343H: Honors Al

Lecture 21: ML: Nalve Bayes
4/8/2014
Kristen Grauman
UT Austin

Slides courtesy of Dan Klein, UC Berkeley
Unless otherwise noted

Contest

= AgentsOrange - wins 6.0 (15.0)

= WickhamBros - wins 5.0 (15.0)

= Eversbots - wins 4.0 (10.0)

= JustDoltAgents - wins 3.0 (8.0)

= OffenseOnlyAgents - wins 2.0 (7.5)
= StaffAgents - wins 1.0 (5.0)

= BaselineAgents - wins 0.0 (2.5)

Announcements

= Contest qualification runs nightly til 4/28
* PS 4 due Monday 4/14

= Thurs 4/8: Guest lecture by Dr. Mugan
* Perceptrons

= Tues 4/15: Video lecture online
= Access instructions will be sent on Piazza

= Thurs 4/17: We will meet for CS Collog by
Prof. Deva Ramanan (GDC 2.216)

» Reading assignment on his lecture

Recap: Probabilistic reasoning over time

= Markov Models

= Hidden Markov Models (HMMSs)

= Forward algorithm (repeated variable elimination) to
Infer belief state

= Particle filtering (likelihood weighting with some
tweaks)

= Viterbi algorithm to infer most likely explanation

= Dynamic Bayes Nets
= Particle filtering

Machine learning

= Up until now: how to use a model to make optimal
decisions

= Machine learning: how to acquire a model from
data/experience

» Learning parameters (e.g., probabilities)
= Learning structure (e.g., BN graphs)
= Learning hidden concepts (e.g., clustering)

= Today: model-based classification with Naive
Bayes

Example: Spam Filter

Input: email
Output: spam/ham
Setup:

= Get a large collection of
example emails, each
labeled “spam” or “ham”

= Note: someone has to hand
label all this data!

» Want to learn to predict
labels of new, future emails

Features: The attributes used to
make the ham / spam decision

= Words: FREE!
= Text Patterns: $dd, CAPS
= Non-text: SenderlnContacts

X

\

Dear Sir.

First, | must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lIknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner, but
when | plugged it in, hit the power nothing
happened.

Example: Digit Recognition

Input: images / pixel grids
Output: a digit 0-9

Setup:
= (et a large collection of example
images, each labeled with a digit
= Note: someone has to hand label all
this data!

= Want to learn to predict labels of new,
future digit images

Features: The attributes used to make the
digit decision
* Pixels: (6,8)=ON
» Shape Patterns: NumComponents,
AspectRatio, NumLoops

2

(
>
/
)

?7?

A Digit Recognizer

= |nput: pixel grids

= Qutput: a digit 0-9

QONP —~©

Other Classification Tasks

* |n classification, we predict labels y (classes) for inputs x

= Examples:

Spam detection (input: document, classes: spam / ham)

OCR (input: images, classes: characters)

Medical diagnosis (input: symptoms, classes: diseases)
Automatic essay grader (input: document, classes: grades)
Fraud detection (input: account activity, classes: fraud / no fraud)
Customer service email routing

... many more

= Classification is an important commercial technology!

Model-based classification

= Model-based approach

» Build a model (e.g., Bayes’ net)
where both the label and features
are random variables

» |nstantiate any observed features

» Query for the distribution of the label
conditioned on the features

= Challenges

= \What structure should the BN have?

= How should we learn its
parameters?

Nailve Bayes for Digits

= Naive Bayes: assume all features are
Independent effects of the label “

= Simple version for digits:
= One feature F; for each grid position <i,j>

= Possible feature values are on / off, based @ @ o a
on whether intensity is more or less than 0.5
In underlying image

= Each input maps to a feature vector, e.g.

1 — (Fpo=0 Fp1 =0 Fygo=1 Fg3=1 Fps4 =0 ...Fy515 =0)

= Here: lots of features, each is binary valued
= Nailve Bayes model:

P(Y|Fpp-..Fi1s5,15) oc P(Y)]| P(F;4|Y)
1,

General Naive Bayes

= A general naive Bayes model:

Y] X [F"

parameters Q

P(Y,Fq...Fp) =

PO TT P(FY)

z @ @ . ' ‘ a

|Y| parameters nx [F[x[Y]
parameters

= We only specify how each feature depends on the class
= Total number of parameters is linear in n

Inference for Naive Bayes

= Goal: compute posterior over label variable Y
= Step 1: get joint probability of causes and evidence

P(Y, f1...fn) =
| P(y1, f1---fn) |
P(y2, f1---fn)
| P(yk7f1f’n) i

= Step 2: get probability of evidence

= Step 3: renormalize

=

- P(f1)]
P(f2)1]

| P(fi)]

I; P(fi
I; P(fi

.:i.P(fi

Y1) |
Y2)

Yk) |

P(flfn)

s

P(Y‘flfn)

General Naive Bayes

= What do we need in order to use naive Bayes?

* |nference (we just saw this part)
= Start with a bunch of probabilities: P(Y) and the P(F|Y) tables
= Use standard inference to compute P(Y|F;...F.)
= Nothing new here

= Estimates of local conditional probability tables
= P(Y), the prior over labels
= P(F,|Y) for each feature (evidence variable)
* These probabilities are collectively called the parameters of the
model and denoted by &
= Up until now, we assumed these appeared by magic, but...
= ...they typically come from training data: we’ll look at this now

Examples: Conditional probabilities

P(Y) P(F31 =onlY) P(Fss=onl|Y)
1 |01 / 1|0.01 / 1 |0.05
2 |01 2 0.05 2 |0.01
3 |01 3 |0.05 3 10.90
4 |01 - / 4 |0.30 4 | 0.80
5 |0.1 5 |0.80 5 | 0.90
6 |0.1 6 |0.90 6 | 0.90
7 01 7 |0.05 7 |0.25
8 |01 8 | 0.60 8 | 0.85
9 |01 9 | 0.50 9 | 0.60
0 |01 0 | 0.80 0 | 0.80

Nailve Bayes for Text

= Bag-of-Words Naive Bayes:
= Features: W, is the word at position |
» Predict unknown class label (spam vs. ham)
= Assume evidence features (e.g. the words) are independent

= New: each W, is identically distributed. Word at position
i, not.ith_word in
= Generative model the dictionary!
P(C,W1...Wy) = P(C)] P(W;|C) — j
1

= “Tied” distributions and bag-of-words

= Usually, each variable gets its own conditional probability
distribution P(F|Y)
* |n a bag-of-words model
= Each position is identically distributed
= All positions share the same conditional probs P(W|C)
= Why make this assumption?

Example: Spam Filtering

= Model: P(O,Wl...Wn):P(O)HP(WZ-|C’)

= What are the parameters?

P(C)

ham :
spam:

0.66
0.33

P(W|spam)
the : 0.0156
to 0.0153
and : 0.0115
of 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075

P(W|ham)
the ¢ 0.0210
to 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a 0.0100

Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 -1.1 -0.4
Gary 0.00002 0.00021 -11.8 -8.9
would 0.00069 0.00084 -19.1 -16.0
you 0.00881 0.00304 -23.8 -21.8
like 0.00086 0.00083 -30.9 -28.9
to 0.01517 0.01339 -35.1 -33.2
lose 0.00008 0.00002 -44.5 -44.0
weight 0.00016 0.00002 -53.3 -55.0
while 0.00027 0.00027 -61.5 -63.2
you 0.00881 0.00304 -66.2 -69.0
sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9

Image classification with Nalve Bayes

¢’ =argmax P(C|w) o p(c) p(w]c) = p(©)] | p(w, |c)

I

Obiject class Prior prob. of Image likelihood
decision the object classes given the class

N patches

Important Concepts

Data: labeled instances, e.g. emails marked spam/ham
» Training set
= Held out set
= Test set

Training

Features: attribute-value pairs which characterize each x -
ata

Experimentation cycle
= Learn parameters (e.g. model probabilities) on training set
» (Tune hyperparameters on held-out set)
= Compute accuracy of test set

= Very important: never “peek” at the test set!

Evaluation Held-Out
= Accuracy: fraction of instances predicted correctly Data

Overfitting and generalization

= \Want a classifier which does well on test data

= Qverfitting: fitting the training data very closely, but not Test
generalizing well Data

= We'll investigate overfitting and generalization formally in a
few lectures

30

25

20

15

10

-10

-15
0

|

I

Overfitting

Degree 15 polynomial

Example: Overfitting

P(features, C = 2)
P(C=2)=0.1
P(on|C=2)=0.8
P(on|C=2)=0.1
P(off|C =2) =0.1

P(on|C =2) =0.01

2 wins!!

P(features,C = 3)

P(C=3)=0.1

P(on|C =3) =0.8
P(on|C =3) =0.9
P(offlCc =3) = 0.7

P(on|C =3)=0.0

Example: Overfitting

= Posteriors determined by relative probabilities (odds ratios):

P(W|ham)
P(W|spam)
south-west : 1inf
nation : inf
morally : inf
nicely : inf
extent : 1nf
seriously : 1inf

P(W|spam)
P(W|ham)
screens : 1nf
minute : 1nf
guaranteed : inf
$205.00 : inf
delivery : inf
signature : inf

What went wrong here?

Generalization and Overfitting

= Relative frequency parameters will overfit the training data!

= Just because we never saw a 3 with pixel (15,15) on during training
doesn’t mean we won'’t see it at test time

» Unlikely that every occurrence of “minute” is 100% spam

= Unlikely that every occurrence of “seriously” is 100% ham

» What about all the words that don’t occur in the training set at all?

» In general, we can’t go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only
feature

= Would get the training data perfect (if deterministic labeling)
= Wouldn’t generalize at all

» Just making the bag-of-words assumption gives us some generalization,
but isn’t enough

= To generalize better: we need to smooth or regularize the estimates

Parameter estimation

= Estimating the distribution of a random variable
= Elicitation: ask a human (why is this hard?)
= Empirically: use training data (learning!)

» E.g., for each outcome x, look at the empirical rate of
that value

Pt () = count(x) @ @ @

total samples P (1) = 2/3
= This Is the estimate that maximizes the likelihood of

the data
L(x,0) =] Py(x:)

Maximum likelihood?

= Relative frequencies are the maximum likelihood
estimates

Onrr, = arg max P(X]0) count(x)

P (1) =
= PuLle) total samples

= arg max [[Py(X;)
0 i

= Another option is to consider the most likely parameter
value given the data

gﬂfﬂF = arg max P(Q|X)
f

__ ?777
= arg max P(X|0)P(8)/P(X) :>

— arg max P(X|0)P(0)
7

Estimation: Laplace Smoothing

» [aplace’s estimate:

= Pretend you saw every outcome
once more than you actually did

_ c(x)+1
Frap(e) = >ozle(z) + 1] Py (X) = <§, %>
_c(x)+1

3 2

_N+|X| PLAP(X):<gag>

Estimation: Laplace Smoothing

= [aplace’s estimate (extended): ‘ ‘
= Pretend you saw every outcome

k extra times

21
c(z) +k Prapo(X) = <—, —>
P — !
AP E(T) N + K X] 3’3
= What's Laplace with k = 0? Prapi(X) = <§, 3>
= ks the strength of the prior 5 O
P XY — 102 101
= Laplace for conditionals: 1.AP,100(X) = <203> 203>
= Smooth each condition
iIndependently:
c(z,y) + k
Prapr(zly) =

c(y) + k| X|

Real NB: Smoothing

= For real classification problems, smoothing is critical
= New odds ratios:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group : 10.2 ORDER : 27.2
ago : 8.4 : 26.9
areas : 8.3 money : 26.5

Do these make more sense?

Tuning on Held-Out Data

= Now we've got two kinds of unknowns
= Parameters: the probabilities P(X|Y), P(Y)

» Hyperparameters, like the amount of _
smoothing to do: k training

= Where to learn?
» Learn parameters from training data
» Tune hyperparameters on different data
= Why?
» For each value of the hyperparameters,
train and test on the held-out data

= Choose the best value and do a final test k
on the test data

held-out
test

accuracy

Summary

= Model-based classification
= Naive Bayes
= Spam and digits examples

» Generalization and overfitting

» Data splits, held-out data, hyperparameter
tuning

= Laplace smoothing

