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Matching local features Matching local features

Image 1 Image 2 Image 1 Image 2

To generate candidate matches, find patches that have In stereo case, may constrain by proximity if we make
the most similar appearance (e.g., lowest SSD) assumptions on max disparities.

Simplest approach: compare them all, take the closest (or
closest k, or within a thresholded distance)

Kristen Grauman Kristen Grauman

Indexing local features Indexing local features
r 3

« Each patch / region has a descriptor, which is a
point in some high-dimensional feature space
(e.g., SIFT)

QD Descriptor’s
feature space
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Indexing local features

* When we see close points in feature space, we
have similar descriptors, which indicates similar
local content.

Descriptor’s Quew
feature space image

Database
images Kristen Graumar}

Indexing local features:
inverted file index

* For text
documents, an
efficient way to find
all pages on which
a word occurs is to
use an index...

¢ We want to find all
images in which a
feature occurs.

¢ To use this idea,
we'll need to map
our features to
“visual words”.

Kristen Graumau

Visual words: main idea

* Extract some local features from a number of images ...
a . h

e.g., SIFT descriptor space: each
point is 128-dimensional

Slide credit: D. Nister, CVPR 2006

CS 376 Lecture 18

3/30/2011

Indexing local features

» With potentially thousands of features per
image, and hundreds to millions of images to
search, how to efficiently find those that are
relevant to a new image?

Kristen Graumar}

Text retrieval vs. image search

« What makes the problems similar, different?

Kristen Grauman

Visual words: main idea
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Visual words: main idea

Each pointis a
local descriptor,
e.g. SIFT vector. *

Visual words: main idea
"%‘i .'. .

Visual words

by guantizing the feature space

Descriptor’s
feature space

* Map high-dimensional descriptors to tokens/words

Quantize via
clustering, let
cluster centers be
the prototype
“words”

Determine which
word to assign to
each new image
region by finding
the closest cluster
center.

Kristen Grauma!
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Visual words

* Example: each
group of patches
belongs to the
same visual word

‘:!E]
1]

Figure from Sivic & Zisserman, ICCV 2003 risten Grauman
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Visual words and textons

* First explored for texture and
material representations

¢ Texton = cluster center of
filter responses over
collection of images

¢ Describe textures and
materials based on
distribution of prototypical
texture elements.
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Visual vocabulary formation

Issues:

« Sampling strategy: where to extract features?

» Clustering / quantization algorithm

* Unsupervised vs. supervised

» What corpus provides features (universal vocabulary?)
* Vocabulary size, number of words

Kristen Graumar}

Inverted file index

When will this give us a
significant gain in efficiency?

: S
New query image 9
10
91 2

* New query image is mapped to indices of database
images that share a word.
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Recall: Texture representation example
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Inverted file index
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» Database images are loaded intd the index mapping
words to image numbers

Kristen Graumar}

« If a local image region is a visual word,
how can we summarize an image (the
document)?




Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the:
dominant ones. Our perception of the world

China is forecasting a trade surplus of $90bn
(£51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
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around us is based esseptially on the

Ministry said the surplus would be created by
a precicted 30%, s $750hn,

China'y
delierfffexports, imports, US,

eye, cell, optical agrees
i uan it . N
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trade, value

to the various =

Hubel and Wi e Pl
demor strate that the message abo!
image falling on the retina undsrgos.
wise anal/sis in a system of nerve ceny
stored in columns: fn this systern each
has its speciic function and is responsibis

yuan against the
permitted it o trade within a narrol

freely. However, Beijing has made it ¢
itwill take its time and tread carefully hel
allowing the yuan to rise further in value

a specific detail in the pattern of ihe retina.
image.

ICCV 2005 short course, L. Fe\—Feil

Bags of visual words Comparing bags of words

ﬁ— « Rank frames by normalized scalar product between their
! (possibly weighted) occurrence counts---nearest
neighbor search for similar images.

* Summarize entire image
based on its distribution

(histogram) of word JIh e ne1 4 511 0 (d,,)
occurrences. t . sim(d;,q) =
&0 EAIEL
» Analogous to bag of words
representation commonly
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Bags of words for content-based

tf-idf weighting image retrieval

» Term frequency — inverse document frequency

» Describe frame by frequency of each word within it,
downweight words that appear often in the database

« (Standard weighting for text retrieval)

Visually defined query “Groundhog Day” [Rammis, 1993]

['Find this
Total number of

Number of — 4 o clock”
occurrences of word — Nid N dgfaﬂ:g s in
iin document d = — log —

) Ny n; Number of documents i i
Number of words in _— word i occurs in, in 'Find this
document d

whole database place”

Slide from Andrew Zisserman
Sivic & Zisserman, ICCV 2003

Kristen Graumag

CS 376 Lecture 18 5



Example

retrieved shots
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Slide from Andrew Zisserman

Sivic & Zisserman, ICCV 2003

Database size: 10 images
Query Relevant (total): 5 images

precision = #relevant / #returned
recall = #relevant / #total relevant
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Scoring retrieval quality

Results (ordered):

Vocabulary Tree

e Training: Filling the tree
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K. Grauman, B. Leibe

[Nister & Stewenius, CVPR’06]

Slide credit: David Nister
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Visual Object Recognition Tutorial

Visual Object Recognition Tutorial
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Video Google System

1. Collect all words within
query region

2. Inverted file index to find
relevant frames

3. Compare word counts

4. Spatial verification

Sivic & Zisserman, ICCV 2003

* Demo online at :
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html

K. Grauman, B. Leibe
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Vocabulary Trees: hierarchical clustering

for large vocabularies
e Tree construction:

[Nister & Stewenius, CVPR’06]|

Slide credit: David Nister

Vocabulary Tree

* Training: Filling the tree

K. Grauman, B. Leibe

[Nister & Stewenius, CVPR’06]|

Slide credit: David Nister
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Vocabulary Tree Vocabulary Tree

* Training: Filling the tree * Training: Filling the tree

[Nister & Stewenius, CVPR’06]| E [Nister & Stewenius, CVPR’06]|

]
g
E
S
=
S
o
8
3
o
g
S
3
o
©
g
@
S

Visual Object Recognition Tutorial

K. Grauman, B. Leibe Slide credit: David Nister K. Grauman, B. Leibe Slide credit: David Nister

Vocabulary Tree
* Training: Filling the tree

What is the computational advantage of the
hierarchical representation bag of words, vs.
a flat vocabulary?

Visual Object Recognition Tutorial

[Nister & Stewenius, CVPR’06]|

39
’Grauman, B. Leibe Slide credit: David Nister

Vocabulary Tree Bags of words: pros and cons

= Recognition

+ flexible to geometry / deformations / viewpoint
AeAC + compact summary of image content
verification + provides vector representation for sets
+

very good results in practice

- basic model ignores geometry — must verify
afterwards, or encode via features

- background and foreground mixed when bag
covers whole image

- optimal vocabulary formation remains unclear
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Slide credit: David Nister
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Summary

» Matching local invariant features: useful not only to
provide matches for multi-view geometry, but also to find
objects and scenes.

» Bag of words representation: quantize feature space to
make discrete set of visual words

— Summarize image by distribution of words

— Index individual words

* Inverted index: pre-compute index to enable faster
search at query time
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