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Probabillity recap

= Conditional probability — p(z|y) = P(z,y)
P(y)

= Productrule p(z, y) = P(z|y)P(y)
= Chain rule P(x1,x2,...2n) = || P(ailer .. 2i-1)
i

= X, Y Independent if and only If:
Vz,y : P(z,y) = P(z)P(y)

= X andY are conditionally independent given Z if and only If:
Vz,y,z : P(x,ylz) = P(x|z) P(y|2)
X1Y|Z



Bayes’' Nets

= A Bayes’ netis an
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
» |Inference: given a fixed BN, what is P(X | €)?

» Representation: given a BN graph, what kinds of
distributions can it encode?

* Modeling: what BN is most appropriate for a given
domain?



Example: Alarm Network

B P(B) E P(E)
+b |0.001 @ +e |0.002
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+a |+m | 0.7
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Bayes’' Net Semantics

= A directed, acyclic graph, one node per
random variable

= A conditional probability table (CPT) for
each node

= A collection of distributions over X, one for
each combination of parents’ values

P(Xl|ay...an)

= Bayes’ nets implicitly encode joint
distributions
= As a product of local conditional distributions

n
P(:Ul, o, .. CEn) == H P(mi\parents(Xi))
=1



Recall: Probabilities in BNs

= Why are we guaranteed that setting

n
P(z1,x2,...20) = || Pz parents(X;))
=1

results in a proper distribution?

= Chain rule (valid for all distributions):
P(x1,x0,...29n) = H P(x;lz1...2;-1)

= Due to assumed conditional independences:
P(x;lxq...x;_1) = P(x;|parents(X;))

= Conseguence:

n
P(z1,x2,...20) = || Pz parents(X;))
=1



P(+b, -e, +a, |, +m) =
P(+b) P(-e) P(+a | +b, -e) P(-j | +a) P(+m | +a) =
0.001 x0.998 x0.94 x 0.1 x0.7

+b | 0.001 Burglary @ +e |0.002
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+b [+e | —-a [ 0.05

+b |—e |+a [0.94

A ] P(J|A) A \Y/ P(M|A) +b |—e | —-a | 0.06
+a |+m | 0.7

+a |+ [0.9 —b [+e |+a [0.29

+a |~ |0.1 +a |—-m |[0.3 —b |+e |—-a [0.71

—a |+ |0.05 —a |+m |0.01 —b | —e | +a | 0.001

—a |—j |0.95 —a |—=m |0.99 —b | —-e | —-a | 0.999




Size of a Bayes’ Net

= How big is a joint distribution over N Boolean variables?

2N

= How big is an N-node net if nodes have up to k parents?

O(N * 2k+1)

= Both give you the power to calculate P(X1, Xo,...Xn)
= BNSs: Huge space savings!

= Also easier to elicit local CPTs

= Also turns out to be faster to answer gueries (coming)



Bayes’ Net

« Representation
= Conditional iIndependences

» Probabilistic inference
» Learning Bayes’ Nets from data



Conditional Independence

» X and Y are independent If
Ve,y P(x,y) = P(x)P(y) -=-=-=- X1Y

= X and Y are conditionally independent given Z
Ve,y,z P(x,ylz) = P(x|z)P(y|lz)-- - X 1Y|Z

= (Conditional) independence Is a property of a
distribution

= Example: Alarm A Fire|Smoke
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Bayes Nets: Assumptions

= Assumptions we are required to make to define the Bayes
net when given the graph:

P(xz;|z1---xi_1) = P(x;|parents(X;))
= Beyond the above (“chain-rule->Bayes net”) conditional
Independence assumptions

= Often have many more conditional independences
= They can be read off the graph

= |mportant for modeling: understand assumptions made
when choosing a Bayes net graph
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Example

CO—)—~D—W)

= Conditional independence assumptions directly from
simplifications in chain rule:

= Additional implied conditional independence
assumptions?
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Independence in a BN

* |[mportant question about a BN:
= Are two nodes independent given certain evidence?
* |f yes, can prove using algebra (tedious in general)
* |f no, can prove with a counter example

« Example: @@@

= Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which
causes traffic.

= X can influence Z, Z can influence X (via Y)



D-separation: Outline

= D-Separation: a condition/algorithm for
answering such queries

= Study independence properties for triples

= Analyze complex cases in terms of member
triples — reduce big question to one of the base

cases.
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Causal Chains (1 of 3 structures)

* This configuration is a “causal chain”
X: Low pressure

Z: Traffic
P(z,y,z) = P(z)P(y|z)P(z|y)

» |s X independent of Z given Y?

P(z,y,z) _ P(x)P(ylz)P(z]y)
P(x,y) P(x)P(y|x)

P(zlz,y) =

= P(zly) Yes!

= Evidence along the chain “blocks” the influence .



Common Cause (2 of 3 structures)

= Another basic configuration: two
effects of the same cause

= Are X and Z independent?

= Are X and Z independent given Y?

P(z,y,2) _ P(y)P(z|y)P(z|y) Y: Project due
P(z,y) P(y)P(z|y) X: Piazza busy

Z: Lab full
= P(z|y)

P(zlz,y) =

Yes!

= Observing the cause blocks
Influence between effects.



Common Effect (3 of 3 structures)

= Last configuration: two causes of
one effect (v-structures)

= Are X and Z independent?

= Yes: the ballgame and the rain cause traffic,
but they are not correlated

= Are X and Z independent given Y?

= No: seeing traffic puts the rain and the X: Raining
ballgame in competition as explanation Z: Ballgame
Y: Traffic

= This is backwards from the other cases

= Observing an effect activates influence
between possible causes.



The General Case

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: analyze the graph

= Any complex example can be analyzed using
these three canonical cases

18



Reachability

= Recipe: shade evidence nodes,
look for paths in the resulting
graph

= Attempt 1: if two nodes are
connected by an undirected path
blocked by a shaded node, they
are conditionally independent

= Almost works, but not quite
= \Where does it break?

= Answer: the v-structure at T doesn’t
count as a link in a path unless
“active”
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Active / Inactive paths

= Question: Are Xand Y
conditionally independent
glven evidence vars {Z}?

Yes, if X and Y “separated” by Z

= Consider all undirected paths from
XtoY

= No active paths = independence!

= A path is active if each triple
IS active:

» Causal chain A—> B — C where B
IS unobserved (either direction)

= Common cause A« B—C
where B is unobserved

= Common effect (aka v-structure)

A — B « C where B or one of its
descendents is observed

= All it takes to block a path is
a single inactive segment

Active Triples

O-0O-0

olEae
e

Inactive Triples

O-@-~O
Slle
S



Reachability

= Recipe: shade evidence nodes,
look for paths in the resulting
graph

Traffic
report



D-Separation
?
= Givenquery X, 1l X;{Xk,,..., Xk, }

= For all (undirected!) paths between X; and X
= Check whether path is active

= If active return X, y{ Xj‘{Xkl, e an}

= Otherwise (l.e., If all paths are inactive) then
Independence Is guaranteed.

= Return X, || Xj\{Xkl, ...,an}
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Example 1

R B
R B|T

R B|T'

Yes

Active Triples_l

{4

©,

a¥;
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Example 2

L1LT"T
L1 B
L1 B|T

L1 B|T
LI B|T,R

Active Triples_l

{4
"4

Yes

Yes

Yes

&0

<,
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Example 3

= Variables:
* R: Raining
= T: Traffic
* D: Roof drips
* S: I'm sad

= Questions:

T 1 DR Yes
T DR,S

Active Triples_l

{4

=

a¥;
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Structure implications

= Given a Bayes net structure, can run d-separation to
build a complete list of conditional independences that
are necessarily true of the form

X L Xi{ Xkys -y Xk, )

= This list determines the set of probability distributions
that can be represented by this BN

26



Computing all independences

8%
6%
At4
£83



Topology Limits Distributions

Given some graph
topology G, only certain
joint distributions can
be encoded

The graph structure
guarantees certain
(conditional)
Independences

(There might be more
Independence)

Adding arcs increases
the set of distributions,
but has several costs

Full conditioning can
encode any distribution

® @

P Pe”
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Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can
be deduced from BN graph structure

= D-separation gives precise conditional
Independence guarantees from graph alone

= A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution
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Bayes' Net

« Representation
Conditional independences

» Probabilistic inference
» Learning Bayes’ Nets from data

30



