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Announcements

 Office hours

 Kim’s office hours this week:

 Mon 11-12 and Thurs 12:30-1:30 pm

 No office hours Tues – contact me

 Class on Thursday 4/17 meets in GDC 

2.216 (Auditorium)

 See class page for associated reading 

assignment



Thursday 4/17, 11 am 

 Prof. Deva Ramanan, UC Irvine

 “Statistical analysis by synthesis: 

visual recognition through 

reconstruction”



Today

 Perceptron wrap-up

 Kernels and clustering



Recall: Problems with the Perceptron

 Noise: if the data isn’t separable, 
weights might thrash
 Averaging weight vectors over time 

can help (averaged perceptron)

 Mediocre generalization: finds a 
“barely” separating solution

 Overtraining: test / held-out 
accuracy usually rises, then falls
 Overtraining is a kind of overfitting



Fixing the Perceptron

 Idea: adjust the weight update to 

mitigate these effects

 MIRA*: choose an update size that 

fixes the current mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum Correcting Update

min not =0, or would not 

have made an error, so min 

will be where equality holds



Maximum Step Size
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 In practice, it’s also bad to make updates that 

are too large

 Example may be labeled incorrectly

 You may not have enough features

 Solution: cap the maximum possible 

value of  with some constant C

 Corresponds to an optimization that 

assumes non-separable data

 Usually converges faster than perceptron

 Usually better, especially on noisy data



Linear Separators

 Which of these linear separators is optimal? 
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Support Vector Machines

 Maximizing the margin: good according to intuition, theory, practice

 Only support vectors matter; other training examples are ignorable 

 Support vector machines (SVMs) find the separator with max margin

 Basically, SVMs are MIRA where you optimize over all examples at 

once
MIRA

SVM



Extension: Web Search

 Information retrieval:

 Given information needs, 

produce information

 Includes, e.g. web search, 

question answering, and 

classic IR

 Web search: not exactly 

classification, but rather 

ranking

x = “Apple Computers”



Feature-Based Ranking

x = “Apple Computers”

x,

x,



Perceptron for Ranking

 Inputs    

 Candidates

 Many feature vectors: 

 One weight vector:

 Prediction:

 Update (if wrong):



Classification: Comparison

 Naïve Bayes
 Builds a model training data

 Gives prediction probabilities

 Strong assumptions about feature independence

 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data

 Mistake-driven learning

 Multiple passes through data (prediction)

 Often more accurate
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Today

 Perceptron wrap-up

 Kernels and clustering



Case-Based Reasoning: KNN

 Similarity for classification
 Case-based reasoning

 Predict an instance’s label using 
similar instances

 Nearest-neighbor classification
 1-NN: copy the label of the most 

similar data point

 K-NN: let the k nearest neighbors 
vote (have to devise a weighting 
scheme)

 Key issue: how to define similarity

 Trade-off:
 Small k gives relevant neighbors

 Large k gives smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html



Parametric / Non-parametric

 Parametric models:

 Fixed set of parameters

 More data means better settings

 Non-parametric models:

 Complexity of the classifier increases with data

 Better in the limit, often worse in the non-limit

 (K)NN is non-parametric
Truth

2 Examples 10 Examples 100 Examples 10000 Examples
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Nearest-Neighbor Classification

 Nearest neighbor for digits:
 Take new image

 Compare to all training images

 Assign based on closest example

 Encoding: image is vector of intensities:

 What’s the similarity function?
 Dot product of two images vectors?

 Usually normalize vectors so ||x|| = 1

18



Basic Similarity

 Many similarities based on feature dot products:

 If features are just the pixels:

 Note: not all similarities are of this form
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Invariant Metrics

This and next few slides adapted from Xiao Hu, UIUC

 Better distances use knowledge about vision

 Invariant metrics:

 Similarities are invariant under certain transformations

 Rotation, scaling, translation, stroke-thickness…

 E.g: 

 16 x 16 = 256 pixels; a point in 256-dim space

 Small similarity in R256 (why?)

 How to incorporate invariance into similarities?
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Rotation Invariant Metrics

 Each example is now a curve 

in R256

 Rotation invariant similarity:

s’=max s( r(         ),  r(         ))

 E.g. highest similarity between 

images’ rotation lines
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Template Deformation

 Deformable templates:

 An “ideal” version of each category

 Best-fit to image using min variance

 Cost for high distortion of template

 Cost for image points being far from distorted template

 Used in many commercial digit recognizers

Examples from [Hastie 94]
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Computer Vision Group
University of California

Berkeley

Recognizing Objects in Adversarial Clutter: 

Breaking a Visual CAPTCHA

Greg Mori and Jitendra Malik

CVPR 2003



Computer Vision Group
University of California

Berkeley

EZ-Gimpy

• Word-based CAPTCHA

– Task is to read a single word 

obscured in clutter

• Currently in use at Yahoo! and 

Ticketmaster

– Filters out ‘bots’ from obtaining 

free email accounts, buying 

blocks of tickets



Computer Vision Group
University of California

Berkeley

Shape contexts (Belongie et al. 2001)

Count the number of 
points inside each 
bin, e.g.:

Count = 8

…

Count = 7

 Compact representation 

of distribution of points 

relative to each point



Computer Vision Group
University of California

Berkeley

Fast Pruning: Representative Shape 

Contexts

• Pick k points in the image at random

– Compare to all shape contexts for all known letters

– Vote for closely matching letters

• Keep all letters with scores under threshold

d 

o

p



Computer Vision Group
University of California

Berkeley

Algorithm A

• Look for letters

– Representative Shape 
Contexts

• Find pairs of letters that 
are “consistent”

– Letters nearby in space

• Search for valid words 

• Give scores to the words



Computer Vision Group
University of California

Berkeley

EZ-Gimpy Results with Algorithm A

• 158 of 191 images correctly identified: 83%

– Running time: ~10 sec. per image (MATLAB, 1 Ghz P3)

horse

smile

canvas

spade

join

here



Computer Vision Group
University of California

Berkeley

Results with Algorithm B

# Correct words % tests (of 24)

1 or more 92%

2 or more 75%

3 33%

EZ-Gimpy 92%dry clear medical

door farm importantcard arch plate



A Tale of Two Approaches…

 Nearest neighbor-like approaches

 Can use fancy similarity functions

 Don’t actually get to do explicit learning

 Perceptron-like approaches

 Explicit training to reduce empirical error

 Can’t use fancy similarity, only linear

 Or can they?  Let’s find out!
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Perceptron Weights

 What is the final value of a weight wy of a perceptron?

 Can it be any real vector?

 No!  It’s built by adding up inputs.

 Can reconstruct weight vectors (the primal representation) 

from update counts (the dual representation)

32



Dual Perceptron

 How to classify a new example x?

 If someone tells us the value of K for each pair of 
examples, never need to build the weight vectors! 33



Dual Perceptron

 Start with zero counts (alpha)

 Pick up training instances one by one

 Try to classify xn,

 If correct, no change!

 If wrong: lower count of wrong class (for this instance), 
raise score of right class (for this instance)

n

n

n



Kernelized Perceptron

 If we had a black box (kernel) which told us the dot 

product of two examples x and y:

 Could work entirely with the dual representation

 No need to ever take dot products (“kernel trick”)

 Like nearest neighbor – work with black-box similarities

 Downside: slow if many examples get nonzero alpha
35



Kernels: Who Cares?

 So far: a very strange way of doing a very simple 
calculation

 “Kernel trick”: we can substitute any* similarity 
function in place of the dot product

 Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain 

technical requirements, lots of proofs break.  

E.g. convergence, mistake bounds.  In practice, 

illegal kernels sometimes work (but not always).
36

K(xi,xj) = f(xi)
T f(xj)



Non-Linear Separators

 Data that is linearly separable (with some noise) works out great:

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x



Non-Linear Separators

 General idea: the original feature space can often be 

mapped to some higher-dimensional feature space 

where the training set is separable:

Φ:  x→ φ(x)



Example

2-dimensional vectors x=[x1   x2]; 

let K(xi,xj)=(1 + xi
Txj)

2

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T 

[1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi)
Tφ(xj),   

where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]
from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



Examples of kernel functions

 Linear:

 Gaussian RBF:

 Histogram intersection:
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Why Kernels?

 Can’t you just add these features on your own (e.g. add 
all pairs of features instead of using the quadratic 
kernel)?
 Yes, in principle, just compute them

 No need to modify any algorithms

 But, number of features can get large (or infinite)

 Some kernels not as usefully thought of in their expanded 
representation, e.g. RBF kernels 

 Kernels let us compute with these features implicitly
 Example: implicit dot product in quadratic kernel takes much less 

space and time per dot product

 Of course, there’s the cost for using the pure dual algorithms: 
you need to compute the similarity to every training datum



Recap: Classification

 Classification systems:
 Supervised learning

 Make a prediction given 
evidence

 We’ve seen several 
methods for this

 Useful when you have 
labeled data

42



Clustering

 Clustering systems:
 Unsupervised learning

 Detect patterns in unlabeled 
data
 E.g. group emails or search results

 E.g. find categories of customers

 E.g. detect anomalous program 
executions

 Useful when don’t know what 
you’re looking for

 Requires data, but no labels

 Often get gibberish

43



Clustering

 Basic idea: group together similar instances

 Example: 2D point patterns

 What could “similar” mean?
 One option: small (squared) Euclidean distance

44



K-Means

 An iterative clustering 
algorithm

 Pick K random points 
as cluster centers 
(means)

 Alternate:

 Assign data instances 
to closest mean

 Assign each mean to 
the average of its 
assigned points

 Stop when no points’ 
assignments change



Andrew Moore



Andrew Moore



Andrew Moore



Andrew Moore



Andrew Moore



K-Means Example
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Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

Grouping pixels based 

on intensity similarity 

Feature space: intensity value (1-d) 

Slide credit: Kristen Grauman



K=2

K=3

quantization of the feature space; 

segmentation label map

Slide credit: Kristen Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

R=255

G=200

B=250

R=245

G=220

B=248

R=15

G=189

B=2

R=3

G=12

B=2
R

G

B

Grouping pixels based 

on color similarity 

Feature space: color value (3-d) 
Slide credit: Kristen Grauman



K-Means as Optimization

 Consider the total distance to the means:

 Each iteration reduces phi

 Two stages each iteration:
 Update assignments: fix means c,

change assignments a

 Update means: fix assignments a,

change means c

points

assignments

means
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Phase I: Update Assignments

 For each point, re-assign to 

closest mean:

 Can only decrease total 

distance phi!

56



Phase II: Update Means

 Move each mean to the 
average of its assigned 
points:

 Also can only decrease total 
distance… (Why?)

 Fun fact: the point y with 
minimum squared Euclidean 
distance to a set of points {x} 
is their mean

57



Initialization

 K-means is non-deterministic

 Requires initial means

 It does matter what you pick!

 What can go wrong?

 Various schemes for preventing 

this kind of thing: variance-

based split / merge, initialization 

heuristics

58



 A local optimum:

Why doesn’t this work out like 

the earlier example, with the 

purple taking over half the blue?
59

K-Means Getting Stuck



K-Means Questions

 Will K-means converge?
 To a global optimum?

 Will it always find the true patterns in the data?
 If the patterns are very very clear?

 Will it find something interesting?

 How many clusters to pick?

 Do people ever use it?

60



Example: K-means for feature quantization

Detecting local features

Image 1 Image 2

Slide credit: Kristen Grauman



• Map high-dimensional descriptors to “visual words” 

by quantizing the feature space

Patch descriptor 

feature space

Example: K-means for feature quantization

Slide credit: Kristen Grauman



• Example visual 

words: each group 

of patches belongs 

to the same visual 

word

Figure from  Sivic & Zisserman, ICCV 2003

Example: K-means for feature quantization

Slide credit: Kristen Grauman



Agglomerative Clustering

 Agglomerative clustering:
 First merge very similar instances

 Incrementally build larger clusters out of 
smaller clusters

 Algorithm:
 Maintain a set of clusters

 Initially, each instance in its own cluster

 Repeat:
 Pick the two closest clusters

 Merge them into a new cluster

 Stop when there’s only one cluster left

 Produces not one clustering, but a family 
of clusterings represented by a 
dendrogram

64



Agglomerative Clustering

 How should we define 
“closest” for clusters with 
multiple elements?

 Many options
 Closest pair (single-link 

clustering)

 Farthest pair (complete-link 
clustering)

 Average of all pairs

 Different choices create 
different clustering behaviors



Clustering Application

66

Top-level categories:  

supervised classification

Story groupings:

unsupervised clustering



Recap of today

 Building on perceptrons:

 MIRA

 SVM

 Non-parametric – kernels, dual perceptron

 Nearest neighbor classification

 Clustering

 K-means

 Agglomerative



Coming Up

 Neural networks

 Decision trees

 Advanced topics: applications,…


