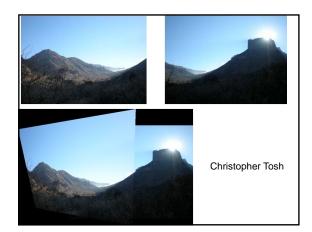
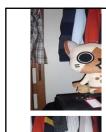


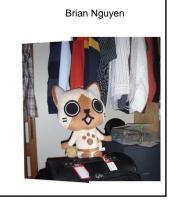
Recognizing object instances

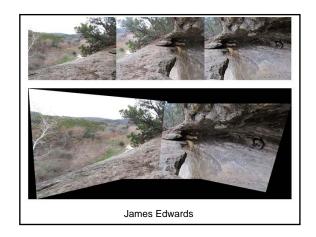
Monday, April 4 Prof. Kristen Grauman UT-Austin Some pset 3 results!

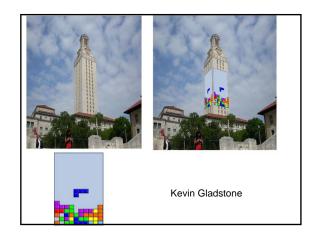
Brian Bates





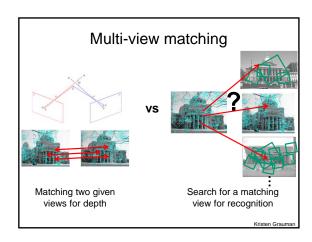


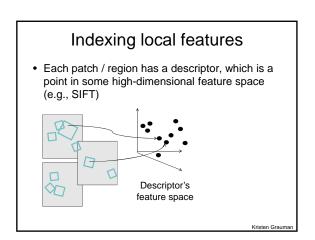


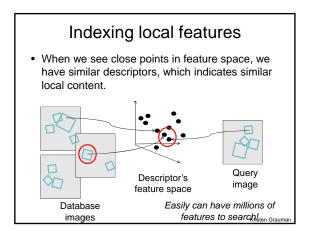


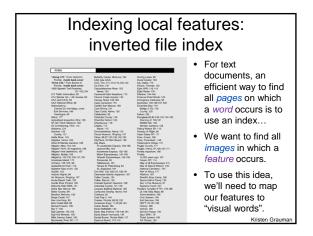
Today: instance recognition

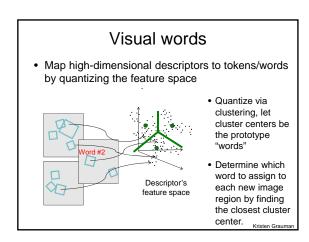
- Motivation visual search
- Visual words
 - quantization, index, bags of words
- · Spatial verification
 - · affine; RANSAC, Hough
- · Other text retrieval tools
 - tf-idf, query expansion
- Example applications

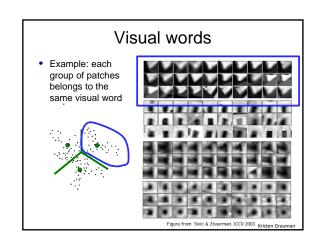












Visual vocabulary formation

Issues:

- Vocabulary size, number of words
- · Sampling strategy: where to extract features?
- Clustering / quantization algorithm
- Unsupervised vs. supervised
- What corpus provides features (universal vocabulary?)

Image #1

1 3

2 ...

7 1,2

7 1,2

Image #2 8 3

9

Image #3 10

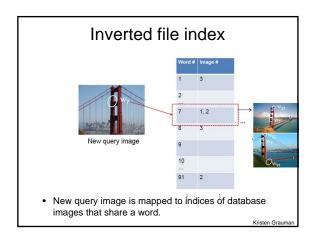
...

91 2

• Database images are loaded into the index mapping words to image numbers

Inverted file index

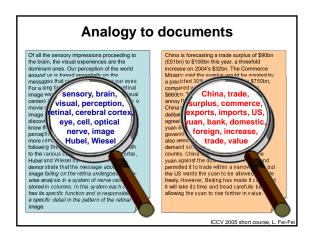
(risten Grauman

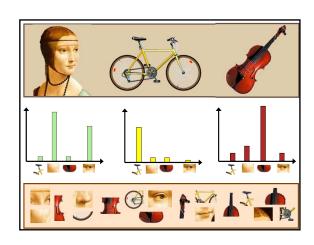


Instance recognition: remaining issues

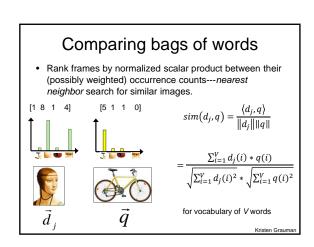
- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- · How to score the retrieval results?

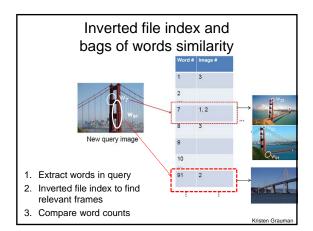
Kristen Grauman





Summarize entire image based on its distribution (histogram) of word occurrences. Analogous to bag of words representation commonly used for documents.

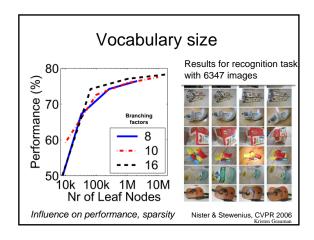


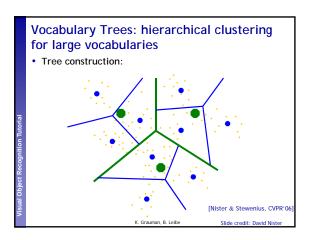


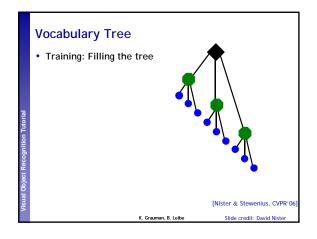
Instance recognition: remaining issues

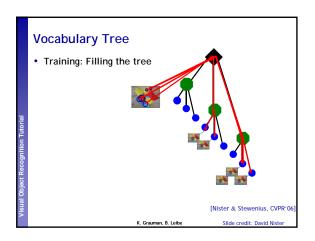
- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- How to score the retrieval results?

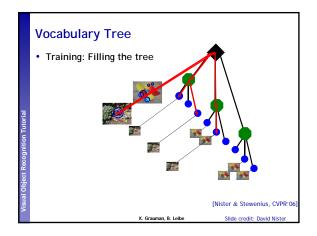
Kristen Grauman

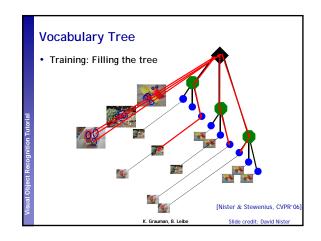


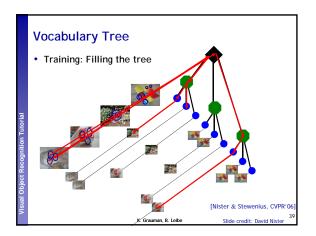


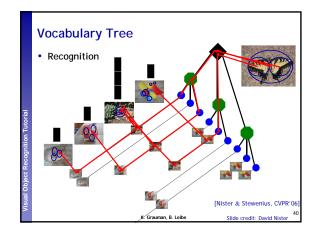












Vocabulary trees: complexity

Number of words given tree parameters: branching factor and number of levels

Word assignment cost vs. flat vocabulary

Visual words/bags of words

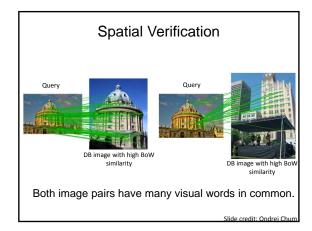
- + flexible to geometry / deformations / viewpoint
- + compact summary of image content
- + provides vector representation for sets
- + very good results in practice
- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear
- basic model ignores geometry must verify afterwards, or encode via features

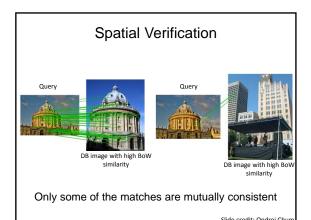
Kristen Grauman

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- How to score the retrieval results?

Kristen Graumar



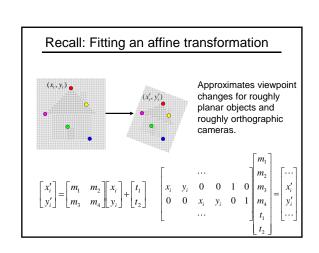


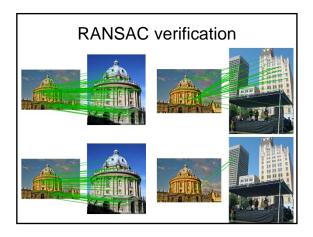
Spatial Verification: two basic strategies

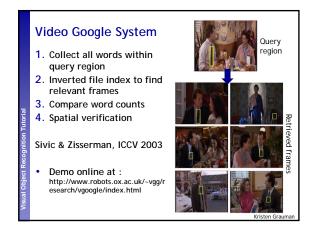
- RANSAC
 - Typically sort by BoW similarity as initial filter
 - Verify by checking support (inliers) for possible transformations
 - e.g., "success" if find a transformation with > N inlier correspondences
- Generalized Hough Transform
 - Let each matched feature cast a vote on location, scale, orientation of the model object
 - Verify parameters with enough votes

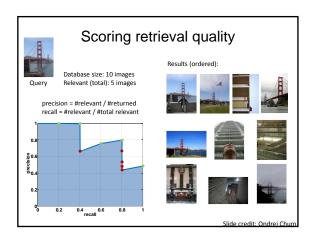
Kristen Grauman











Spatial Verification: two basic strategies

- RANSAC
 - Typically sort by BoW similarity as initial filter
 - Verify by checking support (inliers) for possible transformations
 - e.g., "success" if find a transformation with > N inlier correspondences
- Generalized Hough Transform
 - Let each matched feature cast a vote on location, scale, orientation of the model object
 - Verify parameters with enough votes

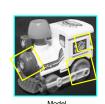
Kristen Grauman

Voting: Generalized Hough Transform

• If we use scale, rotation, and translation invariant local features, then each feature match gives an alignment hypothesis (for scale, translation, and orientation of model in image).

Voting: Generalized Hough Transform

- A hypothesis generated by a single match may be unreliable.
- So let each match vote for a hypothesis in Hough space



Gen Hough Transform details (Lowe's system)

- Training phase: For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
- Test phase: Let each match btwn a test SIFT feature and a model feature vote in a 4D Hough space
 - Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
 - · Vote for two closest bins in each dimension
- · Find all bins with at least three votes and perform geometric verification
 - Estimate least squares affine transformation
 - Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Example result

Background subtract for model boundaries

Objects recognized,

Recognition in spite of occlusion

Recall: difficulties of voting

- Noise/clutter can lead to as many votes as true target
- Bin size for the accumulator array must be chosen carefully
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.

Gen Hough vs RANSAC

GHT

- Single correspondence -> vote for all consistent parameters
- Represents uncertainty in the model parameter space
- Linear complexity in number of correspondences and number of voting cells; beyond 4D vote space impractical
- · Can handle high outlier ratio

RANSAC

- Minimal subset of correspondences to estimate model -> count inliers
- Represents uncertainty in image space
- Must search all data points to check for inliers each iteration
- Scales better to high-d parameter spaces

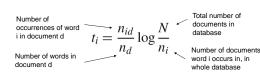
Kristen Grauman

What else can we borrow from text retrieval?

China is forecasting a trade surplus of 390h (£51ch) to 5100h this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the surplus would be created by a predicted 30s compared 'China, trade, section.' China, trade, annoy the surplus, commerce, China's compared warplus years of the surplus of the surpl

tf-idf weighting

- Term frequency inverse document frequency
- Describe frame by frequency of each word within it, downweight words that appear often in the database
- (Standard weighting for text retrieval)



Kristen Grauman

Query expansion

Query: golf green

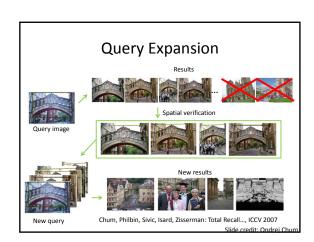
Results:

- How can the grass on the greens at a golf course be so perfect?
 For example, a skilled golfer expects to reach the green on a par-four hole in ...
- For example, a skilled golfer expects to reach the green on a par-rour noie in ...
 Manufactures and sells synthetic golf putting greens and mats.

Irrelevant result can cause a `topic drift':

 Volkswagen Golf, 1999, Green, 2000cc, petrol, manual, , hatchback, 94000miles,
 2.0 GTi, 2 Registered Keepers, HPI Checked, Air-Conditioning, Front and Rear Parking Sensors, ABS, Alarm, Alloy

Slide credit: Ondrej Chum



Recognition via alignment

Pros:

- Effective when we are able to find reliable features within clutter
- Great results for matching specific instances

Cons:

- Scaling with number of models
- Spatial verification as post-processing not seamless, expensive for large-scale problems
- Not suited for category recognition.

Summary

- · Matching local invariant features
 - Useful not only to provide matches for multi-view geometry, but also to find objects and scenes.
- Bag of words representation: quantize feature space to make discrete set of visual words
 - Summarize image by distribution of words
 Index individual words
- Inverted index: pre-compute index to enable faster search at query time
- Recognition of instances via alignment: matching local features followed by spatial verification
 - Robust fitting: RANSAC, GHT

