
CS 343H: Honors AI

Lecture 10: MDPs I

2/18/2014

Kristen Grauman

UT Austin

Slides courtesy of Dan Klein, UC Berkeley

Unless otherwise noted

1

Some context

 First weeks: search (BFS, A*, minimax, alpha beta)

 Find an optimal plan (or solution)

 Best thing to do from the current state

 Assume we know transition function and cost (reward) function

 Either execute complete solution (deterministic) or search again

at every step

 Last week: detour for probabilities and utilities

 This week: MDPs – towards reinforcement learning

 Still know transition and reward function

 Looking for a policy – optimal action from every state

 Next week: reinforcement learning

 Optimal policy without knowing transition or reward function

2Slide credit: Peter Stone

Non-Deterministic Search

How do you plan when your actions might fail?

Example: Grid World

 The agent lives in a grid

 Walls block the agent’s path

 The agent’s actions do not always

go as planned:

 80% of the time, the action North

takes the agent North

(if there is no wall there)

 10% of the time, North takes the

agent West; 10% East

 If there is a wall in the direction the

agent would have been taken, the

agent stays put

 Small “living” reward each step

 Big rewards come at the end

 Goal: maximize sum of rewards

Action Results

Deterministic Grid World Stochastic Grid World

X

X

E N S W

X

E N S W

?

X

X X

Markov Decision Processes

 An MDP is defined by:
 A set of states s  S

 A set of actions a  A

 A transition function T(s,a,s’)
 Prob that a from s leads to s’

 i.e., P(s’ | s,a)

 Also called the model

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state (or distribution)

 Maybe a terminal state

 MDPs are a family of non-
deterministic search problems
 One way to solve them is with

expectimax search – but we’ll
have a new tool soon

6

What is Markov about MDPs?

 “Markov” generally means that given

the present state, the future and the

past are independent

 For Markov decision processes,

“Markov” means action outcomes

depend only on the current state:

Andrey Markov

(1856-1922)

Solving MDPs: Policies

 In deterministic single-agent search

problems, want an optimal plan, or

sequence of actions, from start to a goal

 In an MDP, we want an optimal policy

*: S → A

 A policy  gives an action for each state

 An optimal policy maximizes expected utility

if followed

 Defines a reflex agent (if precomputed)

 Expectimax didn’t compute entire

policies

 It computed the action for a single state only

Optimal policy when

R(s, a, s’) = -0.03 for

all non-terminals s

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Stuart Russell

Example: racing

 Robot car wants to travel far, quickly

 Three states: cool, warm, overheated

 Two actions: slow, fast

 Going faster gets double reward

Cool

Warm

Overheated

1.0

Slow
Fast

0.5

0.5

Slow

0.5

0.5

Fast

1.0

+1

+1

+1

+2

+2

-10

Racing search tree

11

MDP Search Trees

 Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a

q-state

12

Utilities of sequences

 What preferences should an agent have over

reward sequences?

 More or less? [1, 2, 2] or [2, 3, 4]

 Now or later? [0, 0, 1] or [1, 0, 0]

13

Discounting

 It’s reasonable to maximize the sum of rewards

 It’s also reasonable to prefer rewards now to

rewards later.

 One solution: value of rewards decay

exponentially

14

1

Worth now

γ

Worth next step

γ2

Worth in 2 steps

Discounting

 How to discount?

 Each time we descend a level,

we multiply in the discount once.

 Why discount?

 Sooner rewards have higher

utility than later rewards

 Also helps the algorithms

converge

 Example: discount of 0.5

 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

 U([1,2,3]) < U([3,2,1])

15

Stationary preferences

 What utility does a sequence of rewards have?

 Theorem: If we assume stationary preferences:

 Then: there are only two ways to define utilities
 Additive utility:

 Discounted utility:

16

Infinite Utilities?!

 Problem: infinite state sequences have infinite rewards

 Solutions:

 Finite horizon (similar to depth-limited search):

 Terminate episodes after a fixed T steps (e.g. life)

 Gives nonstationary policies ( depends on time left)

 Discounting: for 0 <  < 1

 Smaller  means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached (like “overheated” for racing)
17

Recap: Defining MDPs

 Markov decision processes:
 States S

 Start state s0

 Actions A

 Transitions P(s’|s,a) (or T(s,a,s’))

 Rewards R(s,a,s’) (and discount )

 MDP quantities so far:
 Policy = Choice of action for each state

 Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’

18

Optimal quantities

 Define the value (utility) of a
state s:
V*(s) = expected utility starting in s

and acting optimally

 Define the value (utility) of a
q-state (s,a):
Q*(s,a) = expected utility starting

out having taken action a from
state s and (thereafter) acting
optimally

 Define the optimal policy:
*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’

V*(s)

Q*(s,a)

Gridworld example

20

Utilities (values) Policy

Gridworld example

21

Utilities (values) Policy

Q-values

0.660

Values of states: Bellman eqns

 Fundamental operation: compute the
(expectimax) value of a state

 Expected utility under optimal action

 Average sum of (discounted) rewards

 This is just what expectimax computed!

 Recursive definition of value:

a

s

s, a

s,a,s’

s’

Recall: Racing search tree

 We’re doing way too much work with

expectimax!

 Problem: states are repeated

 Idea: only compute needed quantities once

 Problem: tree goes on forever

 Idea: do a depth-limited computation, but with

increasing depths until change is small

 Note: deep parts of the tree eventually don’t

matter if γ < 1.
23

Time-limited values

 Key idea: time-limited values

 Define Vk(s) to be the optimal value of s if the game ends

in k more time steps.

 Exactly what expectimax would give from s

24

V2()

Gridworld example

k=0 iterations

Gridworld example

k=1 iterations

Gridworld example

k=2 iterations

Gridworld example

k=3 iterations

Gridworld example

k=100 iterations

V4()

V3()

V2()

Computing time-limited values

V0() V0() V0()

V1() V1() V1()

V2() V2()

V3() V3()

V4() V4()

Value Iteration

 Start with V0
*(s) = 0 for all s, which we know is right (why?).

 Given vector Vi
*, calculate the values for all states for depth i+1:

 Repeat until convergence

 This is called a value update or Bellman update

 Complexity of each iteration: O(S2A)

 Theorem: will converge to unique optimal values

 Basic idea: approximations get refined towards optimal values

 Note: Policy may converge long before values do.

31

a

s

s, a

s,a,s’

Vi(s’)

Vi+1(s)

Example: value iteration

1.0

Slow Fast

0.5

0.5

Slow

0.5

0.5

Fast
1.0

+1

+1

+1

+2

+2

-10

Assume no discount
V0

V1

V2

0 0 0

2 1 0

0
Slow: 1+2

Fast: 2+0.5*2+0.5*1

Example: value iteration

1.0

Slow Fast

0.5

0.5

Slow

0.5

0.5

Fast
1.0

+1

+1

+1

+2

+2

-10

Assume no discount
V0

V1

V2

0 0 0

2 1 0

03.5 ?

Example: value iteration

1.0

Slow Fast

0.5

0.5

Slow

0.5

0.5

Fast
1.0

+1

+1

+1

+2

+2

-10

Assume no discount
V0

V1

V2

0 0 0

2 1 0

03.5 2.5

Example: value iteration

1.0

Slow Fast

0.5

0.5

Slow

0.5

0.5

Fast
1.0

+1

+1

+1

+2

+2

-10

Assume no discount
V0

V1

V2

0 0 0

2 1 0

03.5 2.5

Convergence

 Case 1: If the tree has maximum depth M,

then VM holds the actual untruncated values

 Case 2: If the discount is less than 1

 Sketch: For any state, Vk and Vk+1 can be viewed

as depth k+1 expectimax resulting in nearly

identical search trees.

 The difference is that on the bottom layer, Vk+1 has

optimal rewards while Vk has zeros.

 That last layer is at best all RMAX

 It is at worst RMIN

 But everything is discounted by γ^k that far out

 So Vk and Vk+1 are at most γ^k max|R| different

 So as k increase, the values converge

Vk(s) Vk+1(s)

0

Next time: policy-based methods

37

