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Image warping and stitching

Monday Feb 28

Prof. Kristen Grauman

UT‐Austin

HP frames commercials

• http://www.youtube.com/watch?v=2RPl5vPEo
Qk

Announcements

• Reminder: Pset 2 due Wed March 2

• Reminder: Midterm exam is Wed March 9

– See practice exam handout 

• My office hours Wed: 12:15‐1:15

• Matlab license issues – see course website

• Pset 1 and solutions were returned last week –
grades online

Last time

• Interactive segmentation

• Feature-based alignment
– 2D transformations

– Affine fit

– RANSAC

Today

• RANSAC for robust fitting 
– Lines, translation

• Image mosaics
– Fitting a 2D transformation

• Affine, Homography

– 2D image warping

– Computing an image mosaic

– Wednesday: which local features to match?

Alignment problem

• We have previously considered how to fit a model to 
image evidence
– e.g., a line to edge points, or a snake to a deforming contour

• In alignment, we will fit the parameters of some 
transformation according to a set of matching feature 
pairs (“correspondences”).
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Image alignment

• Two broad approaches:
– Direct (pixel-based) alignment

• Search for alignment where most pixels agree

– Feature-based alignment
• Search for alignment where extracted features agree

• Can be verified using pixel-based alignment

Main questions

T

T

Warping: Given a 
source image and a 
transformation, what 
does the transformed 
output look like?

Alignment: Given two 
images, what is the 
transformation between 
them?

Motivation for feature-based alignment:
Recognition 

Figures from David Lowe

Motivation for feature-based alignment:
Medical image registration

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fal

Motivation for feature-based alignment:
Image mosaics

Parametric (global) warping
Examples of parametric warps:

translation rotation aspect

affine
perspective

Source: Alyosha Efros
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Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?
• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Source: Alyosha Efros

Outliers
• Outliers can hurt the quality of our parameter 

estimates, e.g., 
– an erroneous pair of matching points from two images

– an edge point that is noise, or doesn’t belong to the 
line we are fitting.

Outliers affect least squares fit Outliers affect least squares fit

RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of outliers, 
so let’s look for “inliers”, and use those only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line won’t have much 
support from rest of the points.

RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group of points on which to 
base transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  
estimate of transformation on all of the inliers

• Keep the transformation with the largest number of 
inliers
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RANSAC for line fitting example

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

Least‐squares fit

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Source: R. Raguram Lana Lazebnik
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RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Uncontaminated sample

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Source: R. Raguram Lana Lazebnik

RANSAC for line fitting

Repeat N times:

• Draw s points uniformly at random

• Fit line to these s points

• Find inliers to this line among the remaining 
points (i.e., points whose distance from the 
line is less than t)

• If there are d or more inliers, accept the line 
and refit using all inliers

Lana Lazebnik

That is an example fitting a model 

(line)…

What about fitting a transformation 
(translation)?
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RANSAC example: Translation

Putative matches

Source: Rick Szeliski

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector

RANSAC pros and cons

• Pros
• Simple and general

• Applicable to many different problems

• Often works well in practice

• Cons
• Lots of parameters to tune

• Doesn’t work well for low inlier ratios (too many iterations, 
or can fail completely)

• Can’t always get a good initialization 
of the model based on the minimum 
number of samples

Lana Lazebnik

Today

• RANSAC for robust fitting 
– Lines, translation

• Image mosaics
– Fitting a 2D transformation

• Affine, Homography

– 2D image warping

– Computing an image mosaic
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Recall: fitting an affine 
transformation

Figures from David Lowe, ICCV 1999

Affine  model approximates perspective projection of 
planar objects.

Fitting an affine transformation
• Assuming we know the correspondences, how do we 

get the transformation?
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Fitting an affine transformation
• Assuming we know the correspondences, how do we 

get the transformation?

),( ii yx 
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2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel
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Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fal

Motivation for feature-based alignment:
Image mosaics

Projective Transformations

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel
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Mosaics

Obtain a wider angle view by combining multiple images.
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How to stitch together a panorama 
(a.k.a. mosaic)?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and first

– Transform the second image to overlap with the first

– Blend the two together to create a mosaic

– (If there are more images, repeat)

• …but wait, why should this work at all?

– What about the 3D geometry of the scene?

– Why aren’t we using it?

Source: Steve Seitz

Pinhole camera

• Pinhole camera is a simple model to approximate 
imaging process, perspective projection.

Fig from Forsyth and Ponce

If we treat pinhole as a point, only one ray 
from any given point can enter the camera.

Virtual 
image

pinhole

Image 
plane

Mosaics

Obtain a wider angle view by combining multiple images.
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Mosaics: generating synthetic views

real
camera

synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Source: Alyosha Efros

mosaic PP

Image reprojection

The mosaic has a natural interpretation in 3D
• The images are reprojected onto a common plane
• The mosaic is formed on this plane
• Mosaic is a synthetic wide-angle camera

Source: Steve Seitz
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Image reprojection
Basic question

• How to relate two images from the same camera center?
– how to map a pixel from PP1 to PP2

PP2

PP1

Answer
• Cast a ray through each pixel in PP1

• Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D 
reprojection, think of it as a 2D 
image warp from one image to 
another.

Source: Alyosha Efros

Image reprojection: Homography

A projective transform is a mapping between any two PPs 
with the same center of projection
• rectangle should map to arbitrary quadrilateral 

• parallel lines aren’t

• but must preserve straight lines

called Homography PP2
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Source: Alyosha Efros

Homography

 11, yx  11, yx 

To compute the homography given pairs of corresponding 
points in the images, we need to set up an equation where 
the parameters of H are the unknowns…

 22 , yx  22 , yx

…

…

 nn yx ,  nn yx  ,

Solving for homographies

Can set scale factor i=1. So, there are 8 unknowns.

Set up a system of linear equations:

Ah = b

where vector of unknowns h = [a,b,c,d,e,f,g,h]T

Need at least 8 eqs, but the more the better…

Solve for h. If overconstrained, solve using least-squares: 

>> help lmdivide
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To apply a given homography H
• Compute p’ = Hp   (regular matrix multiply)

• Convert p’ from homogeneous to  image 
coordinates

Today

• RANSAC for robust fitting 
– Lines, translation

• Image mosaics
– Fitting a 2D transformation

• Affine, Homography

– 2D image warping

– Computing an image mosaic
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Image warping

Given a coordinate transform and a source image 
f(x,y), how do we compute a transformed 
image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)
– Known as “splatting”

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear…

Slide from Alyosha Efros, CMU >> help interp2

Bilinear interpolation
Sampling at f(x,y):

Slide from Alyosha Efros, CMU
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Recap: How to stitch together a 
panorama (a.k.a. mosaic)?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation (homography) between 
second image and first using corresponding points.

– Transform the second image to overlap with the first.

– Blend the two together to create a mosaic.

– (If there are more images, repeat)

Source: Steve Seitz

Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

Source: Steve Seitz

Image rectification

p
p’

Analysing patterns and shapes

Automatically 
rectified floor

The floor (enlarged)

What is the shape of the b/w floor pattern?

Slide from Antonio Criminisi

From Martin Kemp The Science of Art
(manual reconstruction)
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Analysing patterns and shapes

Slide from Antonio Criminisi

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Analysing patterns and shapes

What is the (complicated)
shape of the floor pattern?

Slide from Criminisi
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From Martin Kemp, The Science of Art
(manual reconstruction)

Automatic
rectification

Analysing patterns and shapes

Slide from Criminisi

Changing camera center
Does it still work? synthetic PP

PP1

PP2

Source: Alyosha Efros

Recall: same camera center

real
camera

synthetic
camera

Can generate synthetic camera view
as long as it has the same center of projection.

Source: Alyosha Efros

…Or: Planar scene (or far away)

PP3 is a projection plane of both centers of projection, 
so we are OK!

This is how big aerial photographs are made

PP1

PP3

PP2

Source: Alyosha Efros

Summary: alignment & warping

• Write 2d transformations as matrix-vector 
multiplication (including translation when we use 
homogeneous coordinates)

• Perform image warping (forward, inverse)

• Fitting transformations: solve for unknown 
parameters given corresponding points  from 
two views (affine, projective (homography)).

• Mosaics: uses homography and image warping 
to merge views taken from same center of 
projection. 
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Next time: which features should we match?


