

Today

- Optical flow wrapup
- Activity in video
 - Background subtraction
 - Recognition of actions based on motion patterns
 - Example applications

Background subtraction

- Simple techniques can do ok with static camera
- · ...But hard to do perfectly
- Widely used:
 - Traffic monitoring (counting vehicles, detecting & tracking vehicles, pedestrians),
 - Human action recognition (run, walk, jump, squat),
 - Human-computer interaction
 - Object tracking

▶ Background is estimated to be the previous frame. Background subtraction equation then becomes:

$$B(x, y, t) = I(x, y, t - 1)$$
 $|I(x, y, t) - I(x, y, t - 1)| > Th$

▶ Depending on the object structure, speed, frame rate and global threshold, this approach may or may **not** be useful (usually not).

| > *Th*

Mean Filter

ightharpoonup In this case the background is the mean of the previous n

$$B(x, y, t) = \frac{1}{n} \sum_{i=0}^{n-1} I(x, y, t - i)$$

$$\downarrow I(x, y, t) - \frac{1}{n} \sum_{i=0}^{n-1} I(x, y, t - i)| > Th$$

▶ For n = 10:

Foreground Mask

Median Filter

▶ Assuming that the background is more likely to appear in a scene, we can use the median of the previous n frames as the background model:

$$\begin{split} B(x,y,t) &= \textit{median}\{I(x,y,t-i)\} \\ & \downarrow \\ |I(x,y,t) - \textit{median}\{I(x,y,t-i)\}| &> \textit{Th} \text{ where} \\ i &\in \{0,\dots,n-1\}. \end{split}$$

▶ For n = 10: Estimated Background

Foreground Mask

Average/Median Image

osha Efros, CMU

Pros and cons

Advantages:

- Extremely easy to implement and use!
- · All pretty fast.
- Corresponding background models need not be constant, they change over time.

Disadvantages:

- Accuracy of frame differencing depends on object speed and frame rate
- Median background model: relatively high memory requirements.
- Setting global threshold Th...

When will this basic approach fail?

Slide credit: Birgi Tamersov

Background subtraction with depth

How can we select foreground pixels based on depth information?

Today

- Optical flow wrapup
- Activity in video
 - Background subtraction
 - Recognition of action based on motion patterns
 - Example applications

Human activity in video

No universal terminology, but approximately:

- "Actions": atomic motion patterns -- often gesturelike, single clear-cut trajectory, single nameable behavior (e.g., sit, wave arms)
- "Activity": series or composition of actions (e.g., interactions between people)
- "Event": combination of activities or actions (e.g., a football game, a traffic accident)

Adapted from Venu Govindaraj

Human activity in video: basic approaches

- Model-based action/activity recognition:
 - Use human body tracking and pose estimation techniques, relate to action descriptions (or learn)
 - Major challenge: accurate tracks in spite of occlusion, ambiguity, low resolution
- Activity as motion, space-time appearance patterns
 - Describe overall patterns, but no explicit body tracking
 - Typically learn a classifier
 - We'll look at some specific instances...

Motion and perceptual organization

• Even "impoverished" motion data can evoke a strong percept

Motion and perceptual organization

 Even "impoverished" motion data can evoke a strong percept

Video from Davis & Bobick

Image moments

Use to summarize shape given image I(x,y)

$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$

Central moments are translation invariant:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} I(x, y)$$
 $\bar{x} = \frac{M_{10}}{M_{00}}$ $\bar{y} = \frac{M_{01}}{M_{00}}$

8

Hu moments

- Set of 7 moments
- Apply to Motion History Image for global space-time "shape" descriptor
- Translation and rotation invariant
- See handout

Summary

- Background subtraction:
 - Essential low-level processing tool to segment moving objects from static camera's video
- Action recognition:
 - Increasing attention to actions as motion and appearance patterns
 - For instrumented/constrained environments, relatively simple techniques allow effective gesture or action recognition

Hu moments
$$h_1 = \mu_{20} + \mu_{02},$$

$$h_2 = (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2,$$

$$h_3 = (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2,$$

$$h_4 = (\mu_{30} + \mu_{12})^2 + (\mu_{21} + \mu_{03})^2,$$

$$h_5 = (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2]$$

$$+ (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})$$

$$\cdot [3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2],$$

$$h_6 = (\mu_{20} - \mu_{02})[(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2]$$

$$+ 4\mu_{11}(\mu_{30} + \mu_{12})(\mu_{21} + \mu_{03}),$$

$$\begin{array}{l} h_7 = & (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^2 - 3(\mu_{21} + \mu_{03})^2] \\ & - (\mu_{30} - 3\mu_{12})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^2 - (\mu_{21} + \mu_{03})^2] \end{array}$$