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Probability recap

 Conditional probability

 Product rule

 Chain rule

 X, Y independent if and only if:

 X and Y are conditionally independent given Z if and only if:



Bayes’ Nets

 A Bayes’ net is an

efficient encoding

of a probabilistic

model of a domain

 Questions we can ask:
 Inference: given a fixed BN, what is P(X | e)?

 Representation: given a BN graph, what kinds of 
distributions can it encode?

 Modeling: what BN is most appropriate for a given 
domain?



Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls
Mary 

calls

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99



Bayes’ Net Semantics

 A directed, acyclic graph, one node per 
random variable 

 A conditional probability table (CPT) for 
each node
 A collection of distributions over X, one for 

each combination of parents’ values

 Bayes’ nets implicitly encode joint 
distributions
 As a product of local conditional distributions

A1

X

An



 Why are we guaranteed that setting

results in a proper distribution?

 Chain rule (valid for all distributions):

 Due to assumed conditional independences:

 Consequence:

Recall: Probabilities in BNs

=



Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls
Mary 

calls

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99

P(+b, -e, +a, -j, +m) =

P(+b) P(-e) P(+a | +b, -e) P(-j | +a) P(+m | +a) =

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Size of a Bayes’ Net

 How big is a joint distribution over N Boolean variables?

2N

 How big is an N-node net if nodes have up to k parents?

O(N * 2k+1)

 Both give you the power to calculate

 BNs: Huge space savings!

 Also easier to elicit local CPTs

 Also turns out to be faster to answer queries (coming)
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Bayes’ Net

 Representation

 Conditional independences

 Probabilistic inference

 Learning Bayes’ Nets from data

9



Conditional Independence

 X and Y are independent if

 X and Y are conditionally independent given Z

 (Conditional) independence is a property of a 
distribution

 Example: 
10



Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes 

net when given the graph:

 Beyond the above (“chain-ruleBayes net”) conditional 

independence assumptions 

 Often have many more conditional independences

 They can be read off the graph

 Important for modeling: understand assumptions made 

when choosing a Bayes net graph
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Example

 Conditional independence assumptions directly from 

simplifications in chain rule:

 Additional implied conditional independence 

assumptions?
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Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?

 If yes, can prove using algebra (tedious in general)

 If no, can prove with a counter example

 Example:

 Question: are X and Z necessarily independent?
 Answer: no.  Example: low pressure causes rain, which 

causes traffic.

 X can influence Z, Z can influence X (via Y)

X Y Z



D-separation: Outline

 D-Separation: a condition/algorithm for 

answering such queries

 Study independence properties for triples

 Analyze complex cases in terms of member 

triples – reduce big question to one of the base 

cases.
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Causal Chains (1 of 3 structures)

 This configuration is a “causal chain”

 Is X independent of Z given Y?

 Evidence along the chain “blocks” the influence

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic
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Common Cause (2 of 3 structures)

 Another basic configuration: two 
effects of the same cause
 Are X and Z independent?

 Are X and Z independent given Y?

 Observing the cause blocks 
influence between effects.

X

Y

Z

Yes!

Y: Project due

X: Piazza busy

Z: Lab full



Common Effect (3 of 3 structures)

 Last configuration: two causes of 

one effect (v-structures)

 Are X and Z independent?

 Yes: the ballgame and the rain cause traffic, 

but they are not correlated

 Are X and Z independent given Y?

 No: seeing traffic puts the rain and the 

ballgame in competition as explanation

 This is backwards from the other cases

 Observing an effect activates influence 

between possible causes.

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic



The General Case

 General question: in a given BN, are two 

variables independent (given evidence)?

 Solution: analyze the graph

 Any complex example can be analyzed using 

these three canonical cases
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Reachability

 Recipe: shade evidence nodes, 
look for paths in the resulting 
graph

 Attempt 1: if two nodes are 
connected by an undirected path 
blocked by a shaded node, they 
are conditionally independent

 Almost works, but not quite
 Where does it break?

 Answer: the v-structure at T doesn’t 
count as a link in a path unless 
“active”

R

T

B

D

L
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Active / Inactive paths
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z

 Consider all undirected paths from 
X to Y

 No active paths = independence!

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)

 Common cause A  B  C 
where B is unobserved

 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Active Triples Inactive Triples



Reachability

 Recipe: shade evidence nodes, 
look for paths in the resulting 
graph

R

T

B

D

L

Traffic 

report



D-Separation

 Given query

 For all (undirected!) paths between Xi and Xj

 Check whether path is active

 If active return

 Otherwise (i.e., if all paths are inactive) then 

independence is guaranteed.

 Return 
22
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Example 1

Yes
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R

T

B

T’

Active Triples



Example 2

R

T

B

D

L

T’

Yes

Yes

Yes
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Active Triples



Example 3

 Variables:

 R: Raining

 T: Traffic

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

R

Yes
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Structure implications

 Given a Bayes net structure, can run d-separation to 

build a complete list of conditional independences that 

are necessarily true of the form

 This list determines the set of probability distributions 

that can be represented by this BN
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Computing all independences
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Topology Limits Distributions

 Given some graph 

topology G, only certain 

joint distributions can 

be encoded

 The graph structure 

guarantees certain 

(conditional) 

independences

 (There might be more 

independence)

 Adding arcs increases 

the set of distributions, 

but has several costs

 Full conditioning can 

encode any distribution

X

Y

Z

X

Y

Z

X

Y

Z
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Y

Z

X
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Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution
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Bayes’ Net

 Representation

 Conditional independences

 Probabilistic inference

 Learning Bayes’ Nets from data
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