CS 343H: Honors Al

Lecture 12:
Reinforcement Learning, part 1
212512014

Kristen Grauman
UT Austin

Slides courtesy of Dan Klein, UC Berkeley

Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes

action

state
- a,

Recall: Robot galit learning

Home
Nao Le
Sim. Le
4 Legg
@Home
Resea
Papers
Compe
Membe
Press
Downl
Related
Restrict

1 LI L]
Byl -
Cl Cl
———
e e
- 2
v ——

CAUSTIN VILLA

ROBOT SOCCER TEAM

THE UNIVERSITY OF TEXAS AT AUSTIN

L L
o " " a
(1 O
21
- -
- LY L]
a &
] "
iy - e D
(]
0
[
] oy B (] oy
aYy al Fa "]
d d = d d
- a0
" i i ik
A
" -]

Example: Toddler robot

= Russ Tedrake et al., MIT

Example: Crawler

Skip 1000000 step Skip 30000 steps || Reset speed counter

eps- ||| epse I gam [0 | oamer [apna- [| apnare

Reinforcement Learning

= Still assume an MDP:
= Asetofstatess € S + WQ o
0.505 :

= A set of actions (per state) A

= A model T(s,a,s’) S"’W(J% ﬁg

+1

= Areward function R(s,a,s’) *° 0. #2
= Still looking for a policy n(s)

= New twist; don’t know T or R

» |.e. don’t know which states are good or what the
actions do

= Must actually try actions and states out to learn

Model-Based Learning

= |dea:
= |earn the model empirically through experience
= Solve for values as If the learned model were correct

= Step 1: Simple empirical model learning
= Count outcomes s’ for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) when we experience (s,a,s’)

= Step 2: Solve the learned MDP
= |terative policy evaluation, for example

1(s) > T(s,7(s), s)R(s,7m(s),8") + V] (s)]

Example: Model-based learning

Input Policy & Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s")
B, east, C, -1 B, east, C, -1 T(B, east, C) = 1.00
C, east, D, -1 C,east, D, -1 ;EE’ ::z:’ E; f g;g
D, exit, x, +10 D, exit, x, +10 T
Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 E:E* eas:, E}'; 1
eas =-
C,east, D,-1 C,east, A, -1 SR

-) _ R(D, exit, x) = +10
Assume:y=1 D, exit, x, +10 A, exit, x,-10

Example: Expected Age

Goal: Compute expected age of CS 343 students

4 Known P(A) A
E[A]=) Pla)-a =035x20+...
- . J
Without P(A), instead collect samples [a,, a,, ... a]
/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \
A num(a
. N <
E[A] %ZP(&)'& t
- “ AN /

Works because eventually
you learn the right model

Works because samples appear
with the right frequencies.

Passive reinforcement learning

!

Simplified task | | = | =

= You are given a policy n(S) 2 | 4

B

You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’)

Goal: learn the state values 1 2
... what policy evaluation did

In this case:
= Learner “along for the ride”
= No choice about what actions to take

= Just execute the policy and learn from experience
= We'll get to the active case soon

* This is NOT offline planning! You actually take actions in the
world and see what happens...

10

Direct evaluation

= Goal: compute values for each state under 1

* |dea: Average together observed sample values

= Act according to 1T

= Every time you visit a state, write down what the sum
of discounted rewards turned out to be.

» Average those samples

= This Is called direct evaluation

11

Example: direct evaluation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C,east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C,east, A, -1
Assume: Y =1 D, exit, x, +10 A, exit, x,-10

12

Problems with direct evaluation

What's good about direct evaluation?
» |t's easy to understand
» [t doesn’t require any knowledge of T, R

» [t eventually computes the correct average
values, using just sample transitions.

What's bad about it?
= |t wastes information about state connections
= Each state must be learned separately
» S0, it takes a long time to learn

+4
-2

0
+10
D

A
+8
B C

If B and E both go to
C under this policy,
how can their values
be different?

Why not use policy evaluation?

= Simplified Bellman updates to calculate V for a
fixed policy:
= Each round, replace V with a one-step-look-ahead layer
using current V

VE(s) =0

Vi 1(s) « D T(s,m(s),s)R(s,m(s),s") +vVi"(s)]

= This approach exploited connections between states
= Unfortunately we need T and R to do it!

= Key question: how can we do this update to V
without knowing T and R?

* |.e., how do we take a weighted average without
knowing the weights?

14

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:
Vi1(s) « > T(s,7(s),s)R(s,7(s),s") + vV (s)]
S,

|ldea: take samples of outcomes s’ (by doing the
action!) and average.

sample; = R(s,m(s), 3'1) -+ fﬂ/f(sll)
sampler = R(s,m(s), 812) -+ ’}/‘/,;T(S,Q)

sampler, = R(s,m(s), 3;3) -+ nyZ-W(s;g)

Almost! But we can't
rewind time to get sample
after sample from state s.

1
i1(8) — = Z sample;
)

15

Temporal-Difference Learning

= Big idea: learn from every experience! S
» Update V(s) each time we experience a transition (s,a,s’,r) 7(S)
» Likely outcomes s’ will contribute updates more often s, 7(s)
= Temporal difference learning
= Policy still fixed, still doing evaluation! As

= Move values toward value of whatever successor occurs:
“running average”

Sample of V(s): sample = R(s,m(s), 3,) + ’YVW(S/)
Update to V(s): VT(s) +— (1 —a)V"(s) + (a)sample
Same update: VT(s) «— V"(s) + a(sample — V" (s))

16

Exponential Moving Average

= Exponential moving average
= The running interpolation update:

Ty = (1 — Qf) +Tp—1 T+ Q- Ty
= Makes recent samples more important

T,+(1—a) o 1+(1—a)? zp_o+...
I1+(1-ao)+(1—a)?+...

Ln =

» Forgets about the past (distant past values were wrong anyway)

17

Problems with TD Value Learning

TD value leaning is model-free way to do
policy evaluation, mimicking Bellman updates
with running averages

However, if we want to turn values into a
(new) policy, we’re sunk:

w(s) = argmaxQ*(s,a)
Q*(s,a) =Y T(s,a,s") |R(s,a,s") +yV*(s)

ldea: learn Q-values directly
Makes action selection model-free too!

18

Active reinforcement learning

I e
Full reinforcement learning
* You don’t know the transitions T(s,a,s’) i e
= You don't know the rewards R(s,a,s’) 0 I T [P S P
= You can choose any actions you like — . .

» Goal: learn the optimal policy / values

In this case:
» |Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

19

Q-Value lteration

= Value iteration: find successive depth-limited values
= Start with V(s) = 0, which we know is right
= Given Vi, calculate the depth i+1 values for all states:

Vig1(s) — max Y T(s,a,s") |R(s,a,5") + 7 Vi(s)]

= But Q-values are more useful, so compute them instead
= Start with Qy(s,a) = 0, which we know is right
= Given QI, calculate the depth i+1 g-values for all g-states:

a

Qit1(s,a) = S T(s,a,8) |R(s,a,8) +7 maxQi(s',a)

20

Q-Learning

= Q-Learning:. sample-based Q-value iteration
Qit1(s,0) = X T(s,a,8) |R(s,a,5) + 7 maxQu(s,a)

= Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + max Q(s',a")
a
» |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

21

1,

(i) s

Skip 1000000 step || Stop || Skip 30000 steps || Reset speed counter

Q-Learning Properties

= Amazing result: Q-learning converges to optimal
policy, even if you're acting suboptimally!

* This iIs called off-policy learning.

= Caveats:
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!

= Basically in the limit it doesn’t matter how you select
actions (1)

The Story So Far: MDPs and RL

Things we know how to do: Techniques:

= |f we know the MDP = Model-based DPs
= Compute V*, Q*, n* exactly = Value lteration
= Evaluate a fixed policy = Policy evaluation

= |f we don’t know the MDP

We can estimate the MDP then solve = Model-based RL

We can estimate V for a fixed policy =

| -
We can estimate Q*(s,a) for the Model-free R_L
optimal policy while executing an * Value learning
exploration policy = Q-learning

24

