CS 343H: Honors Artificial Intelligence

Lecture 1: Introduction 1/14/2014

Kristen Grauman UT Austin

Slides courtesy of Dan Klein, UC-Berkeley unless otherwise noted.

Teaching staff

- Prof. Kristen Grauman
- TA: Kim Houck

Today

What is artificial intelligence?

What can Al do?

• What is this course?

Sci-Fi AI?

Definition

- Artificial intelligence is...
 - The science of getting computers to do the things they can't do yet?
 - Finding fast algorithms for NP-hard problems?
 - Getting computers to do the things they do in the movies?
- No generally accepted definition...

Science and engineering

- Al is one of the great intellectual adventures of the 20th and 21st centuries.
 - What is a mind?
 - How can a physical object have a mind?
 - Is a running computer (just) a physical object?
 - Can we build a mind?
 - Can trying to build one teach us what a mind is?

A (Short) History of Al

• 1940-1950: Early days

- 1943: McCulloch & Pitts: Boolean circuit model of brain
- 1950: Turing's "Computing Machinery and Intelligence"

 \odot

- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning

1970—90: Knowledge-based approaches

- 1969—79: Early development of knowledge-based systems
- 1980—88: Expert systems industry booms
- 1988—93: Expert systems industry busts: "AI Winter"
- 1990—: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2000—: Where are we now?

Today

What is artificial intelligence?

What can Al do?

What is this course?

What Can AI Do?

Quiz: Which of the following can be done at present?

Play a decent game of table tennis? ✓ Play a decent game of Jeopardy? ✓ Drive safely along a curving mountain road? **Prive safely along Sixth Street?** Buy a week's worth of groceries on the web? X Buy a week's worth of groceries at HEB? Piscover and prove a new mathematical theorem? Converse successfully with another person for an hour? Perform a complex surgical operation? ✓ Put away the dishes and fold the laundry? Translate spoken Chinese into spoken English in real time? \times Write an intentionally funny story?

Unintentionally Funny Stories

- One day Joe Bear was hungry. He asked his friend Irving Bird where some honey was. Irving told him there was a beehive in the oak tree. Joe walked to the oak tree. He ate the beehive. The End.
- Henry Squirrel was thirsty. He walked over to the river bank where his good friend Bill Bird was sitting. Henry slipped and fell in the river. Gravity drowned. The End.

[Shank, Tale-Spin System, 1984]

Natural Language

Speech technologies

- Automatic speech recognition (ASR)
- Text-to-speech synthesis (TTS)
- Dialog systems

Language processing technologies

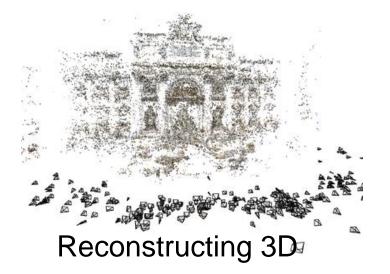
- Question answering
- Machine translation

"Il est impossible aux journalistes de rentrer dans les régions tibétaines"

Bruno Philip, correspondant du "Monde" en Chine, estime que les journalistes de l'AFP qui ont été expulsés de la province tibétaine du Qinghai "n'étaient pas dans l'illégalité".

Les faits Le dalaï-lama dénonce l'"enfer" imposé au Tibet depuis sa fuite, en 1959 Vidéo Anniversaire de la rébellion tibétoine, la China aur sea gardea

Text classification, spam filtering, etc...



the friends family classmates said their final good buys yesterday at her funeral in east falls that these adams was buried today in on

3681796691 6757863485 2179712845 4819018894

Reading license plates, zip codes, checks

Slide credit: Kristen Grauman



Face detection

Instance recognition

Instance recognition

Google Goggles in action

Click the icons below to see the different kinds of objects and places you can search for using Google Goggles.

Slide credit: Kristen Grauman

Object/image categorization

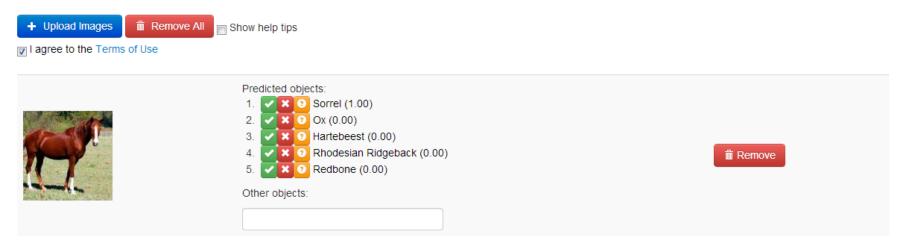
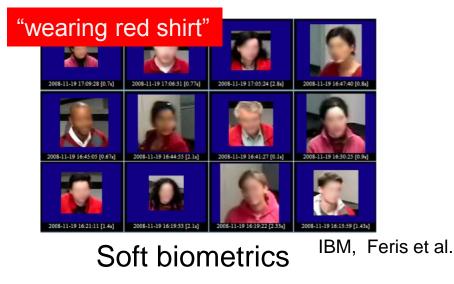

Terms

Image Classifier Demo About

Image Classifier Demo

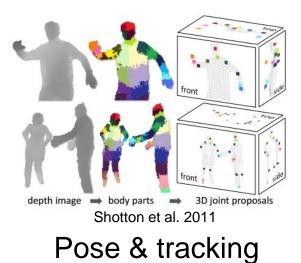
Upload your images to have them classified by a machine! Upload multiple images using the button below or dropping them on this page. The predicted objects will be refreshed automatically. Images are resized such that the smallest dimension becomes 256, then the center 256x256 crop is used. More about the demo can be found here.

NYU



Matthew Zeiler, New York University: http://horatio.cs.nyu.edu/index.html

Slide credit: Kristen Grauman



Augmented reality

Kim et al. 2009 Unusual event detection

Slide credit: Kristen Grauman

[videos: robotics]

Robotics

- Robotics
 - Part mech. eng.
 - Part Al
 - Reality much harder than simulations!
- Technologies
 - Vehicles
 - Rescue
 - Soccer!
 - Lots of automation...
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

Images from stanfordracing.org, CMU RoboCup, Honda ASIMO sites

Logic

Logical systems

- Theorem provers
- NASA fault diagnosis
- Question answering

	CHE PROOF	5
	7+++	[Robins azion]
10	$\overline{p+q+2-q}=p+q$	$\eta r \rightarrow \pi_1$
12	$\overline{p+2}+p+c+c=\underline{p+4}$	$(\tau - \tau)$
29	$\overline{\beta+2}+y+2q}+\beta+q=y$	$[[13 \rightarrow 7]]$
54	$\overline{\beta+\zeta+p+2\gamma+\beta+\zeta+r+\gamma+2} = \tau$	$[29 \rightarrow 7]$
217	$\overline{p + q + p + 2q} + \overline{p + q} + \overline{q + 7} + r + r = \overline{q + r}$	[54 7]
-074	$\overline{y + q + p + 2q + p + q + q + r + r + r + s + q + r + r}$	a → a (337 → 7)
6736	$\overline{55} + p + \overline{5} = 3\overline{p} + \overline{p} + 5\sigma = \overline{5p} + p$	$(10 \rightarrow 674)$
	$\overline{3p + p + 5p} = \overline{5p}$	[9756 - 7, s:mp: 54]
8865	39+ p+ 39+ 2p+ 39 = 59+ p+ 2p	(198305+ T)
1965	55+p+35-p	35855 → 7. simp 11]
\$572	$\frac{1}{2p+p+2p+q+p+q} = q$	- (8866 - 7)
8871	3p + p + 2p = 20	(ERES, sump : 8970)
	ar's Domm. The Acy regs is proving the Robbert conjucture, represent program developed by Wallow McCase and colleage on, "Substance Teacher," page 63 for develo.)	na reported by 2007, on automated et as Argunate National Cohercitory

Game Playing

May, '97: Deep Blue vs. Kasparov

- First match won against world-champion
- "Intelligent creative" play
- 200 million board positions per second!
- Humans understood 99.9 of Deep Blue's moves
- Can do about the same now with a big PC cluster

• Open question:

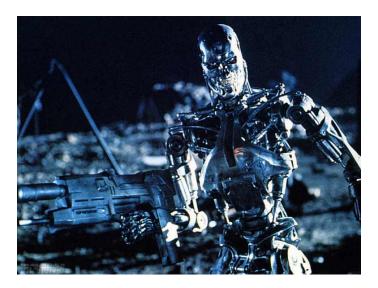
- How does human cognition deal with the search space explosion of chess?
- Or: how can humans compete with computers at all??
- 1996: Kasparov Beats Deep Blue "I could feel --- I could smell --- a new kind of intelligence across the table."
- 1997: Deep Blue Beats Kasparov

"Deep Blue hasn't proven anything."

Text from Bart Selman, image from IBM's Deep Blue pages

Decision Making

Applied AI involves many kinds of automation


- Scheduling, e.g. airline routing, military
- Route planning, e.g. mapquest
- Medical diagnosis
- Web search engines
- Spam classifiers
- Automated help desks
- Fraud detection
- Product recommendations
- ... Lots more!

Ethics, implications

Robust, fully autonomous agents in the real world

What happens when we achieve this goal?

Some Hard Questions...

- Who is liable if a robot driver has an accident?
- Will machines surpass human intelligence?
- What will we do with superintelligent machines?
- Would such machines have conscious existence? Rights?
- Can human minds exist indefinitely within machines (in principle)?

Today

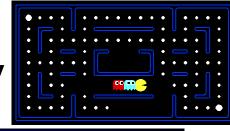
What is artificial intelligence?

What can AI do?

What is this course?

Goal of this course

- Learn about Artificial Intelligence
 - Increase your AI literacy
 - Prepare you for topic courses and/or research


Course Topics

- Part I: Making Decisions
 - Fast search / planning
 - Adversarial and uncertain search
- Part II: Reasoning under Uncertainty
 - Bayes' nets
 - Decision theory
 - Machine learning
- Throughout: Applications
 - Natural language, vision, robotics, games, …

Overview of syllabus

- Official syllabus is online
- And see handout

- Readings due at least once per week
- Brief written responses for every reading (10%) sent to 343h.readings@gmail.com
- Class attendance and participation (10%)
- Assignments (mostly programming) (40%) using Piazza for discussion/questions
- Midterm (15%)
- Final (25%)

Course enrollment

- Course is for honors CS students
- If you want to enroll but are not registered, please inquire with the CS undergraduate office (first floor of GDC).

Assignments

- Read the syllabus
- Join the mailing list (see link online)
- Enroll on Piazza
- Reading assignment & email by Wed 8 pm
- Start first programming assignment python tutorial (PS0), due 1/23
 - Complete it independently; no pairs.