
CS 343H: Honors AI

Lecture 11: MDPs II

2/20/2014

Kristen Grauman

UT Austin

Slides courtesy of Dan Klein, UC Berkeley

Unless otherwise noted

1



Announcements

 Midterm is in class Thurs 3/6

 Will provide practice problems next Thurs

 PS3 is posted, due on 3/20 

 OK to work in pairs for this one if you use “pair 

programming” practices 

 This explicitly means NOT dividing work 

between partners

 Assignments help prep for exams

 Submit just one code package, note the 

partners in the README
2



Today

 Recap of MDPs and value iteration

 Policy iteration

 Transition to reinforcement learning

3



Recall: Grid World

 The agent lives in a grid

 Walls block the agent’s path

 The agent’s actions do not always 

go as planned:

 80% of the time, the action North 

takes the agent North 

(if there is no wall there)

 10% of the time, North takes the 

agent West; 10% East

 If there is a wall in the direction the 

agent would have been taken, the 

agent stays put

 Small “living” reward each step

 Big rewards come at the end

 Goal: maximize sum of (discounted) 

rewards



Recap: MDPs

 An MDP is defined by:
 A set of states s  S

 A set of actions a  A

 A transition function T(s,a,s’)
 Prob that a from s leads to s’

 i.e., P(s’ | s,a)

 A reward function R(s, a, s’) and discount γ

 A start state

 Quantities:
 Policy = map of states to actions

 Utility = sum of discounted rewards

 Values = expected future utility from a state 
(max node)

 Q-values = expected future utility from a q-
state (chance node)

5

a

s

s, a

s,a,s’

s’



Optimal quantities

 Define the value (utility) of a 
state s:
V*(s) = expected utility starting in s 

and acting optimally

 Define the value (utility) of a q-
state (s,a):
Q*(s,a) = expected utility starting 

out having taken action a from 
state s and (thereafter) acting 
optimally

 Define the optimal policy:
*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’

V*(s)

Q*(s,a)



Recall: Gridworld example

7

Utilities (values) Policy

On average, we expect to get 0.705 if 

we went north in this state



Recall: Gridworld example

8

Utilities (values) Policy



Recall: Gridworld example

9

Utilities (values) Policy

Q-values

0.660



Optimal quantities

 Define the value (utility) of a 
state s:
V*(s) = expected utility starting in s 

and acting optimally

 Define the value (utility) of a q-
state (s,a):
Q*(s,a) = expected utility starting 

out having taken action a from 
state s and (thereafter) acting 
optimally

 Define the optimal policy:
*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’

V*(s)

Q*(s,a)

Cumulative – from 

that point forward



The Bellman Equations=

 Definition of “optimal utility” leads to a 

simple one-step lookahead relationship 

amongst optimal utility values:

Optimal rewards = maximize over first 

action and then follow optimal policy

 Formally:

a

s

s, a

s,a,s’

s’

11

V*(s)

Q*(s,a)



Value Iteration

 Bellman equations characterize the optimal values:

 Value iteration computes them:

 Value iteration is a fixed point solution method.

 …the Vk vectors are also interpretable as time-limited values.

a

s

s, a

s,a,s’

Vi(s’)

Vi+1(s)



Convergence

 Case 1: If the tree has maximum depth M, 

then VM holds the actual untruncated values

 Case 2: If the discount is less than 1

 Sketch: For any state, Vk and Vk+1 can be viewed 

as depth k+1 expectimax resulting in nearly 

identical search trees.

 The difference is that on the bottom layer, Vk+1 has 

optimal rewards while Vk has zeros.

 That last layer is at best all RMAX

 It is at worst RMIN

 But everything is discounted by γ^k that far out

 So Vk and Vk+1 are at most γ^k max|R| different

 So as k increase, the values converge

Vk(s) Vk+1(s)

0



Example: value iteration

1.0

Slow Fast

0.5

0.5

Slow

0.5

0.5

Fast
1.0

+1

+1

+1

+2

+2

-10

Assume no discount
V0

V1

V2

0           0            0 

2 1 0

03.5 2.5



Today

 Recap of MDPs and value iteration

 Policy iteration

 Transition to reinforcement learning

15



Fixed policies

 Expectimax trees max over all actions to compute the optimal values

 If we fixed some policy π(s), then the tree would be simpler – only 

one action per state

 …though the tree’s value would depend on which policy we fixed.

Do the optimal action Do what π says to do 

a

s

s, a

s,a,s’

s’

π(s)

s

s, π(s)

s,π(s),s’
s’



Utilities for a Fixed Policy

 Another basic operation: compute 

the utility of a state s under a fixed

(generally non-optimal) policy

 Define the utility of a state s, under a 

fixed policy :

V(s) = expected total discounted 

rewards (return) starting in s and 

following 

 Recursive relation (one-step look-

ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’



Example: Policy evaluation

18

Always go right Always go forward



Example: Policy evaluation

19

Always go right Always go forward



Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea 1: Turn recursive equations into updates

 Efficiency: O(S2) per iteration

 Idea 2: Without the maxes, it’s now a linear system
 Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’



Policy extraction

21



Computing actions from values

22

0.95 0.96 0.98 1.0

0.94 0.89 -1.0

0.92 0.91 0.90 0.80

Optimal values V*(s)

Policy

How should we act?  It’s not obvious!



Computing actions from values

 Which action should we chose from state s:

 Given optimal values V*?

 This is called policy extraction, since it gets the policy 

implied by the values.

23

π*(s) =



Computing actions from values

 Which action should we chose from state s:

 Given optimal values V*?

 This is called policy extraction, since it gets the policy 

implied by the values.

24

π*(s) =



Computing actions from Q-values

25

Optimal values Q*(a,s)

π*(s) =

From before:

Adapted from Dan Klein



Computing actions from values

 Which action should we chose from state s:

 Given optimal values V*?

 Given optimal q-values Q?

 Lesson: actions are easier to select from Q’s!

26

π*(s) =



Policy iteration

 Alternative approach for optimal values

27



Problems with Value Iteration

 Value iteration repeats the Bellman updates

 Problem 1: It’s slow: O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

28



Recall: Gridworld value iteration

29
As we increase k



Problems with Value Iteration

 Value iteration repeats the Bellman updates

 Problem 1: It’s slow: O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

 Problem 3: The policy often converges long before the 

values do.

30



Policy Iteration

 Alternative approach for optimal values:

 Step 1: Policy evaluation: calculate utilities for some 

fixed policy (not optimal utilities!) until convergence

 Step 2: Policy improvement: update policy using one-

step look-ahead with resulting converged (but not 

optimal!) utilities as future values

 Repeat steps until policy converges

 This is policy iteration

 It’s still optimal!

 Can converge faster under some conditions

31



Policy Iteration

 Policy evaluation: with fixed current policy , find values 

with simplified Bellman updates:

 Iterate until values converge

 Policy improvement: with fixed utilities, find the best 

action according to one-step look-ahead

32



Comparison: value vs. policy iteration

 Both compute the same thing (optimal values for all states)

 In value iteration:

 Every iteration updates both the values (explicitly, based on current 

utilities) and policy (implicitly, based on current utilities)

 Tracking the policy isn’t necessary; taking the max over actions 

implicitly recomputes it

 In policy iteration:

 We do several passes to update utilities with fixed policy (each 

pass is fast because we consider only one action, not all of them)

 After policy is evaluated, a new policy is chosen (slow like a value 

iteration pass)

 The new policy will be better (or we’re done).

 Both are dynamic programs for solving MDPs

33



Summary: MDP algorithms

 So you want to…

 Compute optimal values: use value iteration or policy iteration

 Compute values for a particular policy: use policy evaluation

 Turn your values into a policy: use policy extraction (one-step 

lookahead)

 These all look the same!

 They basically are – they are all variations of Bellman updates

 They all use one-step lookahead expectimax fragments

 They differ only in whether we plug in a fixed policy or max over 

actions

34



Today

 Recap of MDPs and value iteration

 Policy iteration

 Transition to reinforcement learning

35



Double bandits

 Which slot machine should we play?

36



Double-bandit MDP

 Actions: Blue, Red

 States: Win, Lose

37

W L$1

1.0

1.0

$1

$2

0.75

0.25 $0

0.25
$0

0.75 $2

No discount

100 time steps

Both states have the 

same value



Offline planning

 Solving MDPs is offline planning

 You determine all quantities through computation

 You need to know the details of the MDP

 You do not actually play the game!

W L
$1

1.0

1.0
$1

$2

0.75

0.25 $0

0.25
$0

0.75 $2

No discount

100 time steps

Both states have the 

same value

Play Blue

Play Red

Value

100

150



Online planning

 Rules changed!  Red’s win chance is different

39

W L$1

1.0

1.0

$1

$2

??

?? $0

??
$0

?? $2



What just happened?

 That wasn’t planning, it was learning!

 Specifically, reinforcement learning

 There was an MDP, but you couldn’t  solve it with just computation

 You needed to actually act to figure it out

 Important ideas in reinforcement learning that came up

 Exploration: you have to try unknown actions to get information

 Exploitation: eventually, you have to use what you know

 Regret: even if you learn intelligently, you make mistakes

 Sampling: because of chance, you have to try things repeatedly

 Difficulty: learning can be much harder than solving a known MDP

40


