
CS 343H: Honors AI

Lecture 11: MDPs II

2/20/2014

Kristen Grauman

UT Austin

Slides courtesy of Dan Klein, UC Berkeley

Unless otherwise noted

1

Announcements

 Midterm is in class Thurs 3/6

 Will provide practice problems next Thurs

 PS3 is posted, due on 3/20

 OK to work in pairs for this one if you use “pair

programming” practices

 This explicitly means NOT dividing work

between partners

 Assignments help prep for exams

 Submit just one code package, note the

partners in the README
2

Today

 Recap of MDPs and value iteration

 Policy iteration

 Transition to reinforcement learning

3

Recall: Grid World

 The agent lives in a grid

 Walls block the agent’s path

 The agent’s actions do not always

go as planned:

 80% of the time, the action North

takes the agent North

(if there is no wall there)

 10% of the time, North takes the

agent West; 10% East

 If there is a wall in the direction the

agent would have been taken, the

agent stays put

 Small “living” reward each step

 Big rewards come at the end

 Goal: maximize sum of (discounted)

rewards

Recap: MDPs

 An MDP is defined by:
 A set of states s S

 A set of actions a A

 A transition function T(s,a,s’)
 Prob that a from s leads to s’

 i.e., P(s’ | s,a)

 A reward function R(s, a, s’) and discount γ

 A start state

 Quantities:
 Policy = map of states to actions

 Utility = sum of discounted rewards

 Values = expected future utility from a state
(max node)

 Q-values = expected future utility from a q-
state (chance node)

5

a

s

s, a

s,a,s’

s’

Optimal quantities

 Define the value (utility) of a
state s:
V*(s) = expected utility starting in s

and acting optimally

 Define the value (utility) of a q-
state (s,a):
Q*(s,a) = expected utility starting

out having taken action a from
state s and (thereafter) acting
optimally

 Define the optimal policy:
*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’

V*(s)

Q*(s,a)

Recall: Gridworld example

7

Utilities (values) Policy

On average, we expect to get 0.705 if

we went north in this state

Recall: Gridworld example

8

Utilities (values) Policy

Recall: Gridworld example

9

Utilities (values) Policy

Q-values

0.660

Optimal quantities

 Define the value (utility) of a
state s:
V*(s) = expected utility starting in s

and acting optimally

 Define the value (utility) of a q-
state (s,a):
Q*(s,a) = expected utility starting

out having taken action a from
state s and (thereafter) acting
optimally

 Define the optimal policy:
*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’

V*(s)

Q*(s,a)

Cumulative – from

that point forward

The Bellman Equations=

 Definition of “optimal utility” leads to a

simple one-step lookahead relationship

amongst optimal utility values:

Optimal rewards = maximize over first

action and then follow optimal policy

 Formally:

a

s

s, a

s,a,s’

s’

11

V*(s)

Q*(s,a)

Value Iteration

 Bellman equations characterize the optimal values:

 Value iteration computes them:

 Value iteration is a fixed point solution method.

 …the Vk vectors are also interpretable as time-limited values.

a

s

s, a

s,a,s’

Vi(s’)

Vi+1(s)

Convergence

 Case 1: If the tree has maximum depth M,

then VM holds the actual untruncated values

 Case 2: If the discount is less than 1

 Sketch: For any state, Vk and Vk+1 can be viewed

as depth k+1 expectimax resulting in nearly

identical search trees.

 The difference is that on the bottom layer, Vk+1 has

optimal rewards while Vk has zeros.

 That last layer is at best all RMAX

 It is at worst RMIN

 But everything is discounted by γ^k that far out

 So Vk and Vk+1 are at most γ^k max|R| different

 So as k increase, the values converge

Vk(s) Vk+1(s)

0

Example: value iteration

1.0

Slow Fast

0.5

0.5

Slow

0.5

0.5

Fast
1.0

+1

+1

+1

+2

+2

-10

Assume no discount
V0

V1

V2

0 0 0

2 1 0

03.5 2.5

Today

 Recap of MDPs and value iteration

 Policy iteration

 Transition to reinforcement learning

15

Fixed policies

 Expectimax trees max over all actions to compute the optimal values

 If we fixed some policy π(s), then the tree would be simpler – only

one action per state

 …though the tree’s value would depend on which policy we fixed.

Do the optimal action Do what π says to do

a

s

s, a

s,a,s’

s’

π(s)

s

s, π(s)

s,π(s),s’
s’

Utilities for a Fixed Policy

 Another basic operation: compute

the utility of a state s under a fixed

(generally non-optimal) policy

 Define the utility of a state s, under a

fixed policy :

V(s) = expected total discounted

rewards (return) starting in s and

following

 Recursive relation (one-step look-

ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’

Example: Policy evaluation

18

Always go right Always go forward

Example: Policy evaluation

19

Always go right Always go forward

Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea 1: Turn recursive equations into updates

 Efficiency: O(S2) per iteration

 Idea 2: Without the maxes, it’s now a linear system
 Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’

Policy extraction

21

Computing actions from values

22

0.95 0.96 0.98 1.0

0.94 0.89 -1.0

0.92 0.91 0.90 0.80

Optimal values V*(s)

Policy

How should we act? It’s not obvious!

Computing actions from values

 Which action should we chose from state s:

 Given optimal values V*?

 This is called policy extraction, since it gets the policy

implied by the values.

23

π*(s) =

Computing actions from values

 Which action should we chose from state s:

 Given optimal values V*?

 This is called policy extraction, since it gets the policy

implied by the values.

24

π*(s) =

Computing actions from Q-values

25

Optimal values Q*(a,s)

π*(s) =

From before:

Adapted from Dan Klein

Computing actions from values

 Which action should we chose from state s:

 Given optimal values V*?

 Given optimal q-values Q?

 Lesson: actions are easier to select from Q’s!

26

π*(s) =

Policy iteration

 Alternative approach for optimal values

27

Problems with Value Iteration

 Value iteration repeats the Bellman updates

 Problem 1: It’s slow: O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

28

Recall: Gridworld value iteration

29
As we increase k

Problems with Value Iteration

 Value iteration repeats the Bellman updates

 Problem 1: It’s slow: O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

 Problem 3: The policy often converges long before the

values do.

30

Policy Iteration

 Alternative approach for optimal values:

 Step 1: Policy evaluation: calculate utilities for some

fixed policy (not optimal utilities!) until convergence

 Step 2: Policy improvement: update policy using one-

step look-ahead with resulting converged (but not

optimal!) utilities as future values

 Repeat steps until policy converges

 This is policy iteration

 It’s still optimal!

 Can converge faster under some conditions

31

Policy Iteration

 Policy evaluation: with fixed current policy , find values

with simplified Bellman updates:

 Iterate until values converge

 Policy improvement: with fixed utilities, find the best

action according to one-step look-ahead

32

Comparison: value vs. policy iteration

 Both compute the same thing (optimal values for all states)

 In value iteration:

 Every iteration updates both the values (explicitly, based on current

utilities) and policy (implicitly, based on current utilities)

 Tracking the policy isn’t necessary; taking the max over actions

implicitly recomputes it

 In policy iteration:

 We do several passes to update utilities with fixed policy (each

pass is fast because we consider only one action, not all of them)

 After policy is evaluated, a new policy is chosen (slow like a value

iteration pass)

 The new policy will be better (or we’re done).

 Both are dynamic programs for solving MDPs

33

Summary: MDP algorithms

 So you want to…

 Compute optimal values: use value iteration or policy iteration

 Compute values for a particular policy: use policy evaluation

 Turn your values into a policy: use policy extraction (one-step

lookahead)

 These all look the same!

 They basically are – they are all variations of Bellman updates

 They all use one-step lookahead expectimax fragments

 They differ only in whether we plug in a fixed policy or max over

actions

34

Today

 Recap of MDPs and value iteration

 Policy iteration

 Transition to reinforcement learning

35

Double bandits

 Which slot machine should we play?

36

Double-bandit MDP

 Actions: Blue, Red

 States: Win, Lose

37

W L$1

1.0

1.0

$1

$2

0.75

0.25 $0

0.25
$0

0.75 $2

No discount

100 time steps

Both states have the

same value

Offline planning

 Solving MDPs is offline planning

 You determine all quantities through computation

 You need to know the details of the MDP

 You do not actually play the game!

W L
$1

1.0

1.0
$1

$2

0.75

0.25 $0

0.25
$0

0.75 $2

No discount

100 time steps

Both states have the

same value

Play Blue

Play Red

Value

100

150

Online planning

 Rules changed! Red’s win chance is different

39

W L$1

1.0

1.0

$1

$2

??

?? $0

??
$0

?? $2

What just happened?

 That wasn’t planning, it was learning!

 Specifically, reinforcement learning

 There was an MDP, but you couldn’t solve it with just computation

 You needed to actually act to figure it out

 Important ideas in reinforcement learning that came up

 Exploration: you have to try unknown actions to get information

 Exploitation: eventually, you have to use what you know

 Regret: even if you learn intelligently, you make mistakes

 Sampling: because of chance, you have to try things repeatedly

 Difficulty: learning can be much harder than solving a known MDP

40

