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Road map: Bayes’ Nets

 Representation

 Conditional independences

 Probabilistic inference

 Enumeration (exact, exponential complexity)

 Variable elimination (exact, worst-case 

exponential complexity, often better)

 Inference is NP-complete

 Sampling (approximate)

 Learning Bayes’ Nets from data
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Recall: Bayes’ Net Representation

 A directed, acyclic graph, one node per 
random variable 

 A conditional probability table (CPT) for 
each node
 A collection of distributions over X, one for 

each combination of parents’ values

 Bayes’ nets implicitly encode joint 
distributions
 As a product of local conditional distributions
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Last time: Variable elimination

 Interleave joining and 

marginalizing

 dk entries computed for a factor 

with k variables with domain 

sizes d

 Ordering of elimination of hidden 

variables can affect size of 

factors generated

 Worst case: running time 

exponential in the size of the 

Bayes’ net.
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Sampling

 Sampling is a lot like repeated simulation
 Predicting the weather, basketball games,…

 Basic idea:
 Draw N samples from a sampling distribution S

 Compute an approximate posterior probability

 Show this converges to the true probability P

 Why sample?
 Inference: getting a sample is faster than computing the right 

answer (e.g. with variable elimination)

 Learning: get samples from a distribution you don’t know
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Sampling

 Sampling from a given 

distribution

 Step 1: Get sample u from 

uniform distribution over [0,1)

 E.g., random() in python

 Step 2: Convert this sample u into 

an outcome for the given 

distribution by having each 

outcome associated with a sub-

interval of [0,1) with sub-interval 

size equal to probability of the 

outcome
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If random() returns u=0.83, 

then our sample C = blue.



Sampling in Bayes’ Nets

 Prior sampling

 Rejection sampling

 Likelihood weighting

 Gibbs sampling
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Prior Sampling

Cloudy
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+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99

-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…



Prior sampling
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Prior Sampling

 This process generates samples with probability:

…i.e. the BN’s joint probability

 Let the number of samples of an event be

 Then

 I.e., the sampling procedure is consistent
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Example

 First: Get a bunch of samples from the BN:

+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

 Example: we want to know P(W)

 We have counts <+w:4, -w:1>

 Normalize to get approximate P(W) = <+w:0.8, -w:0.2>

 This will get closer to the true distribution with more samples

 Can estimate anything else, too

 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?

 Fast: can use fewer samples if less time (what’s the drawback?)
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Rejection Sampling

 Let’s say we want P(C)

 No point keeping all samples around

 Just tally counts of C as we go

 Let’s say we want P(C| +s)

 Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 

have S=+s

 This is called rejection sampling

 It is also consistent for conditional 

probabilities (i.e., correct in the limit)

+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W
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Rejection sampling
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Sampling Example

 There are 2 cups. 

 The first contains 1 penny and 1 quarter

 The second contains 2 quarters

 Say I pick a cup uniformly at random, then pick a 

coin randomly from that cup. It's a quarter (yes!). 

 What is the probability that the other coin in that 

cup is also a quarter?



Likelihood weighting

 Problem with rejection sampling:
 If evidence is unlikely, you reject a lot of samples

 Evidence not exploited as you sample

 Consider P(Shape | blue)
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Likelihood weighting

 Idea: fix evidence variables and sample the rest

 Problem: sample distribution not consistent!

 Solution: weight by prob of evidence given parents



Likelihood Weighting
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+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99

-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w

…
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Likelihood weighting
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Likelihood Weighting

 Sampling distribution if z sampled and e fixed evidence

 Now, samples have weights

 Together, weighted sampling distribution is consistent
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Likelihood Weighting

 Likelihood weighting is good

 We have taken evidence into account as 

we generate the sample

 E.g. here, W’s value will get picked 

based on the evidence values of S, R

 More of our samples will reflect the state 

of the world suggested by the evidence

 Likelihood weighting doesn’t solve 

all our problems

 Evidence influences the choice of 

downstream variables, but not upstream 

ones (C isn’t more likely to get a value 

matching the evidence)

 We would like to consider evidence 

when we sample every variable… 20
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Gibbs sampling

 Procedure: 

 Keep track of a full instantiation x1, x2,…xn.  

 Start with an arbitrary instantiation consistent with the 

evidence. 

 Sample one variable at a time, conditioned on all the 

rest, but keep evidence fixed.  

 Keep repeating this for a long time.

 Property: 

 In the limit of repeating this infinitely many times, the 

resulting sample is coming from the correct 

distribution.
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Gibbs sampling

 Rationale: 

 Both upstream and downstream variables condition 

on the evidence.

 In contrast: 

 Likelihood weighting only conditions on upstream 

evidence, hence weights obtained in likelihood 

weighting can sometimes be very small.  

 Sum of weights over all samples is indicative of how 

many “effective” samples were obtained, so we want 

high weight.
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Gibbs sampling example: P(S | +r)
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Gibbs sampling example: P(S | +r)
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Gibbs sampling example: P(S | +r)
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Efficient resampling of one variable
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Sample from P(S | +c, +r, -w) 

• Many things cancel out – only CPTs with S remain!

• More generally: only CPTs that have resampled variable 

need to be considered, joined together.



Gibbs and MCMC

 Gibbs sampling produces sample from query 

distribution P(Q | e) in limit of resampling infinitely 

often

 Gibbs is a special case of more general methods 

called Markov chain Monte Carlo (MCMC) 

methods
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Bayes’ Net sampling summary

 Prior sampling P

 Rejection sampling P(Q | e)

 Likelihood weighting P(Q | e)

 Gibbs sampling P(Q | e)
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Reminder

 Check course page for 

 Contest (today)

 PS4 (Thursday)

 Next week’s reading
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