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Last time

• Decision networks: 

– What action will maximize expected utility?

– Connection to expectimax

• Value of information: 

– How much are we willing to pay for a sensing 

action to gather information?



Another VPI example
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Today

• HMMs and Particle Filtering



Motivation: invisible ghosts!



Reasoning over Time or Space

• Often, we want to reason about a sequence of 
observations

– Speech recognition

– Robot localization

– User attention

– Medical monitoring…

• Need to introduce time (or space) into our models



Markov Models

 A Markov model is a chain-structured BN

 Each node is identically distributed (stationarity)

 Value of X at a given time is called the state

 As a BN:

 Parameters: called transition probabilities or 
dynamics, specify how the state evolves over time 
(also, initial probs)

X2X1 X3 X4



Conditional Independence

• Basic conditional independence:
– Past and future independent of the present

– Each time step only depends on the previous

– This is called the (first order) Markov property

• Note that the chain is just a (growable) BN
– We can always use generic BN reasoning on it 

if we truncate the chain at a fixed length

X2X1 X3 X4
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Example Markov Chain: Weather

• Weather:

– States: X = {rain, sun}

– Initial distribution: 1.0 sun



Example Markov Chain: Weather

– Initial distribution: 1.0 sun

– What is the probability distribution after one step?



Mini-Forward Algorithm



Example run of mini-forward algorithm



Stationary Distributions

• For most chains:

– Influence of the initial distribution gets less and less 
over time.

– The distribution we end up in is independent of the 
initial distribution

• Stationary distribution:

– The distribution we end up with is called the stationary 
distribution of the chain

– It satisfies



Application of stationary distribution:

Web Link Analysis

 PageRank over a web graph
 Each web page is a state

 Initial distribution: uniform over pages

 Transitions:
 With prob. c, uniform jump to a

random page (dotted lines, not all shown)

 With prob. 1-c, follow a random

outlink (solid lines)

 Stationary distribution
 Will spend more time on highly reachable pages

 E.g. many ways to get to the Acrobat Reader download page

 Somewhat robust to link spam

 Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use 

link analysis along with many other factors

(rank actually getting less important over time)
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Application of stationary distributions:

Gibbs Sampling



Markov Chain Example:  Text

“A dog is a man’s best friend. It’s a dog eat dog world out there.”
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Source: S. Seitz



Text synthesis

Create plausible looking poetry, love letters, term papers, etc.

Most basic algorithm
1. Build probability histogram

– find all blocks of N consecutive words/letters in training documents

– compute probability of occurrence

2. Given words  

– compute          by sampling from

Source: S. Seitz



Markov Random Field

A Markov random field (MRF) 
• generalization of Markov chains to two or more dimensions.

First-order MRF:
• probability that pixel X takes a certain value given the values 

of neighbors A, B, C, and D:
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Source: S. Seitz



Texture Synthesis [Efros & Leung, ICCV 99]

Can apply 2D version of text synthesis

Texture corpus 

(sample)

Output

http://www.cs.berkeley.edu/~efros/research/synthesis.html


Texture synthesis: intuition
Before, we inserted the next word based on existing 

nearby words…

Now we want to insert pixel intensities based on 

existing nearby pixel values.

Sample of the texture

(“corpus”)

Place we want to 

insert next

Distribution of a value of a pixel is conditioned on its 

neighbors alone.



Synthesizing One Pixel

• What is                                                                           ?

• Find all the windows in the image that match the neighborhood

• To synthesize x

– pick one matching window at random

– assign x to be the center pixel of that window

p

input image

synthesized image

Slide from Alyosha Efros, ICCV 1999



Neighborhood Window

input

Slide from Alyosha Efros, ICCV 1999



Hidden Markov Models

 Markov chains not so useful for most agents
 Eventually you don’t know anything anymore

 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S

 You observe outputs (effects) at each time step

 As a Bayes’ net:

X
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Example: Weather HMM

 An HMM is defined by:
 Initial distribution:

 Transitions:

 Emissions:



Example: Ghostbusters HMM



Conditional Independence

 HMMs have two important independence properties:
 Markov hidden process, future depends on past via the present

 Current observation independent of all else given current state

 Quiz: does this mean that evidence variables guaranteed 
to be independent?
 [No, correlated by the hidden state]
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Real HMM Examples

 Speech recognition HMMs:
 Observations are acoustic signals (continuous valued)

 States are specific positions in specific words (so, tens of thousands)

 Machine translation HMMs:
 Observations are words (tens of thousands)

 States are translation options

 Robot tracking:
 Observations are range readings (continuous)

 States are positions on a map (continuous)



Filtering / Monitoring

 Filtering, or monitoring, is the task of tracking the distribution

Bt(X) = Pt(Xt | e1,…et) (the belief state) over time

 We start with B1(X) in an initial setting, usually uniform

 As time passes, or we get observations, we update B(X)

 The Kalman filter was invented in the 60’s and first

implemented as a method of trajectory estimation

for the Apollo program



Example: Robot Localization

t=0

Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from Michael Pfeiffer



Example: Robot Localization

t=1

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



HMM inference: Base cases

E1

X1 X2X1

Observation Passage of time



Passage of Time

 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes:

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions

X2X1



Example: Passage of Time

 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise



Observation

 Assume we have current belief P(X | previous evidence):

 Then:

 Or:

 Basic idea: beliefs “reweighted” by likelihood of evidence

 Unlike passage of time, we have to renormalize

E1

X1



Example: Observation

 As we get observations, beliefs get reweighted, 

uncertainty “decreases”

Before observation After observation



Example: Weather HMM



The Forward Algorithm
 We are given evidence at each time and want to know

 We can derive the following updates

This is exactly variable elimination with order X1, X2, …



Particle filtering

 Filtering: approximate solution

 Sometimes |X| is too big to use 

exact inference

 |X| may be too big to even store B(X)

 E.g., X is continuous

 Solution: approximate inference

 Track samples of X, not all values

 Samples are called particles

 Time per step is linear in the number 

of samples, but may be large

 In memory: list of particles, not states



Representation: Particles

 Our representation of P(X) is now a list 

of N particles (samples)

 Generally, N << |X|

 Storing map from X to counts would defeat 

the point

 P(x) approximated by number of 

particles with value x

 So, many x may have P(x) = 0!

 More particles, more accuracy

 For now, all particles have weight 1.



Particle filtering: Elapse time

 Each particle is moved by sampling its 

next position from the transition model

 This is like prior sampling –samples’ 

frequencies reflect the transition 

probabilities

 Here, most samples move clockwise, but 

some move in another direction or stay in 

place

 This captures the passage of time

 If enough samples, close to exact values 

before and after (consistent)



Particle filtering: Observe

 Slightly trickier:

 Don’t sample observation, fix it

 Similar to likelihood weighting, 

downweight samples based on the 

evidence

 As before, the probabilities don’t 

sum to one, since all have been 

downweighted.



Particle filtering: Resample

 Rather than tracking weighted 

samples, we resample

 N times, we choose from our 

weighted sample distribution (i.e., 

draw with replacement)

 This is like renormalizing the 

distribution

 Now the update is complete for 

this time step, continue with the 

next one



Recap: Particle filtering

 Particles: track samples of states rather than an explicit 

distribution



Example: robot localization

 http://robots.stanford.edu/videos.html



HMMs summary so far

 Markov Models

 A family of Bayes’ nets of a particular regular 

structure

 Hidden Markov Models (HMMs)

 Another family of Bayes’ nets with regular structure

 Inference

 Forward algorithm (repeated variable elimination)

 Particle filtering (likelihood weighting with some tweaks)
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