343H: Honors Al

Lecture 20: Probabilistic reasoning over time II 4/3/2014

Kristen Grauman UT Austin

Slides courtesy of Dan Klein, UC Berkeley Unless otherwise noted

Contest results

Announcements

 Reminder: Contest qualification runs nightly, final deadline 4/28

• PS 4

- Extending deadline to Monday 4/14
- But no shift in PS 5 deadline (4/24)

Recap of calendar

- 3/25 Contest posted
- 4/10 PS 5 posted
- 4/14: PS 4 due (extended from 4/10)
- 4/24 PS 5 due
- 4/28 Contest qualification closes
- 4/29 Final tournament (evening)
- 5/12 (Mon) Final exam, 2-5 pm CPE 2.218

Some context

First weeks: Search (BFS, A*, minimax, alpha-beta)

- Find an <u>optimal plan</u> (or solution)
- Best thing to do from the current state
- Know transition and cost (reward) functions
- Either execute complete solution (deterministic) or search again at every step
- Know current state
- Next: MDPs towards reinforcement learning
 - Still know transition and reward function
 - Looking for a <u>policy</u>: optimal action from every state
- Before midterm: reinforcement learning
 - Policy without knowing transition or reward functions
 - Still know state

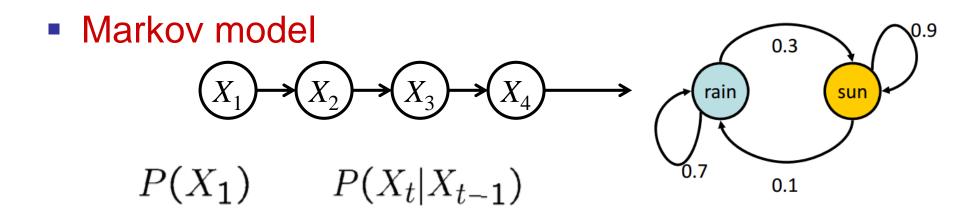
Some context (cont.)

- Probabilistic reasoning: now state is unknown
 - Bayesian networks: state estimation/inference
 - Prior, net structure, and CPT's known
 - Probabilities and utilities (from before)
 - Conditional independence and inference (exact and approximate)
 - Exact state estimation over time
 - Approximate state estimation over time
 - (...What if they're not known? Machine learning)

Outline

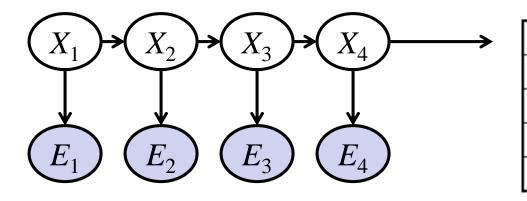
- Last time:
 - Markov chains
 - -HMMs
- Today:
 - Particle filtering
 - Dynamic Bayes' Nets
 - Most likely explanation queries in HMMs

Recap: Reasoning over time



Hidden Markov model

P(E|X)



Х	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

We can derive the following updates

 $P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t})$ = $\sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})$ = $\sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)$ = $P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})$

This is exactly variable elimination with order X1, X2, ...

Recap: Filtering with Forward Algorithm

Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P(X_t | e_{1:t})

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

Recap: Filtering with Forward Algorithm

Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P(X_t | e_{1:t})

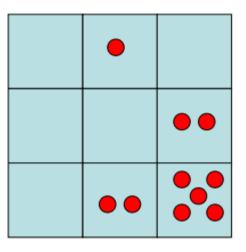
$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

Particle filtering

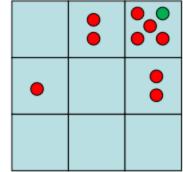
- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g., X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called *particles*
 - Time per step is linear in the number of samples, but may be large
 - In memory: list of particles, not states

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5



Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have weight 1.



Particles

- (3,3) (2,3)
- (3,3)
- (3,2)
- (3,3)
- (3,2)
- (3,2)

(3,3)

(3,3) (2,3)

Particle filtering: Elapse time

(3,3)(2,3)

(3,3)(3,2)(3,3)

(3,2)(1,2)

(3,3)(3,3)

(2,3)

Particles:

(3,2)(2,3)

(3,2)(3,1)(3,3)

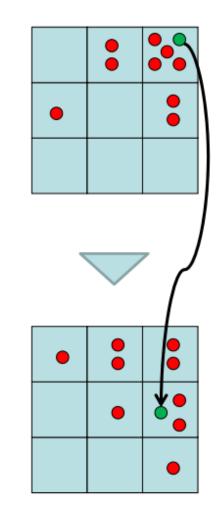
(3,2)

(1,3)(2,3)(3,2)(2,2)

Each particle is moved by sampling its Particles: next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling –samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)



Particle filtering: Observe

(3,2)(2,3)

(3,2)

(3,1)(3,3)

(3,2)(1,3)

(2,3)(3,2)

(2,2)

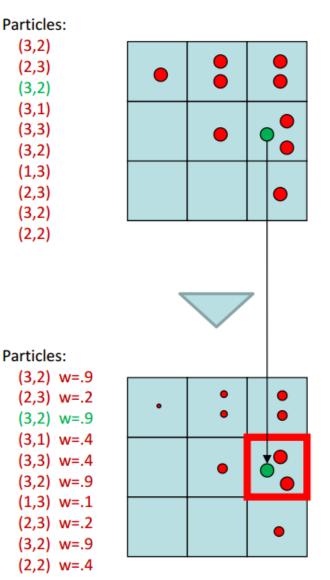
Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

As before, the probabilities don't sum to one, since all have been downweighted.



Particle filtering: Observe

(3,2)(2,3)

(3,2)

(3,1)(3,3)

(3,2)(1,3)

(2,3)(3,2)

(2,2)

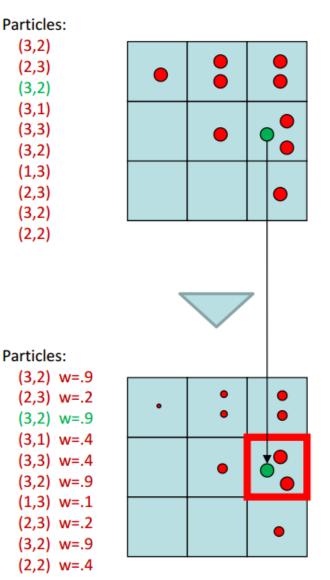
Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

As before, the probabilities don't sum to one, since all have been downweighted.



Particle filtering: Resample

Particles:

(3,2) w=.9 (2,3) w=.2

(3,2) w=.9 (3.1) w=.4 (3.3) w=.4

(3,2) w=.9 (1.3) w=.1

(2.3) w=.2 (3,2) w=.9

(2.2) w=.4

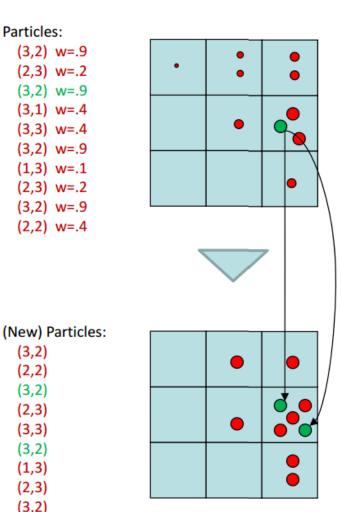
(3,2)(2,2)

(3,2)(2,3)

(3,3)(3,2)

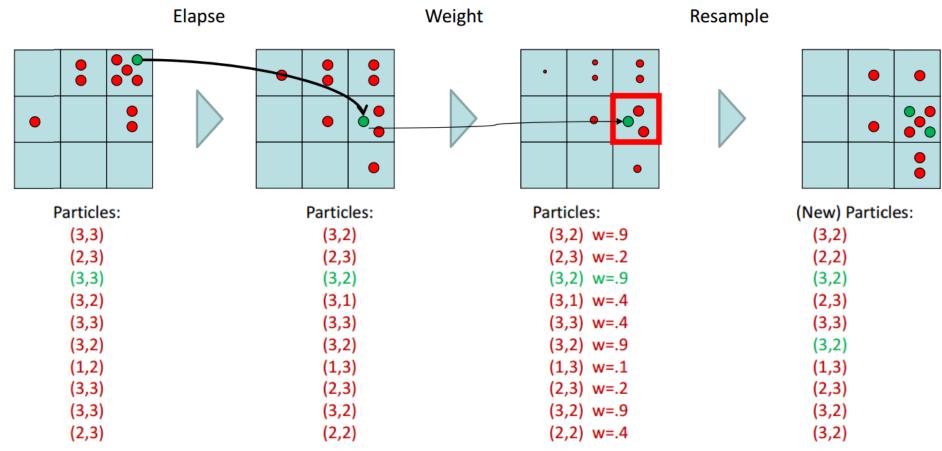
(1,3)(2,3)(3,2)(3,2)

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e., draw with replacement)
- This is like renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

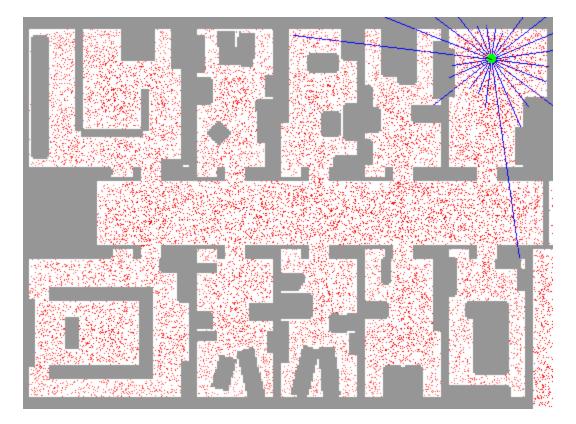


Recap: Particle filtering

Particles: track samples of states rather than an explicit distribution



Example: robot localization



http://robots.stanford.edu/videos.html

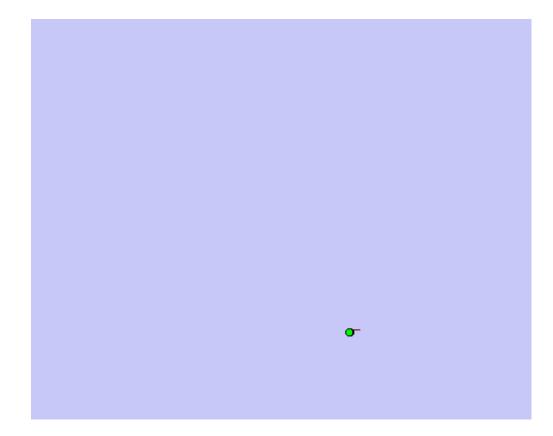
Example: robot localization

http://www.cs.washington.edu/robotics/mcl/

Robot mapping

- SLAM: Simultaneous localization and mapping
 - We do not know map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

SLAM



http://www.cs.washington.edu/robotics/mcl/

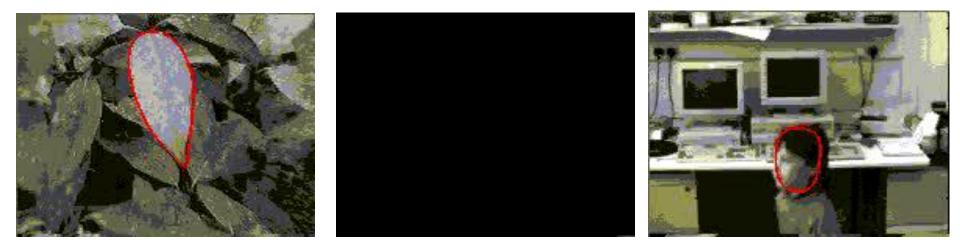
RGB-D Mapping: Result

ISTC CC



[Henry, Krainin, Herbst, Ren, Fox; ISER 2010, IJRR 2012]

Object tracking



http://www.robots.ox.ac.uk/~misard/condensation.html

HMMs summary so far

Markov Models

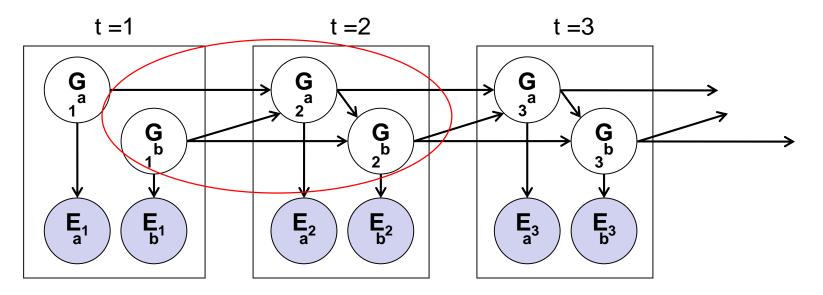
- A family of Bayes' nets of a particular regular structure
- Hidden Markov Models (HMMs)
 - Another family of Bayes' nets with regular structure
 - Inference
 - Forward algorithm (repeated variable elimination)
 - Particle filtering (likelihood weighting with some tweaks)

Now

- Dynamic Bayes Nets (brief)
- HMMs: Most likely explanation queries

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1



Discrete valued dynamic Bayes nets are also HMMs

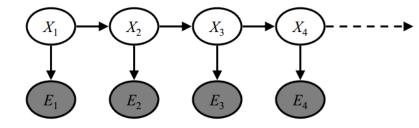
DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: G₂^a = (2,3) G₂^b = (6,3)
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^{a}|G_1^{a}) * P(E_1^{b}|G_1^{b})$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

HMMs: MLE queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution: P(X₁)
 - Transitions:
 - Emissions:

 $P(X|X_{-1})$ P(E|X)



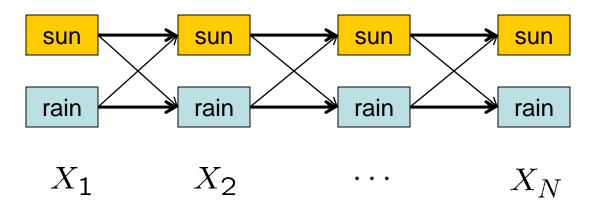
New query: most likely explanation:

 $\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$

New method: Viterbi algorithm

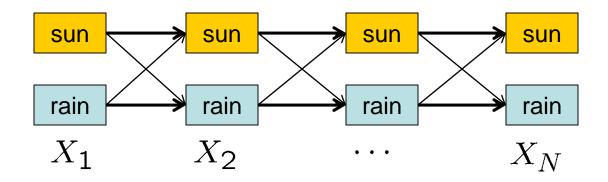
State Trellis

State trellis: graph of states and transitions over time



- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is the seq's probability
- Forward algorithm computes sums of paths, Viterbi computes best paths.

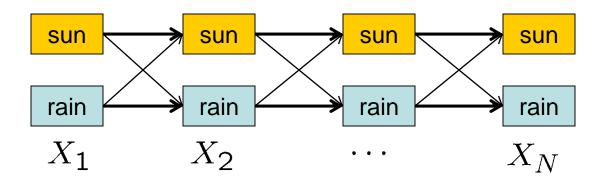
Forward Algorithm (Sum)



$$f_t[x_t] = P(x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

Viterbi Algorithm (Max)



$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Example: Photo Geo-location

Where was this picture taken?

Instance recognition works quite well

Example: Photo Geo-location

Where was this picture taken?

Example: Photo Geo-location

Where was this picture taken?

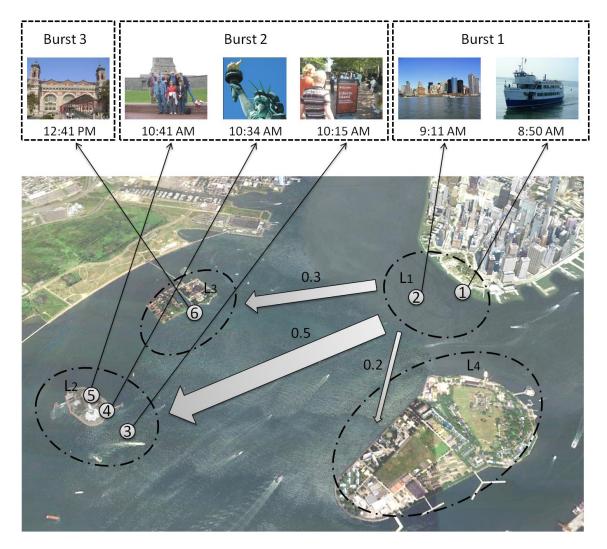
Example: Photo Geo-location

Where was each picture in this sequence taken?

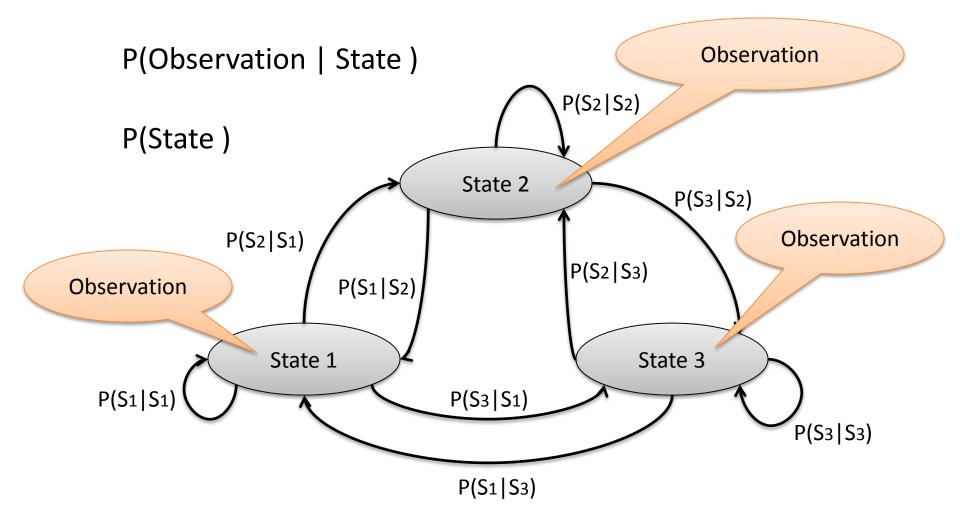
Idea: Exploit the beaten path

- Learn dynamics model from "training" tourist photos
- Exploit timestamps and sequences for novel "test" photos

Idea: Exploit the beaten path

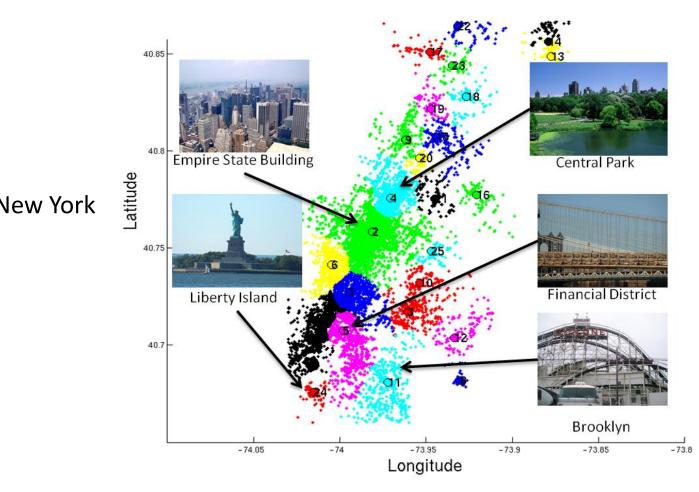


Hidden Markov Model



Discovering a city's locations

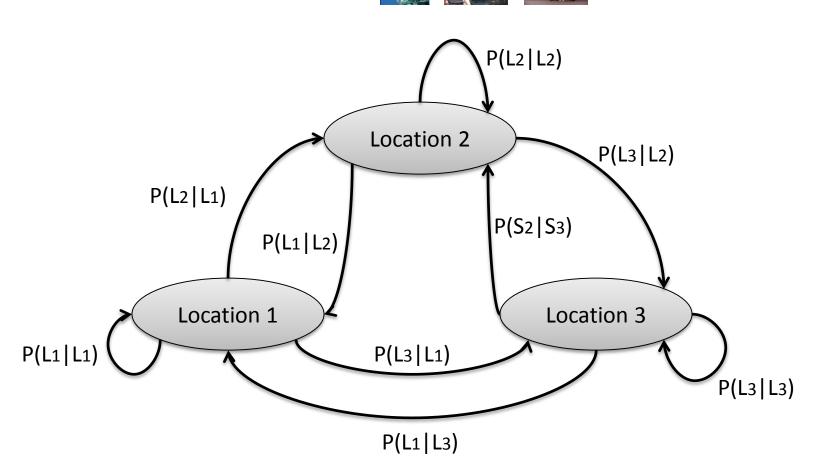
Define states with data-driven approach:



mean shift clustering on the GPS coordinates of the training images

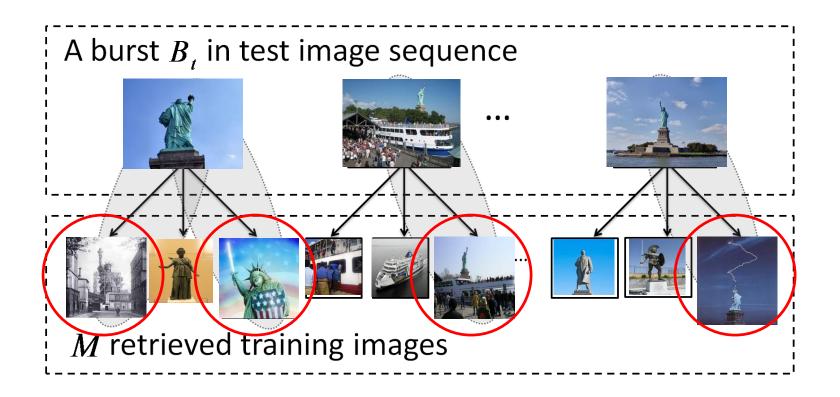
Observation model

P(Observation | State) = P(Rev end to a liberty Island)



[[]Chen & Grauman CVPR 2011]

Observation model



Location estimation accuracy

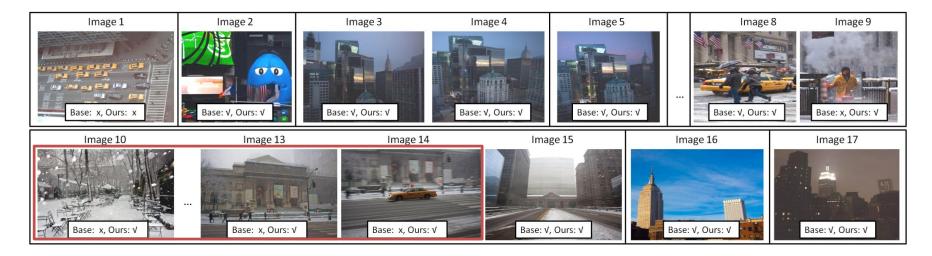
Avg/seq 0.1502 0.1608 0.1764 0.2036 Openedly 0.1502 0.1608 0.2617 0.2792		NN	Img-HMM	Burst Only	Burst-HMM (Ours)
	Avg/seq	0.1502	0.1608	0.1764	0.2036
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Overall	0.1592	0.1660	0.2617	0.2782

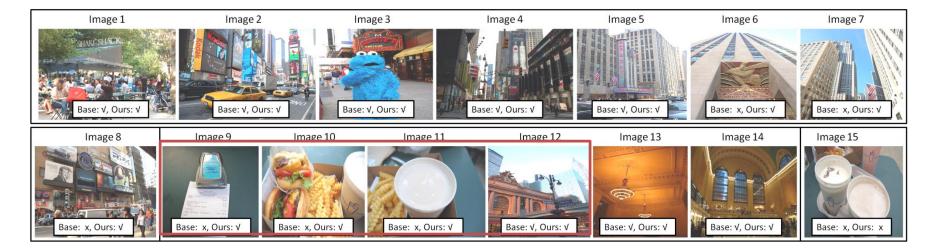
(a) Rome dataset

	NN	Img-HMM	Burst Only	Burst-HMM (Ours)
Avg/seq	0.2323	0.2124	0.2099	0.3021
Overall	0.2302	0.2070	0.2055	0.3143

(b) New York City dataset

Qualitative Result – New York

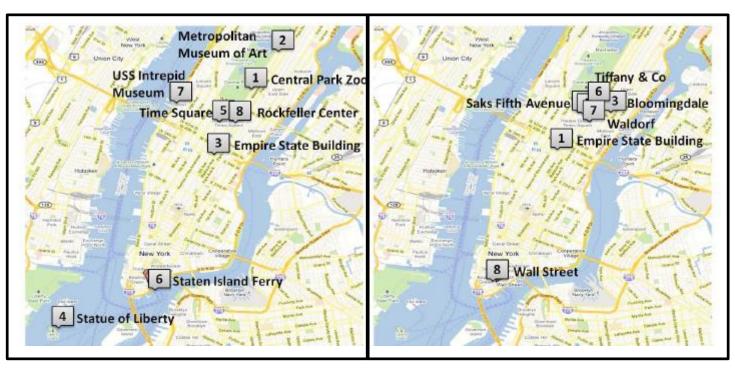




[Chen & Grauman CVPR 2011]

Discovering travel guides' beaten paths

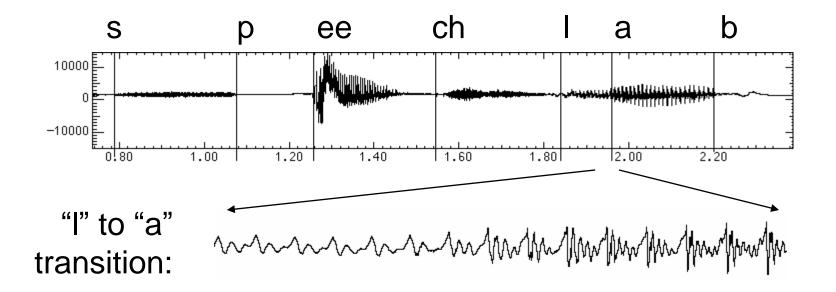
Routes from travel guide book for New York



	Rand. Walk	Rand. Walk(TS)	Guidebook
Route Prob.	$6.3 \cdot 10^{-12}$	$4.2 \cdot 10^{-11}$	$2.0 \cdot 10^{-4}$

Digitizing speech

Speech input is an acoustic wave form

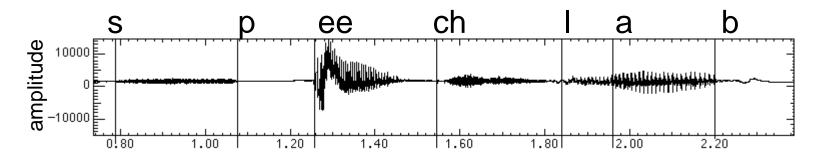


Graphs from Simon Arnfield's web tutorial on speech, Shaffield: http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

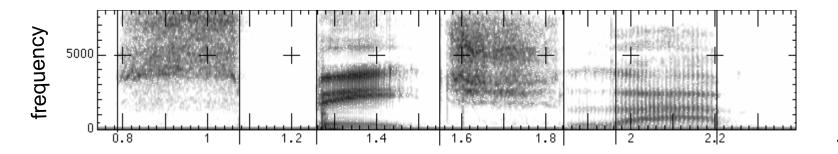
Spectral Analysis

Frequency gives pitch; amplitude gives volume

sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

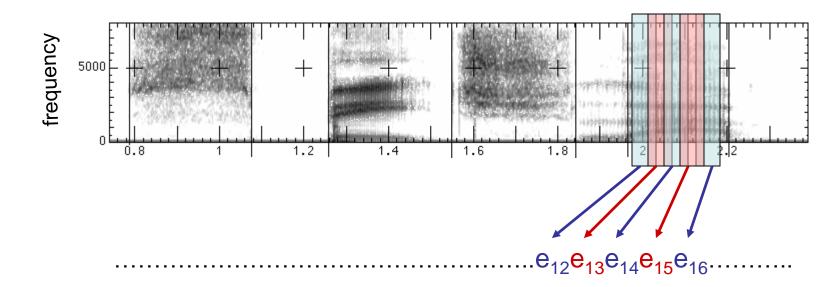


- Fourier transform of wave displayed as a spectrogram
 - darkness indicates energy at each frequency



Acoustic Feature Sequence

 Time slices are translated into acoustic feature vectors (~39 real numbers per slice)



 These are the observations, now we need the hidden states X

Speech State Space

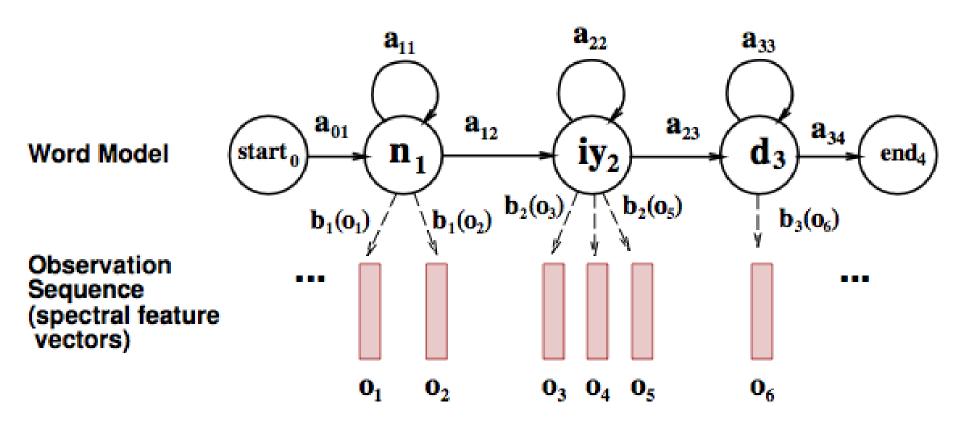
HMM specification

- P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- P(X | X') encodes how sounds can be strung together

State space

- We will have one state for each sound in each word
- Mostly, states advance sound by sound
- Build a little state graph for each word and chain them together to form the state space X

States in a word



Transitions with Bigrams

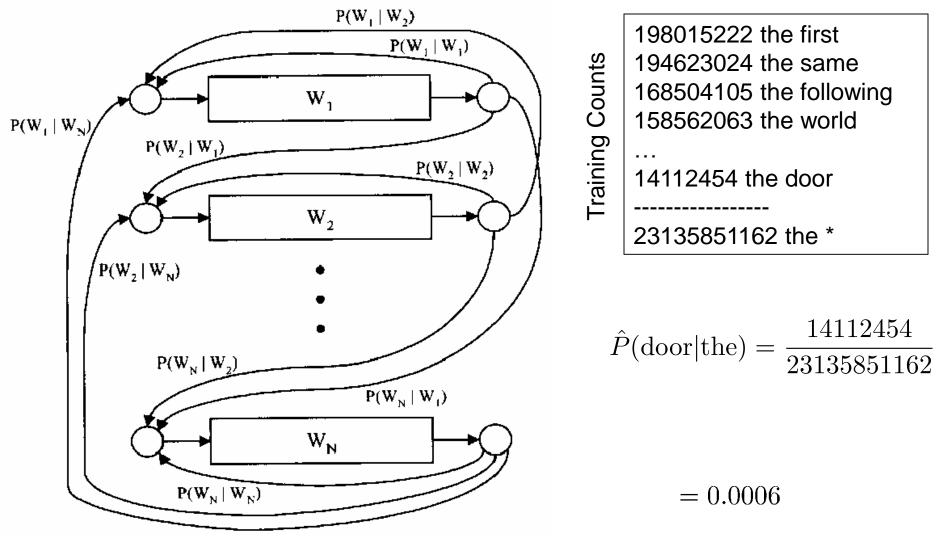


Figure from Huang et al page 618

Decoding

- Finding the words given the acoustics is an HMM inference problem
- We want to know which state sequence x_{1:T} is most likely given the evidence e_{1:T}:

$$x_{1:T}^* = \arg\max_{x_{1:T}} P(x_{1:T}|e_{1:T})$$

= $\arg\max_{x_{1:T}} P(x_{1:T}, e_{1:T})$

• From the sequence x, we can simply read off the words

Recap: Probabilistic reasoning over time

- Markov Models
- Hidden Markov Models (HMMs)
 - Forward algorithm (repeated variable elimination) to infer belief state
 - Particle filtering (likelihood weighting with some tweaks)
 - Viterbi algorithm to infer most likely explanation
- Dynamic Bayes Nets
 - Particle filtering

End of Part II!

 Now we're done with our unit on probabilistic reasoning

Last part of class: machine learning

Next: Machine learning

Up until now: how to use a model to make optimal decisions

- Machine learning: how to acquire a model from data/experience
 - Learning parameters (e.g., probabilities)
 - Learning structure (e.g., BN graphs)
 - Learning hidden concepts (e.g., clustering)