant number
of test casesto quantify both our method’s ability to deal with different articulationsand
its robustness to occlusion. Using video sequences for testing also allows to avoid any
bias caused by selecting only certain frames. However, since we are still interested in
a single-frame recognition scenario, we apply our algorithm to each frame separately.
That is, no temporal continuity information is used for recognition, which one would
obviously add for atracking scenario.

We applied our method to this test set using exactly the same detector settings as
beforeto obtain equal error rate for the car experiments. The only change we made was
to dlightly adjust the sensibility of the interest point detector in order to compensate for
the lower image contrast. Using these settings, our detector correctly finds 1535 out of
the 1682 cows, corresponding to arecall of 91.2%. With only 30 false positives over dll
2217 frames, the overall precision is at 98.0%. Figure 8 shows the precision and recall
values as afunction of the visible object area. As can be seen from this plot, the method
has no difficulties in recognizing cows that are fully visible (99.1% recall at 99.5%
precision). Moreover, it can cope with significant partial occlusion. When only 60% of
the object is visible, recall only dropsto 79.8%. Even when half the object is occluded,
therecognitionrateisstill at 69.0%. In somerare cases, even avery small object portion
of about 20 — 30% is aready enough for recognition (such asin the leftmost imagein
Figure 10). Precision constantly stays at a high level.

False positives mainly occur when only one pair of legs is fully visible and the
system generates a competing hypothesisinterpreting the front legs as rear legs, or vice
versa. Usually, such secondary hypotheses are filtered out by the MDL stage, but if the
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Fig. 8. (left) Precision/Recall curves for the cow sequences when x% of the cow’slengthisvisible.
(right) Absolute number of test images for the different visibility cases.

correct hypothesis does not have enough support in the image due to partial visibility,
the secondary hypothesis sometimes wins.

Figures 9 and 10 show example detection and segmentation results for two se-
guences. As can be seen from these images, the system not only manages to recognize
unseen-before cowswith novel texture patterns, but it also provides good segmentations
for them. Again, we want to emphasize that no tracking information is used to gener-
ate these results. On the contrary, the capability to generate object segmentations from
single frames could make our method a val uable supplement to many current tracking
algorithms, allowing to (re-)initialize them through shape cues that are orthogonal to
those gained from motion estimates.

7 Discussion and Conclusion

The probabilities p(p = figure|k) in Figs. 3 and 7 demonstrate why our approach is
successful. These probahilities correspond to the per-pixel confidence the system hasin
its recognition and segmentation result. As can be seen from the figure, the cars' wheels
arefound asthe most important single feature. However, the rest of the chassis and even
the windows are represented as well. Together, they provide additional support for the
hypothesis. Thisis possible because we do not perform any feature selection during the
training stage, but store al local parts that are repeatedly encountered on the training
objects. The resulting complete representation allows our approach to compensate for
missing detections and partial occlusions.

Another factor to the method's success is the flexibility of representation that is
made possible by the Implicit Shape Model. Using this framework, it can interpolate
between local parts seen on different training objects. Asaresult, the method only needs
a relatively small number of training examples to recognize and segment categorical
objectsin different articulations and with widely varying texture patterns.

The price we haveto pay for thisflexibility is that local parts could also be matched
to potentially illegal configurations, such as acow with 6 legs. Since each hypothesized
leg islocally consistent with the common object center, there would be nothing to pre-
vent such configurations. In our experiments, however, the MDL criterion effectively
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Fig. 9. Example detections and automatically generated segmentations from one cow sequence.
(middle row) segmentations obtained from the intial hypotheses; (bottom row) segmentations
from refined hypotheses.

solves this problem. Another solution would beto add aglobal, explicit shape model on
top of our current implicit model. Using the obtained object segmentations as a guide,
such amodel could be learned on-line, even after theinitial training stage.

Currently, our approach only tolerates small scale changes of about 10—15%. Asour
next step, we will therefore aim to extend the approach to multiple scales. Recent work
by several researchers has shown considerable promise that this problem may be dealt
with by using scale-invariant interest point detectors[9, 17, 8]. Also, the current model
is purely representational. Although equation (5) allows for the inclusion of negative
training examples, we do not yet use any such discriminative information, nor do we
model the background explicitly. For the data sets used in this evaluation, this was not
necessary, but we expect that the performance and robustness of our method can be
further improved by incorporating these steps. Finally, we will explore how the method
scales to larger object sets and how multi-view objects should best be treated.

In conclusion, we have presented a method that combines the capabilities of object
categorization and segmentation in one common probabilistic framework. This paper
extends our previous method by a novel hypothesis verification criterion based on the
MDL principle. This criterion significantly improvesthe method’s results and allows to
handle scenes containing multiple objects. In addition, we have presented an extensive
evaluation on two large data sets for cars and cows. Our results show that the method
achieves excellent recognition and segmentation results, even under adverse viewing
conditions and with significant occlusion. At the same time, its flexible representation
alows it to generalize already from small training sets. These capabilities make it an
interesting contribution with potential applications in object detection, categorization,
segmentation and tracking.

Acknowledgments: This work is part of the CogVis project, funded in part by the
Comission of the European Union (1ST-2000-29375), and the Swiss Federal Office for
Education and Science (BBW 00.0617).
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Fig. 10. Example detections and automatically generated segmentations from another sequence.
Note in particular the leftmost image, where the cow is correctly recognized and segmented
despite a high degree of occlusion.
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