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Classification: Feature Vectors
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Some (Simplified) Biology

" Very loose inspiration: human neurons
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Linear Classifiers

" Inputs are feature values
" Each feature has a weight
" Sum is the activation

activationy(z) =) w; - fi(z) =w- f(x)

" |f the activation is: i
" Positive, output +1 L2y 07—
* Negative, output -1 .




Example: Spam

" Imagine 4 features (spam is “positive” class):
= free (number of occurrences of “free”) w - f(x)
" money (occurrences of “money”) A
" BIAS (intercept, always has value 1)

> w; - fi(x)
BIAS : 1 BIAS : -3 (1)(=3) +
) ) free : 1 free : 4 (1)(4) +
free money money : 1 money : 2 (H(2) +

=3



Classification: Weights

" Binary case: compare features to a weight vector
" Learning: figure out the weight vector from examples
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Binary Decision Rule

" In the space of feature vectors
" Examples are points
" Any weight vector is a hyperplane
" One side corresponds to Y=+1
" QOther corresponds to Y=-1
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Mistake-Driven Classification

" For Naive Bayes:
" Parameters from data statistics
" Parameters: causal interpretation
" Training: one pass through the data

" For the perceptron:
" Parameters from reactions to mistakes
" Prameters: discriminative interpretation

" Training: go through the data until held-
out accuracy maxes out
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Learning: Binary Perceptron

= Start with weights =0 W
" For each training instance:
* Classify with current weights “f
y .

1 i w- f(x) >0
TV it w- fz) <0

" |f correct (i.e., y=y*), no change!

" If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

w=w+y*-f



Multiclass Decision Rule

= |f we have more than w1 - f biggest

two classes:
* Have a weight vector for —

each class: Wy > \ -
wo - s -

" Calculate an activation for biggest biggest
each class

activationy(z,y) = wy - f(x)

" Highest activation wins

y = arg max (activationy(z,y))
y



Multiclass Decision Rule

" |f we have multiple classes:

w1y - f biggest
" A weight vector for each class: wy
Wy
" Score (activation) of a class y: o w3
biggest

" Prediction highest score wins

y = argmax wy - f(x)
y

Binary = multiclass where the
negative class has weight zero



Example
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Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong
answer, raise score of right answer

wy = wy — f(x)

Wopx = Wyy* + f(x)
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Example: Multiclass Perceptron

“win the vote”
“win the election”

“‘win the game”

WSPORTS WpOLITICS WTECH
BIAS : 1 BIAS : 0 BIAS : 0
win > 0 win : 0 win : 0
game : 0 game : 0 game 0
vote 0 vote 0 vote 0
the > 0 the ;0 the : 0




Examples: Perceptron

" Separable Case
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Examples: Perceptron

" Separable Case
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Properties of Perceptrons

= Separability: some parameters get Separable
the training set perfectly correct .
= Convergence: if the training is - ¥
separable, perceptron will T +
eventually converge (binary case) -
= Mistake Bound: the maximum Non-Separable
number of mistakes (binary case)
related to the margin or degree of _ oo
separability _ o
, k - -
mistakes < 52 - o

e 16



Examples: Perceptron

" Non-Separable Case
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Examples: Perceptron

" Non-Separable Case
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Problems with the Perceptron

" Noise: if the data isn't separable,
weights might thrash

" Averaging weight vectors over time
can help (averaged perceptron)

* »
" Mediocre generalization: finds a - A\\
“parely” separating solution - .
training
" Overtraining: test / held-out 3>
accuracy usually rises, then falls C
" Overtraining is a kind of overfitting 9 test
T held-out

iterations



