
CS 343H: Honors AI

Lecture 14:

Reinforcement Learning, part 3

3/3/2014

Kristen Grauman

UT Austin

Slides courtesy of Dan Klein, UC Berkeley
1

Announcements

 Midterm this Thursday in class

 Can bring one sheet (two sided) of notes

 Covers everything so far except for

reinforcement learning (up through and

including lecture 11 on MDPs)

2

Outline

 Last time: Active RL

 Q-learning

 Exploration vs. Exploitation

 Exploration functions

 Regret

 Today: Efficient Q-learning

 Approximate Q-learning

 Feature-based representations

 Connection to online least squares

 Policy search main idea

3

Reinforcement Learning

 Still assume an MDP:

 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy (s)

 New twist: don’t know T or R

 Big idea: Compute all averages over T using

sample outcomes

4

Recall: Q-Learning

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go

 Receive a sample (s,a,s’,r)

 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

5

Q-Learning Properties

 Amazing result: Q-learning converges to optimal

policy, even if you’re acting suboptimally!

 This is called off-policy learning.

 Caveats:

 If you explore enough

 If you make the learning rate small enough

 … but not decrease it too quickly!

 Basically in the limit it doesn’t matter how you select

actions (!)

The Story So Far: MDPs and RL

 If we know the MDP: offline

 Compute V*, Q*, * exactly

 Evaluate a fixed policy 

 If we don’t know the MDP: online

 We can estimate the MDP then solve

 We can estimate V for a fixed policy 

 We can estimate Q*(s,a) for the

optimal policy while executing an

exploration policy

7

 Model-based DPs

 Value Iteration

 Policy evaluation

 Model-based RL

 Model-free RL

 Value learning

 Q-learning

Things we know how to do: Techniques:

Recall: Exploration Functions

 When to explore?

 Random actions: explore a fixed amount

 Better idea: explore areas whose badness is not (yet)

established, eventually stop exploring.

 Exploration function

 Takes a value estimate and a visit count n, and returns an

optimistic utility, e.g.

 Note: this propagates the ‘bonus” back to states that lead to

unknown states as well!

Regular

Q-Update

Modified

Q-Update

Generalizing across states

 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn about
every single state!
 Too many states to visit them all in training

 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states from

experience

 Generalize that experience to new, similar situations

 This is a fundamental idea in machine learning, and we’ll see it
over and over again

9

Example: Pacman

 Let’s say we discover
through experience
that this state is bad:

 In naïve q learning, we
know nothing about
this state:

 Or even this one!

10

Feature-Based Representations

 Solution: describe a state using a
vector of features (properties)

 Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

 Example features:

 Distance to closest ghost

 Distance to closest dot

 Number of ghosts

 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)

 …… etc.

 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

11

Linear Value Functions

 Using a feature representation, we can write a q
function (or value function) for any state using a few
weights:

 Advantage: our experience is summed up in a few
powerful numbers

 Disadvantage: states may share features but actually
be very different in value!

12

Approximate Q-learning

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features

 E.g. if something unexpectedly bad happens, we start to prefer
less all states with that state’s features

13

Exact Q’s

Approximate Q’s

14Q(s’, -) = 0

Example: Pacman with approx. Q-learning

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear approximation: Regression

Prediction Prediction

15

Optimization: Least squares

0 20
0

Error or “residual”

Prediction

Observation

16

Minimizing Error

Approximate q update explained:

17

Imagine we had only one point x with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: why limiting capacity can help

Quiz: feature-based reps

19

 Assume w1=1, w2=10.

 For the state s shown below, assume that red and blue ghosts are

both sitting on top of a dot.

20

Quiz: feature-based reps (part1)

Q(s,West) = ?

Q(s, South) = ?

Based on this approx. Q function,

the action chosen would be ?

 Assume w1=1, w2=10.

 For the state s shown below, assume that red and blue ghosts are both

sitting on top of a dot.

 Assume Pacman moves West, resulting in s’ below.

 Reward for this transition is r=+10 – 1 = 9 (+10 for food, -1 for time passed)

21

Quiz: feature-based reps (part2)

Q(s’,West) = ?

Q(s’, East) = ?

What is the sample value

(assuming ɣ= 1)?

 Assume w1=1, w2=10.

 For the state s shown below, assume that red and blue ghosts are both

sitting on top of a dot.

 Assume Pacman moves West, resulting in s’ below. Alpha = 0.5

 Reward for this transition is r=+10 – 1 = 9 (+10 for food, -1 for time passed)

Quiz: feature-based reps (part3)

Policy Search

 Problem: Often the feature-based policies that work well (win games,
maximize utilities) aren’t the ones that approximate V / Q best

 E.g. your value functions from project 2 were probably horrible estimates
of future rewards, but they still produced good decisions

 Q-learning’s priority: get Q-values close (modeling)

 Action selection priority: get ordering of Q-values right (prediction)

 We’ll see this distinction between modeling and prediction again later in
the course

 Solution: learn the policy that maximizes rewards rather than the
value that predicts rewards

 Policy search: start with an ok solution (e.g., Q learning), then fine-
tune by hill climbing on feature weights.

23

Policy Search

 Simplest policy search:

 Start with an initial linear value function or q-function

 Nudge each feature weight up and down and see if

your policy is better than before

 Problems:

 How do we tell the policy got better?

 Need to run many sample episodes!

 If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure,

sample wisely, change multiple parameters…
24

Take a Deep Breath…

 We’re done with search and planning!

 Next, we’ll look at how to reason with probabilities
 Diagnosis

 Tracking objects

 Speech recognition

 Robot mapping

 … lots more!

 Last part of course: machine learning

25

