CS 343H: Honors Al

Lecture 10: MDPs |
2/18/2014

Kristen Grauman
UT Austin

Slides courtesy of Dan Klein, UC Berkeley
Unless otherwise noted

Some context

= First weeks: search (BFS, A*, minimax, alpha beta)
= Find an optimal plan (or solution)
= Best thing to do from the current state
= Assume we know transition function and cost (reward) function

= Either execute complete solution (deterministic) or search again
at every step

= |Last week: detour for probabilities and utilities
= This week: MDPs — towards reinforcement |learning

= Still know transition and reward function
= |Looking for a policy — optimal action from every state

= Next week: reinforcement learning
= Optimal policy without knowing transition or reward function

Slide credit; Peter Stone

Non-Deterministic Search

How do you plan when your actions might fail?

Boston Dynamics

Example: Grid World

= The agent lives in a grid
= Walls block the agent’s path 3
= The agent’s actions do not always

go as planned:

= 80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

= |f there is a wall in the direction the
agent would have been taken, the
agent stays put

= Small “living” reward each step
= Big rewards come at the end
= Goal: maximize sum of rewards

START

Action Results

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:

A setof statess € S
A set of actionsa € A
A transition function T(s,a,s’)
= Prob that a from s leads to s’
" j.e., P(s’|s,a)
= Also called the model
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state (or distribution)
Maybe a terminal state

= MDPs are a family of non-

deterministic search problems
= One way to solve them is with

expectimax search — but we’ll
have a new tool soon

1 START

0.8

0.1 0.1

What 1s Markov about MDPs?

“Markov” generally means that given
the present state, the future and the
past are independent

For Markov decision processes,

“ ” . Andrey Markov
Markov” means action outcomes (1856-1922)

depend only on the current state:

P(St—i—l = S'|St = 5¢, Ar = a4, St—1 = 5¢—1, Ar—1,...50 = 80)

P(St—i—l = 8’|St = 54, Ay = at)

Solving MDPs: Policies

* |n deterministic single-agent search
problems, want an optimal plan, or

l
i
&
E

sequence of actions, from start to a goal z| 1 =

= In an MDP, we want an optimal policy | } |« |- | -
™S — A —

= A policy © gives an action for each state Optimal policy when

= An optimal policy maximizes expected utility R(s, a, s') = -0.03 for

: all non-terminals s
If followed

= Defines a reflex agent (if precomputed)

= Expectimax didn’t compute entire
policies
» [t computed the action for a single state only

Optimal Policies

R(s) = -0.03

R(s) = -0.4 R(s) = -2.0

Example: Stuart Russell

Example: racing

Slow

1.0

Robot car wants to travel far, quickly
Three states: cool, . overheated
Two actions: slow, fast

Going faster gets double reward
0.5 +1

Slow Fast -10
+1
0.5 &‘ 1.0
v

)

OO

Overheated

Warm

Racing search tree

@&
S

11

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

/”, \\< A
(s,a)is a - * A
g-state . <A
. /_, (s,a,s’) called a transition
s,a,s’ T(s,a,s’) = P(s'[s,a)
o R R(s,a,s’)

12

Utilities of sequences

= What preferences should an agent have over
reward sequences?

= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0,0,1] or [1,0, O]

13

Discounting

= |[t's reasonable to maximize the sum of rewards

* |t's also reasonable to prefer rewards now to
rewards later.

= One solution: value of rewards decay
exponentially

Worth now Worth next step Worth in 2 steps

14

Discounting

= How to discount?

= Each time we descend a level, (
we multiply in the discount once. 1 J
= Why discount? -
= Sooner rewards have higher ~
utility than later rewards
= Also helps the algorithms T
converge .

= Example: discount of 0.5 5
= U([1,2,3]) = 1*1 +0.5*2+0.25*3 7~

= U([1,2,3]) < U(]3,2,1]) -

15

Stationary preferences

= What utility does a sequence of rewards have?

= Theorem: If we assume stationary preferences:
[’l", ro,Tr1,72,..] ~ [7", T6, 7’&, TJQ; *]
&
[TO:' 1,72, ..] ~ [T6: T{]_J TIQ: *]

= Then: there are only two ways to define utilities
= Additive utility:

U([TC)?T]_)T‘Q,...]) :To—l—’r’l—|—fr‘2—|—

= Discounted utility:
U(lrg,r1,72,...]) =ro+~yr1 + f}/zfr’z .

16

Infinite Utilities?!

= Problem: infinite state sequences have infinite rewards

= Solutions:

= Finite horizon (similar to depth-limited search):
= Terminate episodes after a fixed T steps (e.qg. life)
= Gives nonstationary policies (r depends on time left)

= Discounting: forO<y<1

U(lro,..-rec]) = Z VtTt < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

» Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “overheated” for racing)

17

Recap: Defining MDPs

= Markov decision processes:
= States S
= Start state s,
= Actions A
» Transitions P(s’[s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

18

Optimal guantities

Define the value (utility) of a
state s:
V'(s) = expected utility starting in s
and acting optimally s’

Define the value (utility) of a
q -state (s,a):

Q’(s,a) = expected utility starting
out having taken action a from
state s and (thereafter) acting
optimally

Define the optimal policy:
n'(s) = optimal action from state s

Gridworld example

0.812 | 0.868 | 0.912

0.762

0.660 E

0.705 0.655 0.611 0.388

1 2 3 4
Utilities (values)

—_ | —
=
if— ~eif— if—
3 4
Policy

20

Gridworld example

Utilities (values)

21

Values of states: Bellman egns

= Fundamental operation: compute the
(expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards o
» This is just what expectimax computed!

= Recursive definition of value:
V*(s) = max Q*(s,a)
Q*(s,a) = ZT(S, a,s) [R(s, a,s’) + "yV*(S,)]

V*i(s) = mngT(s, a,s) {R(s, a,s') + ")/V*(S,)}

S

»
&

R LS =
- O‘A:;‘O O“.U‘O o *o
- PPN A OG-
eca aCling searcn tree oifoaras
= vv‘ TRVEYE. voh VEereY vy ey

U A

= We're doing way too much work with
expectimax!

* Problem: states are repeated
» |dea: only compute needed guantities once
= Problem: tree goes on forever

» |dea: do a depth-limited computation, but with
Increasing depths until change is small

* Note: deep parts of the tree eventually don't
matter if y < 1.

23

Time-limited values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
In kK more time steps.

= Exactly what expectimax would give from s

Vo(@)

24

Gridworld example

k=0 iterations

Gridworld example

k=1 iterations

Gridworld example

k=2 iterations

Gridworld example

k=3 iterations

Gridworld example

k=100 iterations

Computing time-limited values

[V4(*3:;1) V(=) V,(4s)] [&
’ = S 5]
[Vi(@) Vi(as) V()] ‘:- &:“ | &
e =™ ¢ X & v
= 4 %

) -
[Vy(a) Vo(am) Vy(4s) T o :

[Vl(“zﬁj) Vl(“) Vl(m) L;.l..a - .:.-I.'zl [V 1

[Vo(m) V(i) Vo(&) i1 L UCARRULE EYRE U U TR U R LR (I L

Value lteration

Start with V,'(s) = 0 for all s, which we know is right (why?).
Given vector V;, calculate the values for all states for depth i+1:

Vig1(s) — maxy T(s,a, s') [R(s,a,) + vvz-(sf)} Vr(S)

S

Repeat until convergence
This is called a value update or Bellman update)
Complexity of each iteration: O(S?A) "s,a,8

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values

= Note: Policy may converge long before values do.

31

Example: value iteration

Slow: 1+2
Va Fast: 2+0.5*2+0.5*1

Vol O 0 0 Assume no discount

Vig1(s) « max > T(s,a,8") |R(s,a,5) 4+ Vi(s)]

S

Example: value iteration

V, | 3.5 ?
VvV, | 2 1
Vol O 0 0 Assume no discount

Vig1(s) « max > T(s,a,8") |R(s,a,5) 4+ Vi(s)]

S

Example: value iteration

Vo | 3.5 2.5

Vol O 0 0 Assume no discount

Vig1(s) « max > T(s,a,8") |R(s,a,5) 4+ Vi(s)]

S

Example: value iteration

Vo | 3.5 2.5

Vol O 0 0 Assume no discount

Vig1(s) « max > T(s,a,8") |R(s,a,5) 4+ Vi(s)]

S

Convergence

Case 1: If the tree has maximum depth M,
then V,, holds the actual untruncated values

Case 2: If the discount is less than 1
Vi(s) — Viuu(s)

= Sketch: For any state, V, and V,,, can be viewed
as depth k+1 expectimax resulting in nearly
Identical search trees.

= The difference is that on the bottom layer, V,,, has
optimal rewards while V, has zeros.

= That last layer is at best all Ryjax _ .

= |tis at worst Ry,
= But everything is discounted by y”~k that far out
= SoV, and V,,, are at most y*k max|R| different

» So as k increase, the values converge

Next time: policy-based methods

37

