

Outline

- Last time: window-based generic object detection
 - basic pipeline
 - face detection with boosting as case study
- **Today:** discriminative classifiers for image recognition
 - nearest neighbors (+ scene match app)
 - support vector machines (+ gender, person app)

A nearest neighbor recognition example

Which scene properties are relevant?

Which scene properties are relevant?

- Gist scene descriptor
- Color Histograms L*A*B* 4x14x14 histograms
- Texton Histograms 512 entry, filter bank based
- Line Features Histograms of straight line stats

Nearest neighbors: pros and cons

- Pros:
 - Simple to implement
 - Flexible to feature / distance choices
 - Naturally handles multi-class cases
 - Can do well in practice with enough representative data
- Cons
 - Large search problem to find nearest neighbors
 - Storage of data
 - Must know we have a meaningful distance function

Outline

- · Discriminative classifiers
 - Boosting (last time)
 - Nearest neighbors
 - Support vector machines

Finding the maximum margin line

1. Maximize margin $2/||\mathbf{w}||$ 2. Correctly classify all training data points: $\mathbf{x}_{i} \text{ positive } (y_{i} = 1) : \quad \mathbf{x}_{i} \cdot \mathbf{w} + b \geq 1$ $\mathbf{x}_{i} \text{ negative } (y_{i} = -1) : \quad \mathbf{x}_{i} \cdot \mathbf{w} + b \leq -1$ Quadratic optimization problem: $\mathbf{Minimize} \quad \frac{1}{2} \mathbf{w}^{T} \mathbf{w}$ Subject to $y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \geq 1$

Finding the maximum margin line

• Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ learned Support weight vector

Finding the maximum margin line

• Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_i - \mathbf{w} \cdot \mathbf{x}_i$ (for any support vector) $\mathbf{w}\cdot\mathbf{x}+b=\sum_{i}\alpha_{i}y_{i}\mathbf{x}_{i}\cdot\mathbf{x}_{}+b$ • Classification function:

If f(x) < 0, classify $f(x) = \text{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$ $= \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$ $= \operatorname{sign}(\sum_{i} \alpha_{i} \mathbf{x}_{i} \cdot \mathbf{x} + \mathbf{b})$ $= \operatorname{sign}(\sum_{i} \alpha_{i} \mathbf{x} \cdot \mathbf{x} + \mathbf{b})$

rges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Dis

Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- · What if we have more than just two categories?

Questions

- · What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
- · What if we have more than just two categories?

Person detection with HoG's & linear SVM's

- · Map each grid cell in the input window to a histogram counting the gradients per orientation.
- Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Dalal & Triggs, CVPR 2005

Code available: http://pascal.inrialpes.fr/soft/olt/

Person detection with HoG's & linear SVM's

Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005 rialnes fr/nubs/2005/DT05/

8

Questions

- What if the features are not 2d?
- · What if the data is not linearly separable?
- What if we have more than just two categories?

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?
- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: feature spaces

 General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

The "Kernel Trick"

- The linear classifier relies on dot product between vectors K(x_i,x_i)=x_i^Tx_i
- If every data point is mapped into high-dimensional space via some transformation Φ: x → φ(x), the dot product becomes:

$$K(x_i, x_i) = \phi(x_i)^T \phi(x_i)$$

 A kernel function is similarity function that corresponds to an inner product in some expanded feature space.

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

Example

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2];$

let
$$K(x_i, x_i) = (1 + x_i^T x_i)^2$$

Need to show that $K(x_i,x_i) = \varphi(x_i)^T \varphi(x_i)$:

from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/sym.html

Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_i) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_i)$$

 This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

Examples of kernel functions

Linear:

$$K(x_i, x_j) = x_i^T x_j$$

- Gaussian RBF: $K(x_i, x_j) = \exp(-\frac{\|x_i x_j\|^2}{2\sigma^2})$
- Histogram intersection:

$$K(x_i, x_j) = \sum_{k} \min(x_i(k), x_j(k))$$

SVMs for recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Use this "kernel matrix" to solve for SVM support vectors & weights.
- To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.

Learning gender with SVMs

- · Training examples:
 - 1044 males
 - 713 females
- Experiment with various kernels, select Gaussian RBF

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Classifier	Error Rate		
	Overall	Male	Female
SVM with RBF kernel	3.38%	2.05%	4.79%
SVM with cubic polynomial kernel	4.88%	4.21%	5.59%
Large Ensemble of RBF	5.54%	4.59%	6.55%
Classical RBF	7.79%	6.89%	8.75%
Quadratic classifier	10.63%	9.44%	11.88%
Fisher linear discriminant	13.03%	12.31%	13.78%
Nearest neighbor	27.16%	26.53%	28.04%
Linear classifier	58.95%	58.47%	59.45%

Gender perception experiment: How well can humans do?

- Subjects:
 - 30 people (22 male, 8 female)
 - Ages mid-20's to mid-40's
- · Test data:
 - 254 face images (6 males, 4 females)
 - Low res and high res versions
- Task
 - Classify as male or female, forced choice
 - No time limit

Moghaddam and Yang, Face & Gesture 2000.

Hardest examples for humans

Top five human misclassifications

Moghaddam and Yang, Face & Gesture 2000.

Questions

- · What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Multi-class SVMs

 Achieve multi-class classifier by combining a number of binary classifiers

· One vs. all

- Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

· One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

SVMs: Pros and cons

• Pros

- Many publicly available SVM packages: http://www.kernel-machines.org/software
- http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Kernel-based framework is very powerful, flexible
- Often a sparse set of support vectors compact at test time
- Work very well in practice, even with very small training sample sizes

• Cons

- No "direct" multi-class SVM, must combine two-class SVMs
- · Can be tricky to select best kernel function for a problem
- · Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

Coming up

- · Part-based models
- · Video processing: motion, tracking, activity