CS 343H: Honors Al

Lecture 10: MDPs I 2/18/2014

Kristen Grauman UT Austin

Slides courtesy of Dan Klein, UC Berkeley Unless otherwise noted

Some context

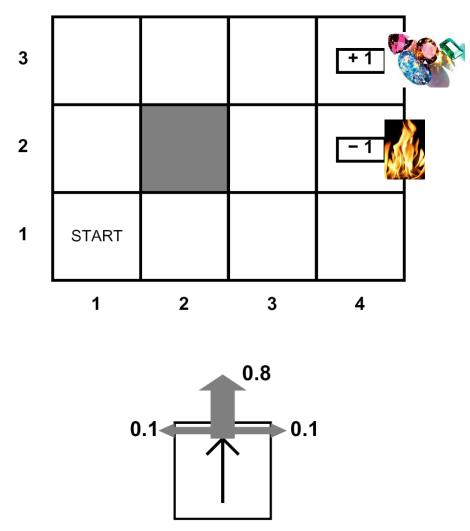
- First weeks: search (BFS, A*, minimax, alpha beta)
 - Find an optimal plan (or solution)
 - Best thing to do from the current state
 - Assume we know transition function and cost (reward) function
 - Either execute complete solution (deterministic) or search again at every step
- Last week: detour for probabilities and utilities
- This week: MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a policy optimal action from every state
- Next week: reinforcement learning
 - Optimal policy without knowing transition or reward function

Non-Deterministic Search

How do you plan when your actions might fail?

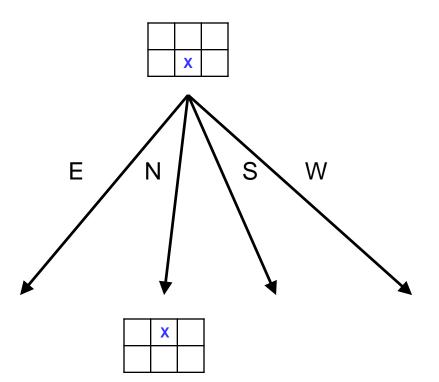
Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards

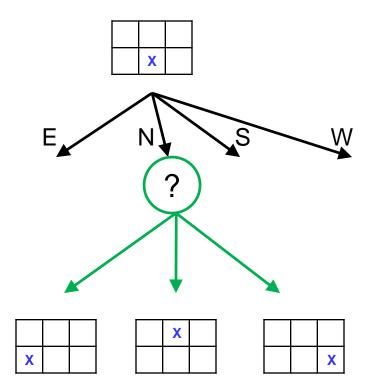


Action Results

Deterministic Grid World

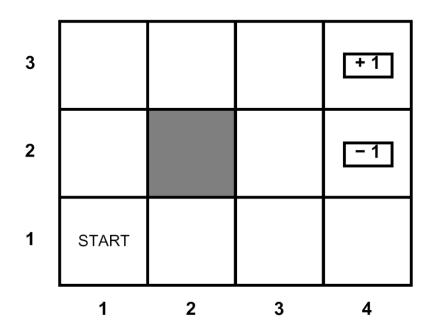


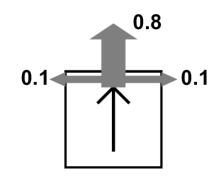
Stochastic Grid World



Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
- MDPs are a family of nondeterministic search problems
 - One way to solve them is with expectimax search – but we'll have a new tool soon





What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state:

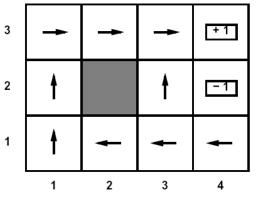
Andrey Markov (1856-1922)

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

=
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

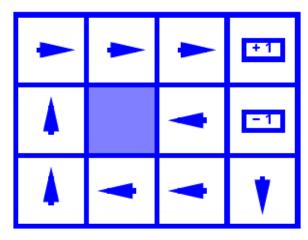
Solving MDPs: Policies

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy $\pi^*: S \to A$
 - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent (if precomputed)
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

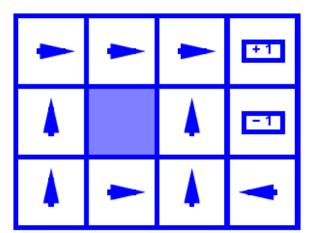


Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

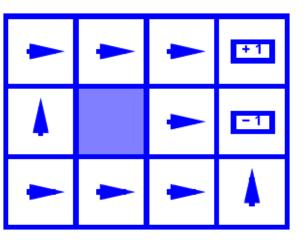
Optimal Policies



$$R(s) = -0.01$$



R(s) = -0.03



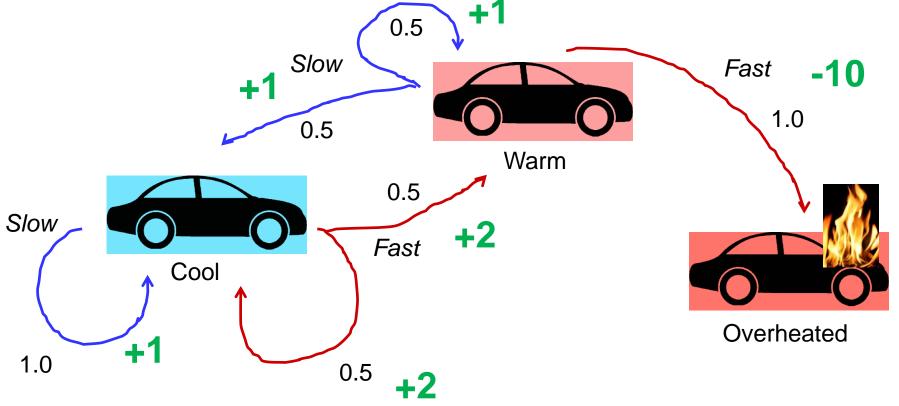
R(s) = -2.0

Example: Stuart Russell

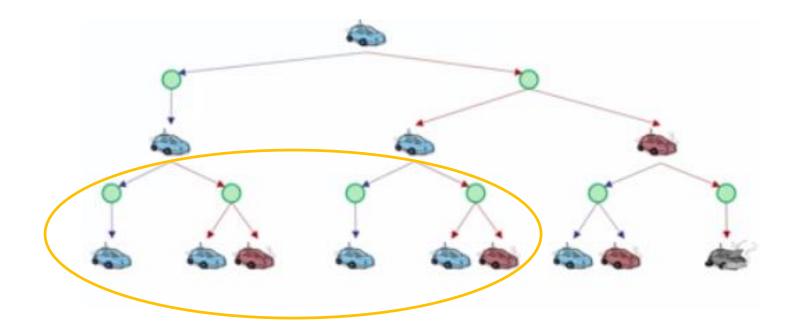
$$R(s) = -0.4$$

Example: racing

- Robot car wants to travel far, quickly
- Three states: cool, warm, overheated
- Two actions: slow, fast
- Going faster gets double reward

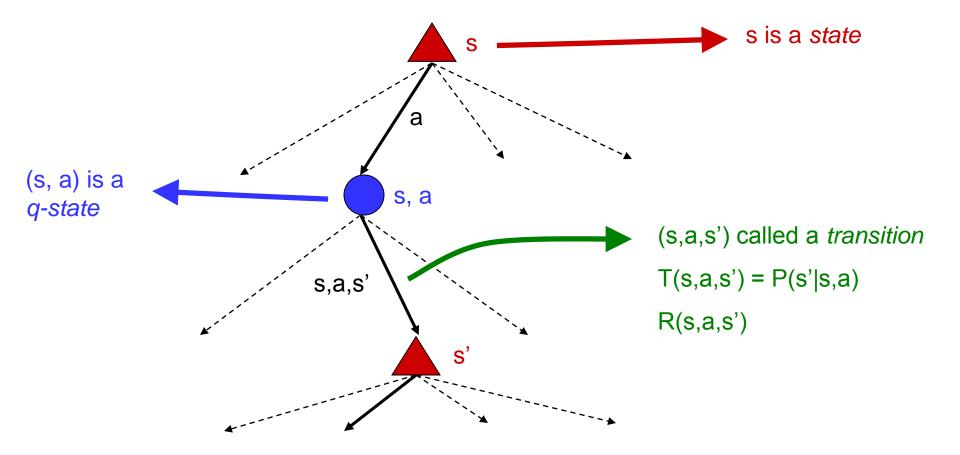


Racing search tree



MDP Search Trees

Each MDP state projects an expectimax-like search tree



Utilities of sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later.
- One solution: value of rewards decay exponentially

1 Worth now

γ Worth next step

 γ^2 Worth in 2 steps

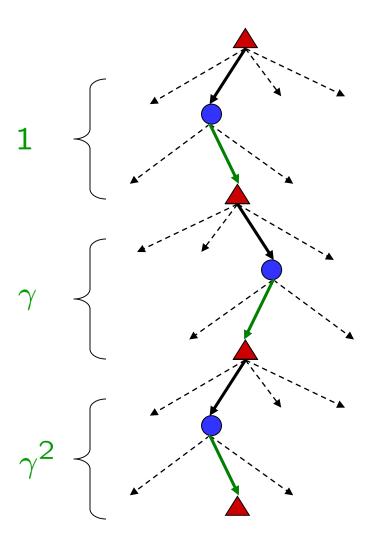
Discounting

How to discount?

 Each time we descend a level, we multiply in the discount once.

Why discount?

- Sooner rewards have higher utility than later rewards
- Also helps the algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])



Stationary preferences

- What utility does a sequence of rewards have?
- Theorem: If we assume stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots] \\\Leftrightarrow \\ [r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

Discounted utility:

 $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Infinite Utilities?!

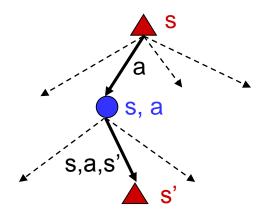
- Problem: infinite state sequences have infinite rewards
- Solutions:
 - Finite horizon (similar to depth-limited search):
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - **Discounting:** for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

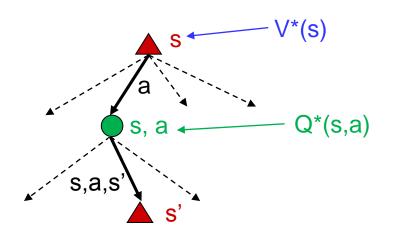


MDP quantities so far:

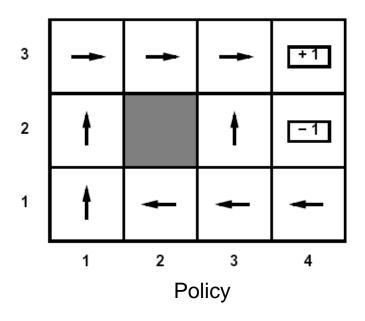
- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

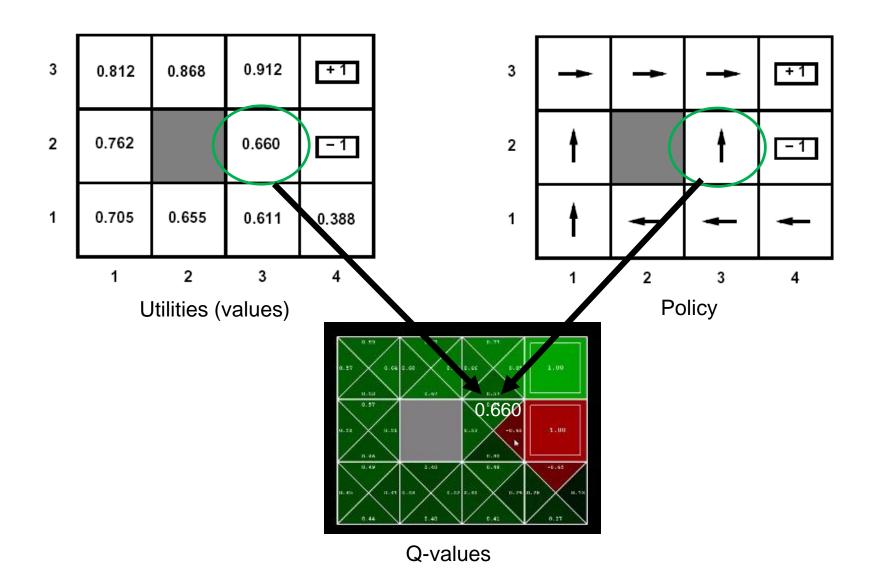
Optimal quantities

- Define the value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- Define the value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- Define the optimal policy:
 π^{*}(s) = optimal action from state s



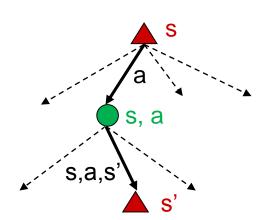
3	0.812	0.868	0.912	+1		
2	0.762		0.660	-1		
1	0.705	0.655	0.611	0.388		
•	1	2	3	4		
Utilities (values)						





Values of states: Bellman eqns

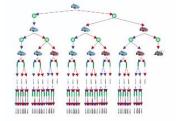
- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!



Recursive definition of value:

 $V^{*}(s) = \max_{a} Q^{*}(s, a)$ $Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$ $V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$

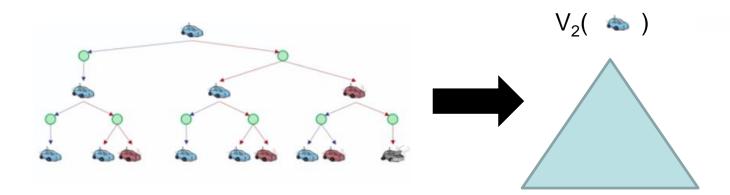
Recall: Racing search tree



- We're doing way too much work with expectimax!
- Problem: states are repeated
 - Idea: only compute needed quantities once
- Problem: tree goes on forever
 - Idea: do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1.

Time-limited values

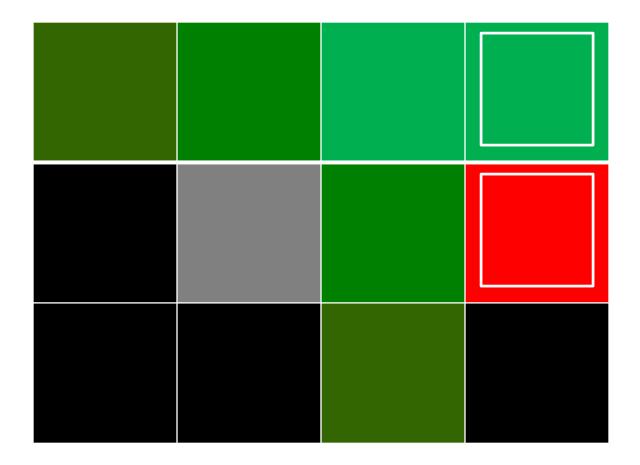
- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps.
 - Exactly what expectimax would give from s



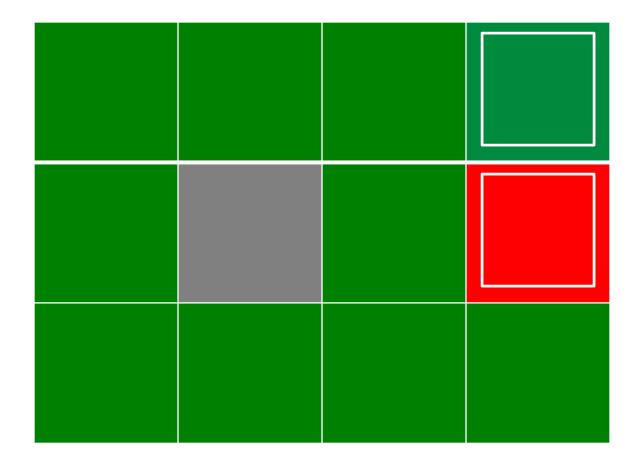
k=0 iterations

k=1 iterations

k=2 iterations

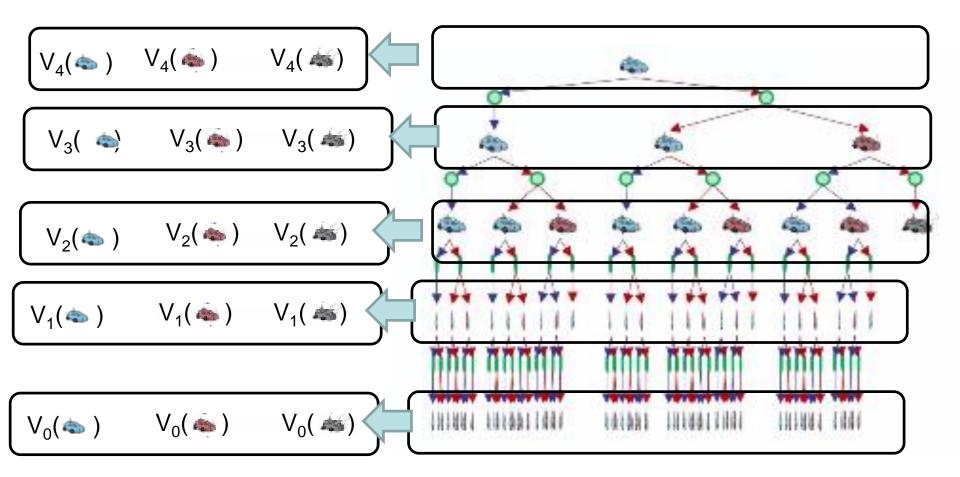


k=3 iterations



k=100 iterations

Computing time-limited values



Value Iteration

- Start with $V_0^*(s) = 0$ for all s, which we know is right (why?).
- Given vector V_i^{*}, calculate the values for all states for depth i+1:

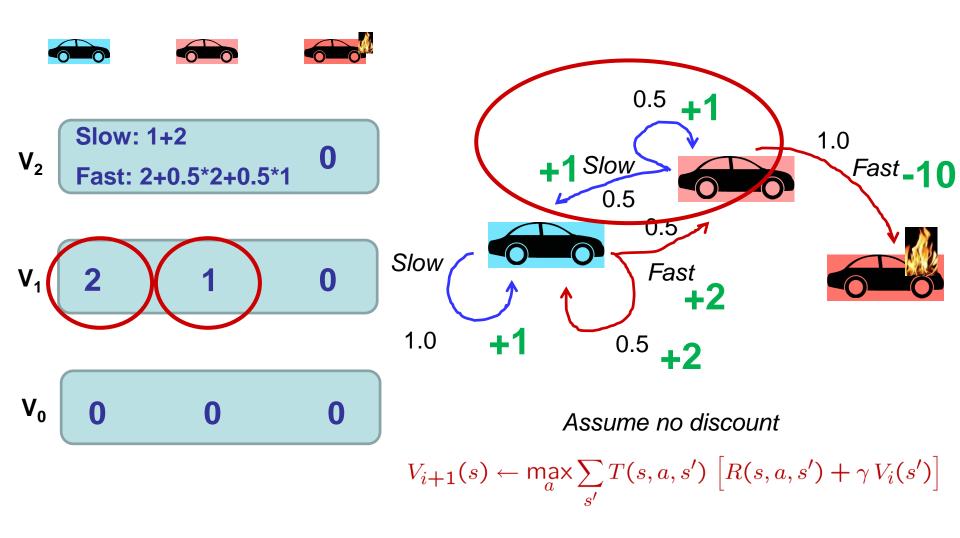
$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] \qquad \mathsf{V}_{i+1}(s)$$

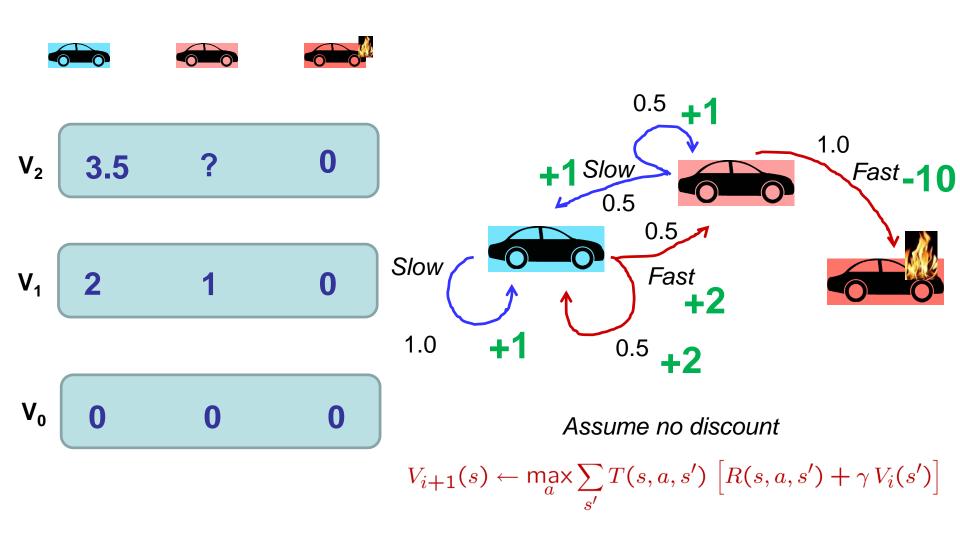
- Repeat until convergence
- This is called a value update or Bellman update
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Note: Policy may converge long before values do.

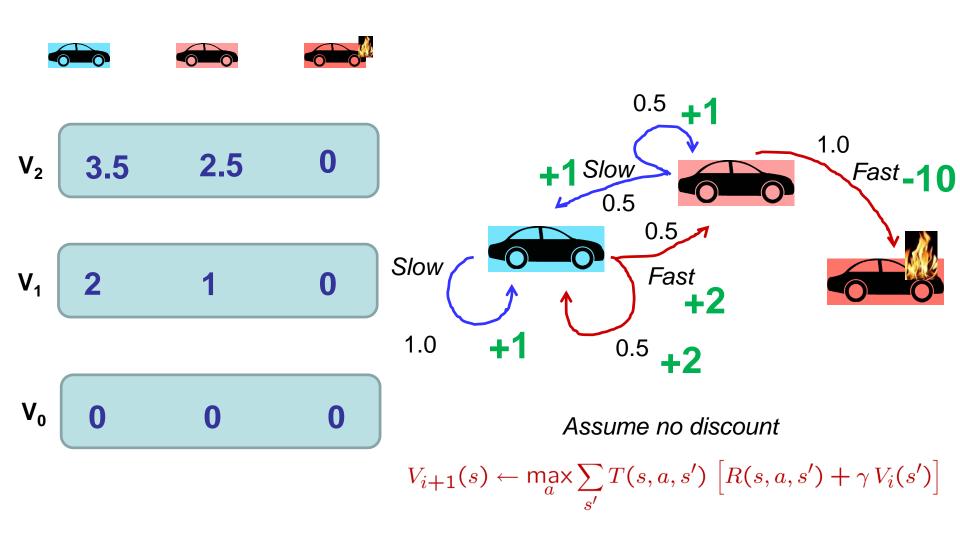
s, a

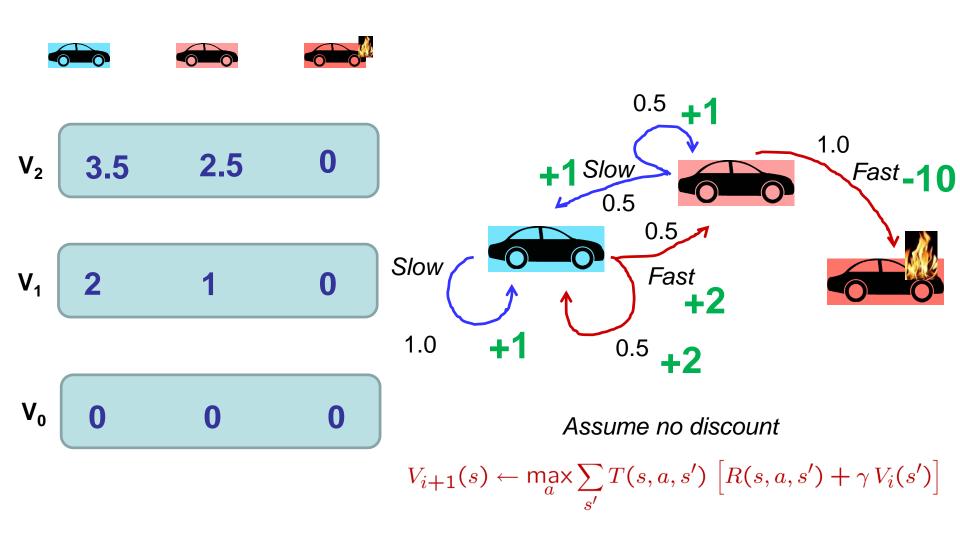
V_i(s')

s,a,s



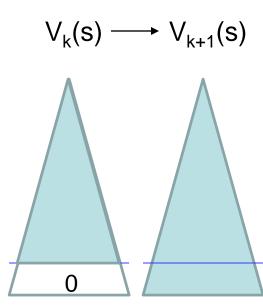






Convergence

- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state, V_k and V_{k+1} can be viewed as depth k+1 expectimax resulting in nearly identical search trees.
 - The difference is that on the bottom layer, V_{k+1} has optimal rewards while V_k has zeros.
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increase, the values converge



Next time: policy-based methods