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Contest results



Announcements

 Reminder: Contest qualification runs 

nightly, final deadline 4/28

 PS 4

 Extending deadline to Monday 4/14

 But no shift in PS 5 deadline (4/24)



Recap of calendar

 3/25 Contest posted

 4/10 PS 5 posted

 4/14: PS 4 due (extended from 4/10)

 4/24 PS 5 due

 4/28 Contest qualification closes

 4/29 Final tournament (evening)

 5/12 (Mon) Final exam, 2-5 pm CPE 2.218



Some context

 First weeks: Search (BFS, A*, minimax, alpha-beta)

 Find an optimal plan (or solution)

 Best thing to do from the current state

 Know transition and cost (reward) functions

 Either execute complete solution (deterministic) or search again 

at every step

 Know current state

 Next: MDPs – towards reinforcement learning

 Still know transition and reward function

 Looking for a policy: optimal action from every state

 Before midterm: reinforcement learning

 Policy without knowing transition or reward functions

 Still know state



Some context (cont.)

 Probabilistic reasoning: now state is unknown

 Bayesian networks: state estimation/inference

 Prior, net structure, and CPT’s known

 Probabilities and utilities (from before)

 Conditional independence and inference (exact and 

approximate)

 Exact state estimation over time

 Approximate state estimation over time

 (…What if they’re not known?  Machine learning)



Outline

• Last time:

– Markov chains

– HMMs

• Today:

– Particle filtering

– Dynamic Bayes’ Nets

– Most likely explanation queries in HMMs



Recap: Reasoning over time

 Markov model

 Hidden Markov model
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The Forward Algorithm
 We are given evidence at each time and want to know

 We can derive the following updates

This is exactly variable elimination with order X1, X2, …



Recap: Filtering with Forward Algorithm



Recap: Filtering with Forward Algorithm



Particle filtering

 Filtering: approximate solution

 Sometimes |X| is too big to use 

exact inference

 |X| may be too big to even store B(X)

 E.g., X is continuous

 Solution: approximate inference

 Track samples of X, not all values

 Samples are called particles

 Time per step is linear in the number 

of samples, but may be large

 In memory: list of particles, not states



Representation: Particles

 Our representation of P(X) is now a list 

of N particles (samples)

 Generally, N << |X|

 Storing map from X to counts would defeat 

the point

 P(x) approximated by number of 

particles with value x

 So, many x may have P(x) = 0!

 More particles, more accuracy

 For now, all particles have weight 1.



Particle filtering: Elapse time

 Each particle is moved by sampling its 

next position from the transition model

 This is like prior sampling –samples’ 

frequencies reflect the transition 

probabilities

 Here, most samples move clockwise, but 

some move in another direction or stay in 

place

 This captures the passage of time

 If enough samples, close to exact values 

before and after (consistent)



Particle filtering: Observe

 Slightly trickier:

 Don’t sample observation, fix it

 Similar to likelihood weighting, 

downweight samples based on the 

evidence

 As before, the probabilities don’t 

sum to one, since all have been 

downweighted.
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Particle filtering: Resample

 Rather than tracking weighted 

samples, we resample

 N times, we choose from our 

weighted sample distribution (i.e., 

draw with replacement)

 This is like renormalizing the 

distribution

 Now the update is complete for 

this time step, continue with the 

next one



Recap: Particle filtering

 Particles: track samples of states rather than an explicit 

distribution



Example: robot localization

 http://robots.stanford.edu/videos.html



Example: robot localization

20http://www.cs.washington.edu/robotics/mcl/



Robot mapping

 SLAM: Simultaneous localization and 

mapping

 We do not know map or our location

 State consists of position AND map!

 Main techniques: Kalman filtering (Gaussian 

HMMs) and particle methods

21



SLAM

22http://www.cs.washington.edu/robotics/mcl/
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RGB-D Mapping: Result

23 [Henry, Krainin, Herbst, Ren, Fox;  ISER 2010, IJRR 2012]



Object tracking

 http://www.robots.ox.ac.uk/~misard/condensation.html



HMMs summary so far

 Markov Models

 A family of Bayes’ nets of a particular regular 

structure

 Hidden Markov Models (HMMs)

 Another family of Bayes’ nets with regular structure

 Inference

 Forward algorithm (repeated variable elimination)

 Particle filtering (likelihood weighting with some tweaks)
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Now

 Dynamic Bayes Nets (brief)

 HMMs: Most likely explanation queries

26



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, using 

multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at each time

 Variables from time t can condition on those from t-1

 Discrete valued dynamic Bayes nets are also HMMs
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DBN Particle Filters

 A particle is a complete sample for a time step

 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1
a = (3,3) G1

b = (5,3)

 Elapse time: Sample a successor for each particle

 Example successor: G2
a = (2,3) G2

b = (6,3)

 Observe: Weight each entire sample by the likelihood of 

the evidence conditioned on the sample

 Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b )

 Resample: Select prior samples (tuples of values) in 

proportion to their likelihood
29



HMMs: MLE queries

New query: most likely explanation:

New method: Viterbi algorithm



State Trellis

 State trellis: graph of states and transitions over time

 Each arc represents some transition

 Each arc has weight

 Each path is a sequence of states

 The product of weights on a path is the seq’s probability

 Forward algorithm computes sums of paths, Viterbi 

computes best paths.
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Forward Algorithm (Sum)
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Viterbi Algorithm (Max)

sun

rain

sun

rain

sun

rain

sun

rain



Example: Photo Geo-location

Where was this picture taken?



Instance recognition works quite well



Example: Photo Geo-location

Where was this picture taken?



Example: Photo Geo-location

Where was this picture taken?



Example: Photo Geo-location

Where was each picture in this sequence

taken?



Idea: Exploit the beaten path

• Learn dynamics model from “training” 

tourist photos

• Exploit timestamps and sequences for 

novel “test” photos

[Chen & Grauman CVPR 2011]



Idea: Exploit the beaten path

[Chen & Grauman CVPR 2011]



Hidden Markov Model

State 1

State 2

State 3

P(S2|S1)

P(S1|S2)

P(S1|S1)

P(S2|S2)

P(S3|S2)

P(S2|S3)

P(S3|S3)

P(S1|S3)

P(S3|S1)

P(Observation | State )

P(State )

Observation

Observation

Observation

[Chen & Grauman CVPR 2011]



Define states with data-driven approach: 

New York

Discovering a city’s locations

mean shift 

clustering on the 

GPS coordinates 

of the training 

images

[Chen & Grauman CVPR 2011]



Observation model

Location 1

Location 2

Location 3

P(L2|L1)

P(L1|L2)

P(L1|L1)

P(L2|L2)

P(L3|L2)

P(S2|S3)

P(L3|L3)

P(L1|L3)

P(L3|L1)

P(Observation | State) = P( | Liberty Island) 

[Chen & Grauman CVPR 2011]



Observation model

[Chen & Grauman CVPR 2011]



Location estimation accuracy



Qualitative Result – New York

[Chen & Grauman CVPR 2011]



Discovering travel guides’ beaten paths

Routes from travel guide book for New York 

[Chen & Grauman CVPR 2011]



Digitizing speech

 Speech input is an acoustic wave form

s             p       ee         ch           l     a          b

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:

http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

“l” to “a”

transition:
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 Frequency gives pitch; amplitude gives volume

 sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

 Fourier transform of wave displayed as a spectrogram

 darkness indicates energy at each frequency

s             p       ee         ch           l     a          b
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Spectral Analysis
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Acoustic Feature Sequence

 Time slices are translated into acoustic feature 
vectors (~39 real numbers per slice)

 These are the observations, now we need the 
hidden states X

……………………………………………..e12e13e14e15e16………..

50



Speech State Space

 HMM specification

 P(E|X) encodes which acoustic vectors are 

appropriate for each phoneme (each kind of sound)

 P(X | X’) encodes how sounds can be strung together

 State space

 We will have one state for each sound in each word

 Mostly, states advance sound by sound

 Build a little state graph for each word and chain them 

together to form the state space X

51



States in a word
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Transitions with Bigrams

Figure from Huang et al page 618

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

14112454 the door

-----------------

23135851162 the *
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Decoding

 Finding the words given the acoustics is an HMM 

inference problem

 We want to know which state sequence x1:T is most likely 

given the evidence e1:T:

 From the sequence x, we can simply read off the words
54



Recap: Probabilistic reasoning over time

 Markov Models

 Hidden Markov Models (HMMs)

 Forward algorithm (repeated variable elimination) to 

infer belief state

 Particle filtering (likelihood weighting with some 

tweaks)

 Viterbi algorithm to infer most likely explanation

 Dynamic Bayes Nets

 Particle filtering
55



End of Part II!

 Now we’re done with our unit on 

probabilistic reasoning

 Last part of class: machine learning

56



Next: Machine learning

 Up until now: how to use a model to make 

optimal decisions

 Machine learning: how to acquire a model 

from data/experience

 Learning parameters (e.g., probabilities)

 Learning structure (e.g., BN graphs)

 Learning hidden concepts (e.g., clustering)


