

Fitting a transformation: feature-based alignment

Wed, Feb 23 Prof. Kristen Grauman

UT-Austin

Announcements

- Reminder: Pset 2 due Wed March 2
- Midterm exam is Wed March 9
 (2 weeks from now)

Last time: Deformable contours

Kristen Graun

Last time: Deformable contours

a.k.a. active contours, snakes

Given: initial contour (model) near desired object **Goal**: evolve the contour to fit exact object boundary

Main idea: elastic band is iteratively adjusted so as to

- be near image positions with high gradients, and
- satisfy shape "preferences" or contour priors

Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987

Figure credit: Yuri Bovko

Last time: Deformable contours

Pros:

- Useful to track and fit non-rigid shapes
- · Contour remains connected
- · Possible to fill in "subjective" contours
- Flexibility in how energy function is defined, weighted.

Cons:

- Must have decent initialization near true boundary, may get stuck in local minimum
- Parameters of energy function must be set well based on prior information

Kristen Grauma

Today

- Interactive segmentation
- · Feature-based alignment
 - 2D transformations
 - Affine fit
 - RANSAC

How can we implement such an *interactive* force with deformable contours?

Kristen Grauma

Interactive forces

- An energy function can be altered online based on user input – use the cursor to push or pull the initial snake away from a point.
- Modify external energy term to include:

$$E_{push} = \sum_{i=0}^{n-1} \frac{r^2}{|v_i - p|^2}$$

Nearby points get pushed hardest

Krieton Grauma

Intelligent scissors

Another form of interactive segmentation:

Compute optimal paths from every point to the seed based on edge-related costs.

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor move ment). The path of the free point is shown in white. Live-wire segmen from previous free noith tossitions (to.t., and ts) are shown in orear.

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]

Intelligent scissors

http://rivit.cs.byu.edu/Eric/Eric.html

Intelligent scissors

http://rivit.cs.byu.edu/Eric/Eric.html

Beyond boundary snapping...

- Another form of interactive guidance: specify regions
- Usually taken to suggest foreground/background color distributions

User Input

Boykov and Jolly (2001)

Result

How to use this information?

Kristen Graum

Today Interactive segmentation Feature-based alignment - 2D transformations - Affine fit - RANSAC

Scaling

Non-uniform scaling: different scalars per component:

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What transformations can be represented with a 2x2 matrix?

2D Scaling?

$$x' = s_x * x$$

$$y' = s_y * y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$

$$y' = sh_y * x + y$$

$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} 1 \\ sh_y \end{vmatrix}$$

What transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Translation?

$$x' = x + t_x$$

$$x' = x + t_x$$
$$y' = y + t_y$$

2D Linear Transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Only linear 2D transformations can be represented with a 2x2 matrix.

Linear transformations are combinations of ...

- · Scale,
- · Rotation,
- Shear, and
- Mirror

Homogeneous coordinates

To convert to homogeneous coordinates:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

Homogeneous Coordinates

Q: How can we represent 2d translation as a 3x3 matrix using homogeneous coordinates?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Source: Alyosha Efro

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Translate
$$\begin{bmatrix} x' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} sh_y \\ 0 \end{bmatrix}$$
Rotate

Source: Alyosha Et

2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations are combinations of ...

- · Linear transformations, and
- Translations

Parallel lines remain parallel

Today

- Interactive segmentation
- Feature-based alignment
 - 2D transformations
 - Affine fit
 - RANSAC

Alignment problem

- We have previously considered how to fit a model to image evidence
 - e.g., a line to edge points, or a snake to a deforming contour
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences").

risten Graun

Image alignment

- Two broad approaches:
 - Direct (pixel-based) alignment
 - · Search for alignment where most pixels agree
 - Feature-based alignment
 - Search for alignment where extracted features agree
 - Can be verified using pixel-based alignment

Fitting an affine transformation

Assuming we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

An aside: Least Squares Example

Say we have a set of data points (X1,X1'), (X2,X2'), (X3,X3'), etc. (e.g. person's height vs. weight)

We want a nice compact formula (a line) to predict X's from Xs: Xa + b = X'

We want to find a and b

How many (X,X') pairs do we need?

$$X_1 a + b = X_1$$

$$X_2 a + b = X_2$$

$$X_1 = \begin{bmatrix} X_1 & 1 \\ X_2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$Ax=B$$

What if the data is noisy?

$$\begin{bmatrix} X_1 & 1 \\ X_2 & 1 \\ X_3 & 1 \\ \dots & \dots \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ \dots \end{bmatrix}$$

overconstrained

Fitting an affine transformation

Assuming we know the correspondences, how do we get the transformation?

Fitting an affine transformation

$$\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_i \\ y'_i \\ y'_i \\ \vdots \\ t_2 \end{bmatrix}$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for (x_{new}, y_{new}) ?
- · Where do the matches come from?

What **are** the correspondences?

- · Compare content in local patches, find best matches. e.g., simplest approach: scan with template, and compute SSD or correlation between list of pixel intensities in the patch
- Later in the course: how to select regions according to the geometric changes, and more robust descriptors.

Fitting an affine transformation

Affine model approximates perspective projection of planar objects.

Figures from David Lowe, ICCV 1999

Today

- Interactive segmentation
- Feature-based alignment
 - 2D transformations
 - Affine fit
 - RANSAC

Outliers

- Outliers can hurt the quality of our parameter estimates, e.g.,
 - an erroneous pair of matching points from two images
 - an edge point that is noise, or doesn't belong to the line we are fitting.

Kristen Grau

Outliers affect least squares fit

Outliers affect least squares fit

RANSAC

- RANdom Sample Consensus
- **Approach**: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC: General form

- RANSAC loop:
- Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find inliers to this transformation
- 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

RANSAC for line fitting

Repeat N times:

- Draw **s** points uniformly at random
- Fit line to these **s** points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are **d** or more inliers, accept the line and refit using all inliers

Lana Lazebn

RANSAC pros and cons

- Pros
 - Simple and general
 - Applicable to many different problems
 - · Often works well in practice
- Cons
 - · Lots of parameters to tune
 - Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
 - Can't always get a good initialization of the model based on the minimum number of samples

Today

- Interactive segmentation
- Feature-based alignment
 - 2D transformations
 - Affine fit
 - RANSAC

Coming up: alignment and image stitching

