
CS 343H: Honors AI

Lecture 13:
Reinforcement Learning, part 2

2/27/2014

Kristen Grauman
UT Austin

Slides courtesy of Dan Klein, UC Berkeley
1

Reinforcement Learning

 Still assume an MDP:
 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)
 New twist: don’t know T or R

 Big idea: Compute all averages over T using
sample outcomes

2

Recall: Model-Free Learning

 Model-free (temporal difference) learning
 Experience world through episodes

 Update estimates each transition
 Over time, updates will mimic Bellman updates

a

s

s, a

s’

r

Recall: Temporal-Difference Learning

 Big idea: learn from every experience!
 Update V(s) each time we experience a transition (s,a,s’,r)
 Likely outcomes s’ will contribute updates more often

 Temporal difference learning
 Policy still fixed, still doing evaluation!
 Move values toward value of whatever successor occurs:

“running average”

π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

4

Problems with TD Value Learning

 TD value leaning is model-free way to do
policy evaluation, mimicking Bellman updates
with running averages

 However, if we want to turn values into a
(new) policy, we’re sunk:

 Idea: learn Q-values directly
 Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

5

The Story So Far: MDPs and RL

 If we know the MDP: offline
 Compute V*, Q*, π* exactly
 Evaluate a fixed policy π

 If we don’t know the MDP: online
 We can estimate the MDP then solve

 We can estimate V for a fixed policy π
 We can estimate Q*(s,a) for the

optimal policy while executing an
exploration policy

 Model-based DPs
 Value Iteration
 Policy evaluation

 Model-based RL

 Model-free RL
 Value learning
 Q-learning

Things we know how to do: Techniques:

6

Active reinforcement learning

 Full reinforcement learning
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You can choose any actions you like
 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning! You actually take actions in the

world and find out what happens…

7

Q-Value Iteration
 Value iteration: find successive depth-limited values

 Start with V0(s) = 0, which we know is right
 Given Vi, calculate the depth i+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qi, calculate the depth i+1 q-values for all q-states:

8

Q-Value Iteration
 Value iteration: find successive depth-limited values

 Start with V0(s) = 0, which we know is right
 Given Vi, calculate the depth i+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qi, calculate the depth i+1 q-values for all q-states:

9

Q-Learning
 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

10

Q-Learning Properties
 Amazing result: Q-learning converges to optimal

policy, even if you’re acting suboptimally!

 This is called off-policy learning.

 Caveats:
 If you explore enough
 If you make the learning rate small enough
 … but not decrease it too quickly!
 Basically in the limit it doesn’t matter how you select

actions (!)

The Story So Far: MDPs and RL

 If we know the MDP: offline
 Compute V*, Q*, π* exactly
 Evaluate a fixed policy π

 If we don’t know the MDP: online
 We can estimate the MDP then solve

 We can estimate V for a fixed policy π
 We can estimate Q*(s,a) for the

optimal policy while executing an
exploration policy

 Model-based DPs
 Value Iteration
 Policy evaluation

 Model-based RL

 Model-free RL
 Value learning
 Q-learning

Things we know how to do: Techniques:

12

Exploring

13

How to explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε greedy)

 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy

14

How to explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε greedy)

 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy

 Problems with random actions?
 You do eventually explore the space, but keep thrashing around

once learning is done
 One solution: lower ε over time
 Another solution: exploration function

15

Exploration Functions

 When to explore?
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not (yet)

established, eventually stop exploring.

 Exploration function
 Takes a value estimate and a visit count n, and returns an

optimistic utility, e.g.

 Note: this propagates the ‘bonus” back to states that lead to
unknown states as well!

Regular
Q-Update

Modified
Q-Update

Regret

 Even if you learn the optimal policy, you still make mistakes
along the way.

 Regret is a measure of your total mistake cost: difference
between your (expected) rewards, including youthful
suboptimality, and optimal (expected) rewards.

 Minimizing regret goes beyond learning to be optimal – it
requires optimally learning to be optimal.

 Example: random exploration and exploration functions both
end up optimal, but random exploration has higher regret.

17

Generalizing across states
 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn about
every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states from

experience
 Generalize that experience to new, similar situations
 This is a fundamental idea in machine learning, and we’ll see it

over and over again

18

Example: Pacman

 Let’s say we discover
through experience
that this state is bad:

 In naïve q learning, we
know nothing about
this state:

 Or even this one!

19

Feature-Based Representations
 Solution: describe a state using a

vector of features (properties)
 Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

20

Linear Value Functions
 Using a feature representation, we can write a q

function (or value function) for any state using a few
weights:

 Advantage: our experience is summed up in a few
powerful numbers

 Disadvantage: states may share features but actually
be very different in value!

21

Approximate Q-learning

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, we start to prefer

less all states with that state’s features

Exact Q’s

Approximate Q’s

22

Q(s’, -) = 0

Example: Pacman with approx. Q-learning

23

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear approximation: Regression

Prediction Prediction

24

Optimization: Least squares

0 20
0

Error or “residual”

Prediction

Observation

25

Minimizing Error

Approximate q update explained:

Imagine we had only one point x with features f(x), target value y, and weights w:

“target” “prediction”

26

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: why limiting capacity can help

Policy Search
 Problem: Often the feature-based policies that work well (win games,

maximize utilities) aren’t the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible estimates

of future rewards, but they still produced good decisions

 Q-learning’s priority: get Q-values close (modeling)

 Action selection priority: get ordering of Q-values right (prediction)

 We’ll see this distinction between modeling and prediction again later in
the course

 Solution: learn the policy that maximizes rewards rather than the
value that predicts rewards

 Policy search: start with an ok solution (e.g., Q learning), then fine-
tune by hill climbing on feature weights.

28

Policy Search

 Simplest policy search:
 Start with an initial linear value function or q-function
 Nudge each feature weight up and down and see if

your policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure,
sample wisely, change multiple parameters…

29

Take a Deep Breath…

 We’re done with search and planning!

 Next, we’ll look at how to reason with probabilities
 Diagnosis
 Tracking objects
 Speech recognition
 Robot mapping
 … lots more!

 Last part of course: machine learning

30

	CS 343H: Honors AI
	Reinforcement Learning
	Recall: Model-Free Learning
	Recall: Temporal-Difference Learning
	Problems with TD Value Learning
	The Story So Far: MDPs and RL
	Active reinforcement learning
	Q-Value Iteration
	Q-Value Iteration
	Q-Learning
	Q-Learning Properties
	The Story So Far: MDPs and RL
	Exploring
	How to explore?
	How to explore?
	Exploration Functions
	Regret
	Generalizing across states
	Example: Pacman
	Feature-Based Representations
	Linear Value Functions
	Approximate Q-learning
	Slide Number 23
	Linear approximation: Regression
	Optimization: Least squares
	Minimizing Error
	Overfitting: why limiting capacity can help
	Policy Search
	Policy Search
	Take a Deep Breath…

