2/23/2011

Announcements

Y | * Reminder: Pset 2 due Wed March 2
Fitting a transformation: * Midterm exam Is Wed March 9

feature-based alignment (2 weeks from now)
Wed, Feb 23

Prof. Kristen Grauman
UT-Austin '

Last time: Deformable contours Last time: Deformable contours

a.k.a. active contours, snakes

Given: initial contour (model) near desired object
Goal: evolve the contour to fit exact object boundary

Main idea: elastic band is

iteratively adjusted so as to

* be near image positions with
high gradients, and

« satisfy shape “preferences” or
contour priors

Kristen Graumar} Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987] Figure credit: Yuri Boykov

Last time: Deformable contours

Today
Pros: « Interactive segmentation
« Useful to track and fit non-rigid shapes i
» Contour remains connected * Feature-based a“gnment
« Possible to fill in “subjective” contours — 2D transformations
* Flexibility in how energy function is defined, weighted. — Affine fit
Cons: — RANSAC

* Must have decent initialization near true boundary, may
get stuck in local minimum

» Parameters of energy function must be set well based on
prior information

Kristen Grauma:l
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Interactive forces

How can we implement such an interactive
force with deformable contours?

Kristen Graumar}

Intelligent scissors

Another form of
interactive
segmentation:

Compute optimal paths
from every point to
the seed based on
edge-related costs.

Figure 2: Image de

nstrating how the live-wire segnient adapts and
smaps 10 an object boundary as the free poini moves (via cursor mave-
mem). The path of the free point is shown in wiite. Live-wire segments
Jfrom previous free point positions (g, 1y, and i) are show

[Mortensen & Barrett, SSIGGRAPH 1995, CVPR 1999]

Intelligent scissors

http:/rivit.cs.byu.edu/Eric/Eric.html
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Interactive forces

¢ An energy function can be altered online based
on user input — use the cursor to push or pull the
initial snake away from a point.

« Modify external energy term to include:
n-1 r2

D E —_—
= vi— Pl

push =

Nearby points get pushed hardest

Kristen Graumar]

Intelligent scissors

http://rivit.cs.byu.edu/Eric/Eric.html

Beyond boundary snapping...

« Another form of interactive guidance: specify regions

» Usually taken to suggest foreground/background color
distributions

User Input Result

How to use this information?
Kristen Graumag

Boykov and Jolly (2001)




Recall: Images as graphs

Fully-connected graph
« node for every pixel
« link between every pair of pixels, p,q

« similarity w,, for each link
» similarity is inversely proportional to difference in color and position

2/23/2011

Steve Seitz

Recall: Segmentation by Graph Cuts

Link Cut
« set of links whose removal makes a graph disconnected

» costof a cut: cut(A,B): ZWM

peAqeB

Find minimum cut
* gives you a segmentation
« fast algorithms exist for doing this

Source: Steve Seitz|

Graph cuts for interactive
segmentation

Adding hard constraints:
D,(s)= const=|1,~1I"|
D, ()= const=|1,-1"|

Let the edge weight to
object or background
terminal reflect similarity to
the respective seed pixels.

Yuri Boykov

CS 376 Lecture 11

Recall: Segmentation by Graph Cuts

Break graph into segments
« Delete links that cross between segments

« Easiest to break links that have low similarity
— similar pixels should be in the same segments
— dissimilar pixels should be in different segments

Steve Seitz

Graph cuts for interactive
segmentation

T

Adding hard constraints:
Add two additional nodes, object and background “terminals”

Link each pixel
* To both terminals

« To its neighboring pixels
Yuri Boykov

Graph cuts for interactive
segmentation

Regional term

Z _DP(LF) +

Boundary term
W, AE(LP #* L,l)

pgeN

n-links L,els,t}

D) s acut [>

,(5) binary object
segmentation

Boykov and Jolly (2001) Yuri Boykov
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Graph cuts for interactive
segmentation

“Grab Cut”

¢ Loosely specify foreground region
« |terated graph cut

User initialization

Another interaction|
| modality: specify
bounding box

Intelligent Scissors Graph Cuts GrabCut
Mortensen and Boykov and Rother et al.
Barrett (1995) Jolly (2001) (2004)
Rother et al (2004)

“Grab Cut”

» Loosely specify foreground region
* lterated graph cut

“Grab Cut”

7] R 73
Foreground & - 7
Background ?,' Foreground =

%

P 5 & 2
Background G .~ Background G

Gaussian Mixture Model (typically 5-8 components)
Rother et al (2004)

Rother et al (2004)

Today Motivation: Recognition

Feature-based alignment
— 2D transformations

— Affine fit

—RANSAC

Figures from David Lowe
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Motivation: medical image Motivation: mosaics
registration

(In detail next week)

B

@

Image from huE://graehlcs.cs.cmu edulcourse5115-463/2010713

Alignment problem Parametric (global) warping

Examples of parametric warps:

* We have previously considered how to fit a model to
image evidence
— e.g., aline to edge points, or a snake to a deforming contour

« In alignment, we will fit the parameters of some
transformation according to a set of matching feature
pairs (“correspon)((jences").

i

translation rotation aspect

W i _T' . i o perspective
. ° affine
- o -
Source: Alyosha Efros
Parametric (global) warping Scaling

Scaling a coordinate means multiplying each of its components by

s
: ; . a scalar
. m Uniform scaling means this scalar is the same for all components:

p=(xy) p’=(Xy)
Transformation T is a coordinate-changing machine:
p'=T(p)
What does it mean that T is global?

« |s the same for any point p
« can be described by just a few numbers (parameters) ':::

Let's represent T as a matrix:

;
i
yl

y Source: Alyosha Efros| Quice: Alvosha Effg
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Scaling Scaling

Non-uniform scaling: different scalars per component:

Scaling operation: X'=ax

y'=by

Or, in matrix form:

........ TR — s ol

I ........ I ........ H_I
scaling matrix S

ource: Alvosha Efro; ouice: Alvosha Efro;

What transformations can be What transformations can be
represented with a 2x2 matrix? represented with a 2x2 matrix?
ina?
ZDX,S:C?”ng' {x} F 0 }[x} 2D Mirror about Y axis?
' A= . X'= —X X' -1 0f x
o sy KRl

2D Rotate around (0,0)?

. . . 2D Mirror over (0,0)?
X'=cos@*X —sin@*y [x}{cos@ —sm@}[x}

y'=sin®@*x+Ccos®@*y y'| |sin®@ cos® |y X'=—X X' _ -1 0 |x
y'=-y y' 0 -1y
2D Shear?
X'=x+sh *y X' 1 sh,Jx 2D Translation?
y'=sh *x+y y| Ish, 1y X=x+t, NO!
y'=y+t,
Source: Alyosha Efros Source: Alyosha Efros
2D Linear Transformations Homogeneous coordinates
X = a bjx To convert to homogeneous coordinates:
y c djy
T
Only linear 2D transformations can be represented with a 2x2 (z.0) = [ g
matrix.
Linear transformations are combinations of ... homogenef)us image
« Scale, coordinates
* Rotation, . .
« Shear, and Converting from homogeneous coordinates
* Mirror { @ }
y | = (@/w,y/w)
w

Source: Alyosha Efros
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Homogeneous Coordinates

Q: How can we represent 2d translation as a 3x3 matrix
using homogeneous coordinates?

X'= X+t
y'=y+t,

A: Using the rightmost column:

1 0 t,
Translation={0 1 t,
0 0 1

Translation
Homogeneous Coordinates
L 4 4 &
X' 1 0 t|x X+t
YI=10 1 ty|=|y+t,
1 00 1)1 1

—

B

=

=N

Source: Alyosha Efros

Source: Alyosha Efros

2D Affine Transformations

b cfx
e fly
0 1fw

o o o

X'
y'|=
w

Affine transformations are combinations of ...
¢ Linear transformations, and
« Translations

Parallel lines remain parallel

m- g

Basic 2D Transformations
Basic 2D transformations as 3x3 matrices
X' 10 t|x X' s, 0 0Ofx
y' =10 1 t |y y'|=/0 s, O]y
1] (o0 11 1/ lo o 11
Translate Scale
x| [cos® -sin® 0] x X' 1 sh, 0fx
y'|=|sin® cos® Oy y'|=lsh, 1 Oy
1 0 0 11 1 0 0 11
Rotate Shear
Source: Alyosha Efros
Today
— Affine fit
— RANSAC

Alignment problem

* We have previously considered how to fit a model to

image evidence
— e.g., aline to edge points, or a snake to a deforming contour

¢ In alignment, we will fit the parameters of some
transformation according to a set of matching feature

pairs (“correspongences”).
i

Kristen Grauman
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Image alignment

« Two broad approaches:
— Direct (pixel-based) alignment
« Search for alignment where most pixels agree

— Feature-based alignment
« Search for alignment where extracted features agree

« Can be verified using pixel-based alignment

An aside: Least Squares Example

Say we have a set of data points (X1,X1’), (X2,X2’),
(X3,X3’), etc. (e.g. person’s height vs. weight)

We want a nice compact formula (a line) to predict X's
from Xs: Xa+b=X

We want to find a and b
How many (X,X’) pairs do we need?

Xa+b=X, X, 1fa] [ X, Ax=B
X,a+b=X, X, 1]b| |X,

What if the data is noisy?

X, 1 X, 2 l

X, 1[a]_|X; . 2

X, 1 [b} X, min||Ax - B| A

2/23/2011

Fitting an affine transformation

« Assuming we know the correspondences, how do we
get the transformation?

(X:Y) o 0
l (Xidﬁ:‘.

SR HEN

Fitting an affine transformation

overconstrained Source: Alyosha Efros

* Assuming we know the correspondences, how do we
get the transformation?

(X:%) o

Fitting an affine transformation

X ¥ 0 0 1 0fm, X;

00 x y 0 1|m| |y

* How many matches (correspondence pairs) do we
need to solve for the transformation parameters?

* Once we have solved for the parameters, how do we
compute the coordinates of the corresponding point
for (XnEW‘ ynew) 7

* Where do the matches come from?

Kristen Grauman
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What are the correspondences?

O
B — O

» Compare content in local patches, find best matches.
e.g., simplest approach: scan with template, and compute SSD
or correlation between list of pixel intensities in the patch

« Later in the course: how to select regions according to

the geometric changes, and more robust descriptors.

Kristen Grauman
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Fitting an affine transformation Today

— RANSAC
Affine model approximates perspective projection of
planar objects.
Figures from David Lowe, ICCV 1999
Outliers Outliers affect least squares fit
« Outliers can hurt the quality of our parameter
estimates, e.g., :
— an erroneous pair of matching points from two images !
— an edge point that is noise, or doesn’t belong to the !
line we are fitting. ’
. .
.. '
o .
Kristen Grauman
Outliers affect least squares fit RANSAC
iy * RANdom Sample Consensus
o » Approach: we want to avoid the impact of outliers,

0|
— so let’s look for “inliers”, and use those only.

* * Intuition: if an outlier is chosen to compute the
K current fit, then the resulting line won’t have much
o support from rest of the points.

CS 376 Lecture 11 9



RANSAC: General form

*« RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group
Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-compute
estimate of transformation on all of the inliers

* Keep the transformation with the largest number of
inliers

2/23/2011

RANSAC for line fitting example

Source: R. Raguram

Lana Lazebnik

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram

1. Randomly select
minimal subset
of points

Lana Lazebnik

RANSAC for line fitting example

1. Randomly select
minimal subset

. of points

L . 2. Hypothesize a
oo " model

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

Source: R. Raguram

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

Lana Lazebnik
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RANSAC for line fitting example

Source: R. Raguram

. Randomly select

. Hypothesize a

. Compute error

. Select points

minimal subset
of points

model
function

consistent with
model

Lana Lazebnik
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RANSAC for line fitting example

Source: R. Raguram

. Randomly select

. Hypothesize a
. Compute error

. Select points

. Repeat

minimal subset
of points

model
function

consistent with
model

hypothesize-and-
verify loop

Lana Lazebnik

RANSAC for line fitting example

e

Source: R. Raguram

. Randomly select

. Hypothesize a
. Compute error

. Select points

. Repeat

minimal subset
of points

model
function

consistent with
model

hypothesize-and-
verify loop
63

Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram

Uncontaminated sample

i

w

Eal

el

. Randomly select

minimal subset
of points

. Hypothesize a

model
Compute error
function

Select points
consistent with
model

. Repeat

hypothesize-and-
verify loop
64
Lana Lazebnik

RANSAC for line fitting example

Source: R. Raguram

-

w

>

«

. Randomly select

minimal subset
of points

. Hypothesize a

model

. Compute error

function

Select points
consistent with
model

. Repeat

hypothesize-and-
verify loop

Lana Lazebnik
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RANSAC for line fitting

Repeat N times:

e Draw s points uniformly at random

« Fitline to these s points

» Find inliers to this line among the remaining
points (i.e., points whose distance from the
line is less than t)

e If there are d or more inliers, accept the line
and refit using all inliers

Lana Lazebnik
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RANSAC pros and cons

* Pros
« Simple and general
« Applicable to many different problems
« Often works well in practice

e Cons
« Lots of parameters to tune

« Doesn’'t work well for low inlier ratios (too many iterations,
or can fail completely)

« Can't always get a good initialization
of the model based on the minimum
number of samples

Lana Lazebnik
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Today

Interactive segmentation
Feature-based alignment
— 2D transformations

— Affine fit

— RANSAC

Coming up:
alignment and image stitching

CS 376 Lecture 11
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