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This week

* Tournament Wed night (tomorrow) 7 pm
= We'll meet here
= Submit final agent by tonight
» Otherwise we’'ll take your last qualifying entry

= Class Thursday

= Course wrap-up, exam details, tournament recap/awards,
surveys



Last time

= Neural networks

* Visual recognition
* Face detection
= Gender recognition
* Boosting
= Multi-class SVMs
» Classifier cascades



Today

= Deep learning for image recognition

= Body pose estimation from decision
forests

= Non-parametric scene recognition
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Perceptron

Slide credit: Dan Klein and Pieter Abbeel




Two-layer neural network
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N-layer neural network

Slide credit: Dan Klein and Pieter Abbeel



Auto-encoder (sketch)

Slide credit: Dan Klein and Pieter Abbeel



Training procedure:
stacked auto-encoder

= Auto-encoder
» Layer 1 = “compressed” version of input layer

= Stacked auto-encoder

= For every image, make a compressed image (=layer
1 response to image)

» Learn Layer 2 by using compressed images as input,
and as output to be predicted

= Repeat similarly for Layer 3, 4, etc.

= Some detalls left out

= Typically in between layers responses get
agglomerated from several neurons (“pooling” /
lex cells”)

Slide credit;: Dan Kleln and FPeter Abbeel



Final result: trained neural network
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Real-Time Human Pose Recognition
In Parts from Single Depth Images

Jamie Shotton, Andrew Fitzgibbon, Mat Cook,
Toby Sharp, Mark Finocchio, Richard Moore,
Alex Kipman, Andrew Blake

CVPR 2011

Microsoft

Research [EEEeces
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Decision tree classification

Toy example: image window
distinguish centred at x
left (L) and right (R) .
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Training decision trees (Breiman etal. 8]
P (O] Q, = {(I )}forall

body part ¢ fl, x; A) >0,

) no
Py(c) reduce P (o)
entropy |I II I
c &

C

Take (A, 0) that maximises

information gain: Goal: drive entropy
Q1 1Q; | at leaf nodes
Ak = IQ | 0., |E(Qr) to zero



[Amit & Geman g7]

Decision forest classifier e 7

[Geurts et al. 06]
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= Trained on different random subset of images

= “bagging” helps avoid over-fitting

T
1
= Average tree posteriors P(c|l,x) = TZ P.(c|l,x)
t=1



Body parts to joint hypotheses

= Define 3D world space density: :T 'ﬁf

el 3D coord
pixe of ith plxel
3D coord welght
A 2 I:II:II:I
X - XZ
O( E W;ec €EXP h ig
&
~— $3
bandwidth
plxel index i
2
Wiec — P(C|I7 X’i) ' dI(Xi)
| - ) ~— 7 | . > % x
inferred depth at

3. hypothesize

robabilit i th pixel
P Y P body joints

= Mean shift for mode detection 1L



Mean shift
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Slide by Y. Ukrainitz & B. Sarel



Mean shift clustering

« Cluster: all data points in the attraction basin
of a mode

 Attraction basin: the region for which all
trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel



Nearest Neighbor classification

« Assign label of nearest training data point to each
test data point

Black = negative
Red = positive

Novel test example

Closest to a
positive example
from the training
set, so classify it
> as positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data



K-Nearest Neighbors classification

* For a new point, find the k closest points from training data
« Labels of the k points “vote” to classify

Black = negative
Red = positive

. K=5

. *+ |f query lands here, the 5

. ++ * NN consist of 3 negatives
' . and 2 positives, so we
‘ " <" classify it as negative.

.-\

Source: D. Lowe



6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users



Global texture:
capturing the “Gist” of the scene

Capture global image properties while keeping some spatial
information

Steerable
pryramid

vV = [energy at each orientation and
scalel = 6 x 4 dimensions

= L 80 feafures

— |V, |_.- PCA—* §

G

Gist
descriptor

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003



Thailand

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]



The Importance of Data
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[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]



Recap

= Deep learning for image recognition

= Body pose estimation from decision
forests

= Non-parametric scene recognition

= Visual recognition tasks with supervised
classification
= Variety of features and models
* Training data quality and/or quantity essential



