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Recall: Inference in Ghostbusters

= A ghostis in the grid
somewhere
= Sensor readings tell
how close a square
IS to the ghost
*= On the ghost: red
= 1 or2away: orange
= 3 or4 away: yellow
= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Inference In Ghostbusters

<0.01




Inference In Ghostbusters

= Need to decide when and what to sense!

<0.01




Decision Networks

= MEU: choose the action which

maximizes the expected utility given
the evidence

= Can directly operationalize this with
decision networks

= New node types:

Umbrella

Weather

Chance nodes (just like BNs)

Actions (cannot have parents, act as
observed evidence)

Utility node (depends on action and
chance nodes)




Decision Networks

= Action selection:

= Instantiate all
evidence

= Set action node(s)
each possible way

= Calculate posterior
for all parents of
utility node, given the
evidence

= Calculate expected
utility for each action @

= Choose maximizing
action

Umbrella

Weather




Example: Decision Networks

Umbrella = leave

U(leave) Z P(w

:0.7-100+O.3—O:70

Umbrella = take

U (leave, w)

EU(take) = ZP(w)U(take, w)

=0.7-20403-70 =35

Optimal decision = leave

MEU(g) = max EU(a) =

Umbrella

/

<>

70

A W U(A,W)

W P(W) leave sun 100
sun 0.7 leave rain 0
rain 0.3 take sun 20
take rain 70




Decisions as OQutcome Trees

AN

rake Save

/ \\ /

N\ %%, B\ %

= Almost exactly like expectimax / MDPs
= What's changed?



Example: Decision Networks

Umbrella = leave Umbrella

EU(leave|bad) = Z P(w|bad)U (leave, w)

=0.34-100+0.66 - 0 = 34

Umbrella = take Weather

EU(take|bad) = ZP w|bad)U (take, w)

orecas
=bad

MEU(F = bad) = max EU(a|bad) = 53

= 0.34-20+0.66 - 70 = 53

Optimal decision = take

W P(W|F=bad)

sun 0.34

\ rain 0.66
A W | UAW)

leave | sun 100

leave | rain 0

take | sun 20

take | rain 70




Decisions as OQutcome Trees
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Ghostbusters decision network
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Value of Information

= |dea: compute value of acquiring evidence
= Can be done directly from decision network

DrillLoc
= Example: buying oil drilling rights
= Two blocks A and B, exactly one has oil, worth k <J>
= You can drill in one location @
= Prior probabilities 0.5 each, & mutually exclusive T
= Drilling in either A or B has EU = k/2, MEU = k/2 ol p DIol u
= Question: what's the value of information of O? al 12| [a]a| K
= Value of knowing which of A or B has ol b| 1/2 a|b 0
= Value is expected gain in MEU from new info b | a 0
= Survey may say “oil in a” or “oil in b,” prob 0.5 each b | b K

= |f we know OilLoc, MEU is k (either way)
= Gain in MEU from knowing OilLoc?
= VPI(OilLoc) = k/2
= Fair price of information: k/2
12



VPI| Example: Weather

MEU with no evidence

MEU(¢) = max EU(a) = 70

Umbrella

MEU if forecast is bad
MEU(F = bad) = max EU(a|bad) = 53

MEU if forecast is good sun | 100

leave | rain 0
MEU(F = good) = max EU(a|good) = 95 take | sun | 20

take | rain 70
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VPI| Example: Weather

MEU with no evidence

MEU(¢) = max EU(a) = 70

Umbrella

MEU if forecast is bad
MEU(F = bad) = max EU(a|bad) = 53

MEU if forecast is good sun | 100

leave | rain 0
MEU(F = good) = max EU(a|good) = 95 take | sun | 20

Forecast distribution take | rain 70

R 0.59 - (95) + 0.41 - (53) — 70
good 0.59
bad | 0.41 7.8 —70=7.8

VPI(E|e) = (Z P(e’|e)I\/IEU(e,e’)) — MEU(e)

e 14



Value of Information

Assume we have evidence E=e. Value if we act now: {e}
a
MEU(e) = mC?XZ P(sle) U(s,a)
° P(s | e)
Assume we see that E’ = e’. Value if we act then: U

N /
MEU(e,e') = mgx; P(sle,e’) U(s,a) fe, e
a
BUT E’ is a random variable whose value is
unknown, so we don’t know what e’ will be P(s|e,e)
U
Expected value if E’ is revealed and then we act:
MEU(e, E') = ZP(6’|6)I\/IEU(6, e’) e}
/ P(e’| e)

€

Value of information: how much MEU goes up {e, e’}
by revealing E’ first then acting, over acting now:

VPI(E'|e) = MEU(e, E') — MEU(e)



VPI Properties

= Nonnegative
VE' e : VPI(E'le) > 0

= Nonadditive — consider, e.g., observing E; twice

= Order-independent
VPI(E;, Egle) = VPI(Ej|e) + VPI(Eyle, E;)
= VPI(E.|e) + VPI(Ej|e, EL)
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Quick VPI Questions

= The soup of the day Is either clam chowder or split pea,
but you wouldn’t order either one. What'’s the value of
knowing which it i1S?

= There are two kinds of plastic forks at a picnic. One kind
IS slightly sturdier. What'’s the value of knowing which?

= You're playing the lottery. The prize will be $0 or $100.
You can play any number between 1 and 100 (chance of
winning is 1%). What is the value of knowing the
winning number?



Value of imperfect information?

= No such thing

= |Information corresponds to the observation of a node
In the decision network

= |f data Is “noisy”, that just means we don’t observe the
original variable, but another variable which is a noisy

version of the original one.
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VPI Question

= VPI(OilLoc)?

= \VPI(ScoutingReport)? Drilll.oc
= VPI(Scout)? @
= VPI(Scout | ScoutingReport)? N X

Scouting
report

If Parents(U) || Z | CurrentEvidence
Then VPI(Z | CurrentEvidence) =0



Another VPI example
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Training an object recognition system:
The standard pipeline

Annotators

Category
models

Novel images

Labeled data

Kristen Grauman



The active visual learning pipeline

Annotators

Category
models

Selectlog

Unlabeled/partially
labeled data

Labeled data

Kristen Grauman



Active selection

 Traditional active learning reduces supervision
by obtaining labels for the most informative or
uncertain examples first.

@ Positive
@ Negative
® Unlabeled

[Mackay 1992, Freund et al. 1997, Tong & Koller 2001, Lindenbaum et al. 2004,
Kapoor et al. 2007,...]

Kristen Grauman



Problem: Active selection and recognition

r‘
Less PL.J
expensive to | M

 Multiple levels of

obtain _ _

A annotation are possible

» Variable cost depending
on level and example

v
More ¢
expensive to|/@[ )
obtain - "-

Kristen Grauman



ldea: Cost-sensitive
multi-level active learning

 Compute decision-theoretic active selection
criterion that weighs both:

— which example to annotate, and
— what kind of annotation to request for it

as compared to
— the predicted effort the request would require

[Vijayanarasimhan & Grauman, NIPS 2008, CVPR 2009]



|ldea: Cost-sensitive
multi-level active learnin

Iy ;

Sl |e Sl[e
| |.E | |.E
Most regions are understood, This looks expensive to
but this region is unclear. annotate, and it does not seem
informative.
B o B o
t Y qq: Y
Q| .S Q| .S
This looks expensive to This looks easy to annotate,
annotate, but it seems very but its content is already
informative. understood.

Kristen Grauman



Multi-level active queries

* Predict which query will be most informative, given
the cost of obtaining the annotation.

 Three levels (types) to choose from:

1. What object is 2. Does the 3. Segment the
this region? Image contain image, name all
object X? objects.

Kristen Grauman



Decision-theoretic multi-level criterion

VALUE(O, Q) = RISK(X, Xy) — RISK(X, U O, Xy \ O) — CosT(O, Q)

/ / / |
Value of asking given  Current Estimated risk if candidate = Cost of getting
guestion about givemsclassification risk request were answered the answer
data object

Estimate risk of incorporating the candidate before
obtaining true answer A by computing expected value:

RISK(X, UO4, X\ 0) = 3 RISK(X, U Oy, Xy \ O) p(t]O)

fell

where I is set of all possible answers.
VPI(E'|e) = MEU(e, E') — MEU(e)
MEU (e, E') = > P(e'le)MEU(e, €)
/

€

Kristen Grauman



Decision-theoretic multi-level criterion

Estimate risk of incorporating the candidate before
obtaining true answer A by computing expected value:

RISK(X, UO4, X\ 0) = 3 RISK(X, U Oy, X \ O) p(£]O)

el

where I, is set of all possible answers.
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How many terms are in the
expected value?

ST

Y i
Tie 7 - T T
R

Kristen Grauman



Decision-theoretic multi-level criterion

Estimate risk of incorporating the candidate before
obtaining true answer A by computing expected value:

RISK(X, UO4, X\ 0) = 3 RISK(X, U Oy, X \ O) p(£]O)

el

where 1L is set of all possible answers.

Compute expectation via Gibbs sampling:
« Start with a random setting of the labels.
e For S iterations:
o Temporarily fix labels on M-1
regions; train.
o0 Sample remaining region’s label.
o Cycle that label into the fixed set.
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Decision-theoretic multi-level criterion

Estimate risk of incorporating the candidate before
obtaining true answer A by computing expected value:

RISK(X, UO4, X\ 0) = 3 RISK(X, U Oy, X \ O) p(£]O)

el

where 1L is set of all possible answers.

AN For M regions 0= {01’ o OM}

Building &

e e
R

s A Y Bt

S
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k=1
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Decision-theoretic multi-level criterion

VALUE(O, Q) = RISK(X, Xy) — RISK(X, U O, Xy \ O) — CosT(O, Q)

/ / |
Current Estimated risk if candidate = Cost of getting
misclassification risk request were answered the answer

Cost of the answer: domain knowledge, or directly predict.

Kristen Grauman



Recap: Actively seeking annotations

Annotator

> Category 1
models Issue request:
“Get a full
segmentation on
Compute image #32.”
Value of information
scores

Unlabeled/partially
labeled data

Labeled data

Kristen Grauman



Multi-level active learning curves
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Recap

e Decision networks:
— What action will maximize expected utility?
— Connection to expectimax

* Value of information:

— How much are we willing to pay for a sensing
action to gather information?
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