Perceptrons

Jonathan Mugan

jonathanwilliammugan@gmail.com www.jonathanmugan.com @jmugan

April 10, 2014 (Slides taken from Dan Klein)

Classification: Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
... Hello, **SPAM** Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7, 12 : 1
PIXEL-7, 13 : 0
...
NUM_LOOPS : 1

This slide deck courtesy of Dan Klein at UC Berkeley

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Example: Spam

- Imagine 4 features (spam is "positive" class):
 - free (number of occurrences of "free")

$$w \cdot f(x)$$

- money (occurrences of "money")
- BIAS (intercept, always has value 1)

$$\sum w_i \cdot f_i(x)$$

"free money"

BIAS : 1

f(x)

free : 1
money : 1

. .

BIAS : -3 free : 4 money : 2

 \boldsymbol{w}

$$(1)(-3) + (1)(4) + (1)(2) + \dots$$
= 3

Classification: Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

```
# free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

# free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...
```

Dot product $w \cdot f$ positive means the positive class

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

 \overline{w}

BIAS : -3
free : 4
money : 2

-1 = HAM

Mistake-Driven Classification

For Naïve Bayes:

- Parameters from data statistics
- Parameters: causal interpretation
- Training: one pass through the data

For the perceptron:

- Parameters from reactions to mistakes
- Prameters: discriminative interpretation
- Training: go through the data until heldout accuracy maxes out

Training Data

Held-Out Data

> Test Data

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Multiclass Decision Rule

- If we have more than two classes:
 - Have a weight vector for each class: w_y
 - Calculate an activation for each class

$$\operatorname{activation}_w(x,y) = w_y \cdot f(x)$$

Highest activation wins

$$y = \underset{y}{\operatorname{arg\,max}} (\operatorname{activation}_w(x, y))$$

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

$$w_y$$

Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

Example

"win the vote"

BIAS : 1
win : 1
game : 0
vote : 1
the : 1

. .

w_{SPORTS}

BIAS : -2 win : 4 game : 4 vote : 0 the : 0

$w_{POLITICS}$

BIAS	:	1
win	:	2
game	:	0
vote	:	4
the	:	0

w_{TECH}

BIAS : 2
win : 0
game : 2
vote : 0
the : 0

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = arg \max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$

$$w_{y^*} = w_{y^*} + f(x)$$

Example: Multiclass Perceptron

"win the vote"

"win the election"

"win the game"

w_{SPORTS}

BIAS : 1
win : 0
game : 0
vote : 0
the : 0

$w_{POLITICS}$

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

w_{TECH}

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

Separable Case

Separable Case

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the *margin* or degree of separability

mistakes
$$<\frac{k}{\delta^2}$$

Separable

Non-Separable

Non-Separable Case

Non-Separable Case

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

