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Announcements

 Office hours

 Kim’s office hours this week:

 Mon 11-12 and Thurs 12:30-1:30 pm

 No office hours Tues – contact me

 Class on Thursday 4/17 meets in GDC 

2.216 (Auditorium)

 See class page for associated reading 

assignment



Thursday 4/17, 11 am 

 Prof. Deva Ramanan, UC Irvine

 “Statistical analysis by synthesis: 

visual recognition through 

reconstruction”



Today

 Perceptron wrap-up

 Kernels and clustering



Recall: Problems with the Perceptron

 Noise: if the data isn’t separable, 
weights might thrash
 Averaging weight vectors over time 

can help (averaged perceptron)

 Mediocre generalization: finds a 
“barely” separating solution

 Overtraining: test / held-out 
accuracy usually rises, then falls
 Overtraining is a kind of overfitting



Fixing the Perceptron

 Idea: adjust the weight update to 

mitigate these effects

 MIRA*: choose an update size that 

fixes the current mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum Correcting Update

min not =0, or would not 

have made an error, so min 

will be where equality holds



Maximum Step Size
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 In practice, it’s also bad to make updates that 

are too large

 Example may be labeled incorrectly

 You may not have enough features

 Solution: cap the maximum possible 

value of  with some constant C

 Corresponds to an optimization that 

assumes non-separable data

 Usually converges faster than perceptron

 Usually better, especially on noisy data



Linear Separators

 Which of these linear separators is optimal? 
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Support Vector Machines

 Maximizing the margin: good according to intuition, theory, practice

 Only support vectors matter; other training examples are ignorable 

 Support vector machines (SVMs) find the separator with max margin

 Basically, SVMs are MIRA where you optimize over all examples at 

once
MIRA

SVM



Extension: Web Search

 Information retrieval:

 Given information needs, 

produce information

 Includes, e.g. web search, 

question answering, and 

classic IR

 Web search: not exactly 

classification, but rather 

ranking

x = “Apple Computers”



Feature-Based Ranking

x = “Apple Computers”

x,

x,



Perceptron for Ranking

 Inputs    

 Candidates

 Many feature vectors: 

 One weight vector:

 Prediction:

 Update (if wrong):



Classification: Comparison

 Naïve Bayes
 Builds a model training data

 Gives prediction probabilities

 Strong assumptions about feature independence

 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data

 Mistake-driven learning

 Multiple passes through data (prediction)

 Often more accurate
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Today

 Perceptron wrap-up

 Kernels and clustering



Case-Based Reasoning: KNN

 Similarity for classification
 Case-based reasoning

 Predict an instance’s label using 
similar instances

 Nearest-neighbor classification
 1-NN: copy the label of the most 

similar data point

 K-NN: let the k nearest neighbors 
vote (have to devise a weighting 
scheme)

 Key issue: how to define similarity

 Trade-off:
 Small k gives relevant neighbors

 Large k gives smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html



Parametric / Non-parametric

 Parametric models:

 Fixed set of parameters

 More data means better settings

 Non-parametric models:

 Complexity of the classifier increases with data

 Better in the limit, often worse in the non-limit

 (K)NN is non-parametric
Truth

2 Examples 10 Examples 100 Examples 10000 Examples
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Nearest-Neighbor Classification

 Nearest neighbor for digits:
 Take new image

 Compare to all training images

 Assign based on closest example

 Encoding: image is vector of intensities:

 What’s the similarity function?
 Dot product of two images vectors?

 Usually normalize vectors so ||x|| = 1

18



Basic Similarity

 Many similarities based on feature dot products:

 If features are just the pixels:

 Note: not all similarities are of this form
19



Invariant Metrics

This and next few slides adapted from Xiao Hu, UIUC

 Better distances use knowledge about vision

 Invariant metrics:

 Similarities are invariant under certain transformations

 Rotation, scaling, translation, stroke-thickness…

 E.g: 

 16 x 16 = 256 pixels; a point in 256-dim space

 Small similarity in R256 (why?)

 How to incorporate invariance into similarities?

20



Rotation Invariant Metrics

 Each example is now a curve 

in R256

 Rotation invariant similarity:

s’=max s( r(         ),  r(         ))

 E.g. highest similarity between 

images’ rotation lines
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Template Deformation

 Deformable templates:

 An “ideal” version of each category

 Best-fit to image using min variance

 Cost for high distortion of template

 Cost for image points being far from distorted template

 Used in many commercial digit recognizers

Examples from [Hastie 94]
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Computer Vision Group
University of California

Berkeley

Recognizing Objects in Adversarial Clutter: 

Breaking a Visual CAPTCHA

Greg Mori and Jitendra Malik

CVPR 2003



Computer Vision Group
University of California

Berkeley

EZ-Gimpy

• Word-based CAPTCHA

– Task is to read a single word 

obscured in clutter

• Currently in use at Yahoo! and 

Ticketmaster

– Filters out ‘bots’ from obtaining 

free email accounts, buying 

blocks of tickets



Computer Vision Group
University of California

Berkeley

Shape contexts (Belongie et al. 2001)

Count the number of 
points inside each 
bin, e.g.:

Count = 8

…

Count = 7

 Compact representation 

of distribution of points 

relative to each point



Computer Vision Group
University of California

Berkeley

Fast Pruning: Representative Shape 

Contexts

• Pick k points in the image at random

– Compare to all shape contexts for all known letters

– Vote for closely matching letters

• Keep all letters with scores under threshold

d 

o

p



Computer Vision Group
University of California

Berkeley

Algorithm A

• Look for letters

– Representative Shape 
Contexts

• Find pairs of letters that 
are “consistent”

– Letters nearby in space

• Search for valid words 

• Give scores to the words



Computer Vision Group
University of California

Berkeley

EZ-Gimpy Results with Algorithm A

• 158 of 191 images correctly identified: 83%

– Running time: ~10 sec. per image (MATLAB, 1 Ghz P3)

horse

smile

canvas

spade

join

here



Computer Vision Group
University of California

Berkeley

Results with Algorithm B

# Correct words % tests (of 24)

1 or more 92%

2 or more 75%

3 33%

EZ-Gimpy 92%dry clear medical

door farm importantcard arch plate



A Tale of Two Approaches…

 Nearest neighbor-like approaches

 Can use fancy similarity functions

 Don’t actually get to do explicit learning

 Perceptron-like approaches

 Explicit training to reduce empirical error

 Can’t use fancy similarity, only linear

 Or can they?  Let’s find out!
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Perceptron Weights

 What is the final value of a weight wy of a perceptron?

 Can it be any real vector?

 No!  It’s built by adding up inputs.

 Can reconstruct weight vectors (the primal representation) 

from update counts (the dual representation)

32



Dual Perceptron

 How to classify a new example x?

 If someone tells us the value of K for each pair of 
examples, never need to build the weight vectors! 33



Dual Perceptron

 Start with zero counts (alpha)

 Pick up training instances one by one

 Try to classify xn,

 If correct, no change!

 If wrong: lower count of wrong class (for this instance), 
raise score of right class (for this instance)

n

n

n



Kernelized Perceptron

 If we had a black box (kernel) which told us the dot 

product of two examples x and y:

 Could work entirely with the dual representation

 No need to ever take dot products (“kernel trick”)

 Like nearest neighbor – work with black-box similarities

 Downside: slow if many examples get nonzero alpha
35



Kernels: Who Cares?

 So far: a very strange way of doing a very simple 
calculation

 “Kernel trick”: we can substitute any* similarity 
function in place of the dot product

 Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain 

technical requirements, lots of proofs break.  

E.g. convergence, mistake bounds.  In practice, 

illegal kernels sometimes work (but not always).
36

K(xi,xj) = f(xi)
T f(xj)



Non-Linear Separators

 Data that is linearly separable (with some noise) works out great:

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x



Non-Linear Separators

 General idea: the original feature space can often be 

mapped to some higher-dimensional feature space 

where the training set is separable:

Φ:  x→ φ(x)



Example

2-dimensional vectors x=[x1   x2]; 

let K(xi,xj)=(1 + xi
Txj)

2

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T 

[1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi)
Tφ(xj),   

where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]
from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



Examples of kernel functions

 Linear:

 Gaussian RBF:

 Histogram intersection:
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Why Kernels?

 Can’t you just add these features on your own (e.g. add 
all pairs of features instead of using the quadratic 
kernel)?
 Yes, in principle, just compute them

 No need to modify any algorithms

 But, number of features can get large (or infinite)

 Some kernels not as usefully thought of in their expanded 
representation, e.g. RBF kernels 

 Kernels let us compute with these features implicitly
 Example: implicit dot product in quadratic kernel takes much less 

space and time per dot product

 Of course, there’s the cost for using the pure dual algorithms: 
you need to compute the similarity to every training datum



Recap: Classification

 Classification systems:
 Supervised learning

 Make a prediction given 
evidence

 We’ve seen several 
methods for this

 Useful when you have 
labeled data
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Clustering

 Clustering systems:
 Unsupervised learning

 Detect patterns in unlabeled 
data
 E.g. group emails or search results

 E.g. find categories of customers

 E.g. detect anomalous program 
executions

 Useful when don’t know what 
you’re looking for

 Requires data, but no labels

 Often get gibberish

43



Clustering

 Basic idea: group together similar instances

 Example: 2D point patterns

 What could “similar” mean?
 One option: small (squared) Euclidean distance

44



K-Means

 An iterative clustering 
algorithm

 Pick K random points 
as cluster centers 
(means)

 Alternate:

 Assign data instances 
to closest mean

 Assign each mean to 
the average of its 
assigned points

 Stop when no points’ 
assignments change



Andrew Moore



Andrew Moore



Andrew Moore



Andrew Moore



Andrew Moore



K-Means Example
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Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

Grouping pixels based 

on intensity similarity 

Feature space: intensity value (1-d) 

Slide credit: Kristen Grauman



K=2

K=3

quantization of the feature space; 

segmentation label map

Slide credit: Kristen Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

R=255

G=200

B=250

R=245

G=220

B=248

R=15

G=189

B=2

R=3

G=12

B=2
R

G

B

Grouping pixels based 

on color similarity 

Feature space: color value (3-d) 
Slide credit: Kristen Grauman



K-Means as Optimization

 Consider the total distance to the means:

 Each iteration reduces phi

 Two stages each iteration:
 Update assignments: fix means c,

change assignments a

 Update means: fix assignments a,

change means c

points

assignments

means

55



Phase I: Update Assignments

 For each point, re-assign to 

closest mean:

 Can only decrease total 

distance phi!

56



Phase II: Update Means

 Move each mean to the 
average of its assigned 
points:

 Also can only decrease total 
distance… (Why?)

 Fun fact: the point y with 
minimum squared Euclidean 
distance to a set of points {x} 
is their mean

57



Initialization

 K-means is non-deterministic

 Requires initial means

 It does matter what you pick!

 What can go wrong?

 Various schemes for preventing 

this kind of thing: variance-

based split / merge, initialization 

heuristics

58



 A local optimum:

Why doesn’t this work out like 

the earlier example, with the 

purple taking over half the blue?
59

K-Means Getting Stuck



K-Means Questions

 Will K-means converge?
 To a global optimum?

 Will it always find the true patterns in the data?
 If the patterns are very very clear?

 Will it find something interesting?

 How many clusters to pick?

 Do people ever use it?

60



Example: K-means for feature quantization

Detecting local features

Image 1 Image 2

Slide credit: Kristen Grauman



• Map high-dimensional descriptors to “visual words” 

by quantizing the feature space

Patch descriptor 

feature space

Example: K-means for feature quantization

Slide credit: Kristen Grauman



• Example visual 

words: each group 

of patches belongs 

to the same visual 

word

Figure from  Sivic & Zisserman, ICCV 2003

Example: K-means for feature quantization

Slide credit: Kristen Grauman



Agglomerative Clustering

 Agglomerative clustering:
 First merge very similar instances

 Incrementally build larger clusters out of 
smaller clusters

 Algorithm:
 Maintain a set of clusters

 Initially, each instance in its own cluster

 Repeat:
 Pick the two closest clusters

 Merge them into a new cluster

 Stop when there’s only one cluster left

 Produces not one clustering, but a family 
of clusterings represented by a 
dendrogram

64



Agglomerative Clustering

 How should we define 
“closest” for clusters with 
multiple elements?

 Many options
 Closest pair (single-link 

clustering)

 Farthest pair (complete-link 
clustering)

 Average of all pairs

 Different choices create 
different clustering behaviors



Clustering Application

66

Top-level categories:  

supervised classification

Story groupings:

unsupervised clustering



Recap of today

 Building on perceptrons:

 MIRA

 SVM

 Non-parametric – kernels, dual perceptron

 Nearest neighbor classification

 Clustering

 K-means

 Agglomerative



Coming Up

 Neural networks

 Decision trees

 Advanced topics: applications,…


