
343H: Honors AI

Lecture 24: 

ML: Decision trees and neural networks

4/22/2014

Kristen Grauman

UT Austin

Slides courtesy of Dan Klein, UC Berkeley



Last time

 Perceptrons

 MIRA

 Dual/kernelized perceptron

 Support vector machines

 Nearest neighbors

 Clustering

 K-means

 Agglomerative



Quiz

 What distinguishes the learning objectives for MIRA and 

SVMs?

 What is a support vector?

 Why do we care about kernels?

 Does k-means converge?

 How would we know which of two runs of k-means is 

better?

 What does it mean to have a parametric vs. non-

parametric model?

 How would clusters with k-means differ from those found 

with agglomerative using “closest-pair” similarity?

 How can clustering achieve feature space discretization?



Today

 Formalizing learning

 Consistency

 Simplicity

 Decision trees

 Expressiveness

 Information gain

 Overfitting

 Neural networks



Inductive learning

 Simplest form: learn a function from examples

 A target function: g

 Examples: input-output pairs (x, g(x))

 E.g., x is an email and g(x) is spam/ham

 E.g., x is a house and g(x) is its selling price

 Problem:

 Given a hypothesis space H

 Given a training set of examples xi

 Find a hypothesis h(x) such that h~g

 Includes

 Classification, Regression

 How do perceptron and naïve Bayes fit in? 



Inductive learning

 Curve fitting (regression, function approximation)

 Consistency vs. simplicity

 Ockham’s razor



Consistency vs. simplicity

 Fundamental tradeoff: bias vs. variance

 Usually algorithms prefer consistency by default

 Several ways to operationalize “simplicity”

 Reduce the hypothesis space

 Assume more: e.g., independence assumptions, as in Naïve Bayes

 Have fewer, better features/attributes: feature selection

 Other structural limitations

 Regularization

 Smoothing: cautious use of small counts

 Many other generalization parameters (pruning cutoffs today)

 Hypothesis space stays big, but harder to get to the outskirts

H1 H2

g



Reminder: features

 Features, aka attributes

 Sometimes: TYPE = French

 Sometimes 



Decision trees

 Compact representation of a function

 Truth table

 Conditional probability table

 Regression values

 True function

 Realizable: in H



Expressiveness of DTs

 Can express any function of the features

 However, we hope for compact trees



Comparison: Perceptrons

 What is expressiveness of perceptron over these features?

 For a perceptron, feature’s contribution either pos or neg

 If you want one feature’s effect to depend on another, you have to 

add a new conjunction feature

 DTs automatically conjoin features/attributes

 Features can have different effects in different branches of the tree!



Hypothesis spaces

 How many distinct decision trees with n Boolean 

attributes?

 = number of Boolean functions over n attributes

 = number of distinct truth tables with 2^n rows

 = 2^(2^n)

 E.g., with 6 Boolean attributes, there are 

18,446,744,073,709,551,616 trees

 How many trees of depth 1 (decision stumps)?

 = number of Boolean functions over 1 attribute

 = number of truth tables with 2 rows, times n

 =4n

 E.g. with 6 Boolean attributes, there are 24 decision stumps



Hypothesis spaces

 More expressive hypothesis space:

 Increases chance that target function can be 

expressed (good)

 Increases number of hypotheses consistent with 

training set (bad)

 Means we can get better predictions (lower bias)

 But we may get worse predictions (higher variance)



Decision tree learning

 Aim: find a small tree consistent with the training examples

 Idea: (recursively) choose “most significant” attribute as root 

of (sub)tree



Choosing an attribute

 Idea: a good attribute splits the examples into 

subsets that are (ideally) “all positive” or “all 

negative”

 So: we need a measure of how “good” a split is, 

even if the results aren’t perfectly separated



Entropy and information

 Information answers questions

 The more uncertain about the answer initially, the more 

information in the answer

 Scale: bits

 Answer to a Boolean question with prior <1/2,1/2>?

 Answer to a 4-way question with prior <¼, ¼, ¼, ¼>?

 Answer to a 4-way question with prior <0,0,0,1>?

 Answer to a 3-way question with prior <1/2,1/4,1/4>?

 A probability p is typical of:

 A uniform distribution of size 1/p

 A code of length log 1/p



Entropy

 General answer: if prior is <p1,…,pn>

 Information is the expected code length

 Also called the entropy of the distribution

 More uniform = higher entropy

 More values = higher entropy

 More peaked = lower entropy

 Rare values almost “don’t count”



Information gain

 Back to decision trees!

 For each split, compare entropy before and after

 Difference is the information gain

 Problem: there’s more than one distribution after split!

 Solution: use expected entropy, weighted by the 

number of samples



Next step: Recurse

 Now we need to keep growing the tree

 What to do under “full”?



Example: learned tree

 Decision tree learned from these 12 examples:

 Substantially simpler than “true” tree

 A more complex hypothesis isn’t justified by data



Example: Miles per gallon



Find the first split

 Look at information gain for 

each attribute

 Note that each attribute is 

correlated with the target

 What do we split on?



Result: Decision stump



Second level





Reminder: overfitting

 Overfitting:

 When you stop modeling the patterns in the training 

data (which generalize)

 And start modeling the noise (which doesn’t)

 We had this before:

 Naïve Bayes: needed to smooth

 Perceptron: early stopping







Significance of a split

 Starting with:

 Three cars with 4 cylinders, from Asia, with medium HP

 2 bad MPG, 1 good MPG

 What do we expect from a three-way split?

 Maybe each example in its own subset?

 Maybe just what we saw on the last slide?

 Probably shouldn’t split if the counts are so small 

they could be due to chance

 A chi-squared test can tell us how likely it is that 

deviations from a perfect split are due to chance

 Each split will have a significance value, pCHANCE



Keeping it general

 Pruning:

 Build the full decision tree

 Begin at the bottom of the tree

 Delete splits in which 

pCHANCE > Max pCHANCE

 Continue working upward until 

there are no prunable nodes

 Note: some chance nodes may 

not get pruned because they 

were “redeemed” later



Pruning example

 With Max pCHANCE = 0.1 :



Regularization

 Max pCHANCE is a regularization parameter

 Generally, set it using held-out data (as usual)



Two ways to control overfitting

 Limit the hypothesis space

 E.g., limit the max depth of trees

 Regularize the hypothesis selection

 E.g., chance cutoff

 Disprefer most of the hypotheses unless data is clear

 Usually done in practice



Reminder: Perceptron

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:

 Positive, output +1

 Negative, output -1



Two-layer perceptron network



Two-layer perceptron network



Two-layer perceptron network



Learning w

 Training examples

 Objective:

 Procedure: 

 Hill climbing



Hill climbing

 Simple, general idea:

 Start wherever

 Repeat: move to the best 

neighboring state

 If no neighbors better than 

current, quit

 Neighbors = small 

perturbations of w

 What’s bad?

 Complete?

 Optimal?



Two-layer neural network



Neural network properties

 Theorem (Universal function approximators): A 

two-layer network with a sufficient number of 

neurons can approximate any continuous 

function to any desired accuracy

 Practical considerations:

 Can be seen as learning the features

 Large number of neurons

 Danger for overfitting

 Hill-climbing procedure can get stuck in bad local 

optima



Summary

 Formalization of learning

 Target function

 Hypothesis space

 Generalization

 Decision trees

 Can encode any function

 Top-down learning (not perfect!)

 Information gain

 Bottom-up pruning to prevent overfitting

 Neural networks

 Learn features

 Universal function approximators

 Difficult to train


