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Reinforcement Learning

 Still assume an MDP:
 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)
 New twist: don’t know T or R

 Big idea: Compute all averages over T using 
sample outcomes
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Recall: Model-Free Learning

 Model-free (temporal difference) learning
 Experience world through episodes

 Update estimates each transition
 Over time, updates will mimic Bellman updates
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Recall: Temporal-Difference Learning

 Big idea: learn from every experience!
 Update V(s) each time we experience a transition (s,a,s’,r)
 Likely outcomes s’ will contribute updates more often

 Temporal difference learning
 Policy still fixed, still doing evaluation!
 Move values toward value of whatever successor occurs: 

“running average”

π(s)
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Sample of V(s):

Update to V(s):

Same update:
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Problems with TD Value Learning

 TD value leaning is model-free way to do 
policy evaluation, mimicking Bellman updates 
with running averages

 However, if we want to turn values into a 
(new) policy, we’re sunk:

 Idea: learn Q-values directly
 Makes action selection model-free too!
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The Story So Far: MDPs and RL

 If we know the MDP: offline
 Compute V*, Q*, π* exactly
 Evaluate a fixed policy π

 If we don’t know the MDP: online
 We can estimate the MDP then solve

 We can estimate V for a fixed policy π
 We can estimate Q*(s,a) for the 

optimal policy while executing an 
exploration policy

 Model-based DPs
 Value Iteration
 Policy evaluation

 Model-based RL

 Model-free RL
 Value learning
 Q-learning

Things we know how to do: Techniques:
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Active reinforcement learning

 Full reinforcement learning
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You can choose any actions you like
 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning!  You actually take actions in the 

world and find out what happens…
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Q-Value Iteration
 Value iteration: find successive depth-limited values

 Start with V0(s) = 0, which we know is right
 Given Vi, calculate the depth i+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qi, calculate the depth i+1 q-values for all q-states:
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Q-Value Iteration
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Q-Learning
 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:
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Q-Learning Properties
 Amazing result: Q-learning converges to optimal 

policy, even if you’re acting suboptimally!

 This is called off-policy learning.

 Caveats:
 If you explore enough
 If you make the learning rate small enough
 … but not decrease it too quickly!
 Basically in the limit it doesn’t matter how you select 

actions (!)
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Exploring
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How to explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε greedy)

 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy
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How to explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε greedy)

 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy

 Problems with random actions?
 You do eventually explore the space, but keep thrashing around 

once learning is done
 One solution: lower ε over time
 Another solution: exploration function
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Exploration Functions

 When to explore?
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not (yet) 

established, eventually stop exploring.

 Exploration function
 Takes a value estimate and a visit count n, and returns an 

optimistic utility, e.g.                                   

 Note: this propagates the ‘bonus” back to states that lead to 
unknown states as well!

Regular 
Q-Update

Modified 
Q-Update



Regret

 Even if you learn the optimal policy, you still make mistakes 
along the way.

 Regret is a measure of your total mistake cost: difference 
between your (expected) rewards, including youthful 
suboptimality, and optimal (expected) rewards.

 Minimizing regret goes beyond learning to be optimal – it 
requires optimally learning to be optimal.

 Example: random exploration and exploration functions both 
end up optimal, but random exploration has higher regret. 
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Generalizing across states
 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn about 
every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states from 

experience
 Generalize that experience to new, similar situations
 This is a fundamental idea in machine learning, and we’ll see it 

over and over again
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Example: Pacman

 Let’s say we discover 
through experience 
that this state is bad:

 In naïve q learning, we 
know nothing about 
this state:

 Or even this one!
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Feature-Based Representations
 Solution: describe a state using a 

vector of features (properties)
 Features are functions from states to real 

numbers (often 0/1) that capture important 
properties of the state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with 
features (e.g. action moves closer to food)
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Linear Value Functions
 Using a feature representation, we can write a q 

function (or value function) for any state using a few 
weights:

 Advantage: our experience is summed up in a few 
powerful numbers

 Disadvantage: states may share features but actually 
be very different in value!
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Approximate Q-learning

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, we start to prefer 

less all states with that state’s features

Exact Q’s

Approximate Q’s
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Q(s’, -) = 0

Example: Pacman with approx. Q-learning
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Optimization: Least squares

0 20
0

Error or “residual”

Prediction

Observation

25



Minimizing Error

Approximate q update explained:

Imagine we had only one point x with features f(x), target value y, and weights w:

“target” “prediction”
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Policy Search
 Problem: Often the feature-based policies that work well (win games, 

maximize utilities) aren’t the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible estimates 

of future rewards, but they still produced good decisions

 Q-learning’s priority: get Q-values close (modeling)

 Action selection priority: get ordering of Q-values right (prediction)

 We’ll see this distinction between modeling and prediction again later in 
the course

 Solution: learn the policy that maximizes rewards rather than the 
value that predicts rewards

 Policy search: start with an ok solution (e.g., Q learning), then fine-
tune by hill climbing on feature weights.
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Policy Search

 Simplest policy search:
 Start with an initial linear value function or q-function
 Nudge each feature weight up and down and see if 

your policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure, 
sample wisely, change multiple parameters…
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Take a Deep Breath…

 We’re done with search and planning!

 Next, we’ll look at how to reason with probabilities
 Diagnosis
 Tracking objects
 Speech recognition
 Robot mapping
 … lots more!

 Last part of course: machine learning
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