343H: Honors Al

Lecture 26: More applications 4/29/2014

Kristen Grauman UT Austin

This week

- Tournament Wed night (tomorrow) 7 pm
 - We'll meet here
 - Submit final agent by tonight
 - Otherwise we'll take your last qualifying entry
- Class Thursday
 - Course wrap-up, exam details, tournament recap/awards, surveys

Last time

- Neural networks
- Visual recognition
 - Face detection
 - Gender recognition
 - Boosting
 - Multi-class SVMs
 - Classifier cascades

Today

- Deep learning for image recognition
- Body pose estimation from decision forests
- Non-parametric scene recognition

How many computers to identify a cat?

[Le, Ng, Dean, et al. 2012]

Perceptron

Slide credit: Dan Klein and Pieter Abbeel

Two-layer neural network

N-layer neural network

Slide credit: Dan Klein and Pieter Abbeel

Auto-encoder (sketch)

Slide credit: Dan Klein and Pieter Abbeel

Training procedure: stacked auto-encoder

- Auto-encoder
 - Layer 1 = "compressed" version of input layer
- Stacked auto-encoder
 - For every image, make a compressed image (=layer 1 response to image)
 - Learn Layer 2 by using compressed images as input, and as output to be predicted
 - Repeat similarly for Layer 3, 4, etc.
- Some details left out
- Typically in between layers responses get agglomerated from several neurons ("pooling" / "complex cells") Slide credit: Dan Klein and Pieter Abbeel

Final result: trained neural network

Slide credit: Dan Klein and Pieter Abbeel

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake

CVPR 2011

Microsoft[®] Research

Decision tree classification

Take (Δ, θ) that maximises information gain: $\Delta E = -\frac{|Q_1|}{|Q_r|} E(Q_1) - \frac{|Q_r|}{|Q_r|} E(Q_r)$

Goal: drive entropy at leaf nodes to zero

Decision forest classifier

[Amit & Geman 97] [Breiman 01] [Geurts *et al.* 06]

- Trained on different random subset of images
 - "bagging" helps avoid over-fitting

• Average tree posteriors $P(c|I, \mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I, \mathbf{x})$

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Nearest Neighbor classification

Assign label of nearest training data point to each test data point

Black = negative Red = positive

from Duda et al.

Novel test example

Closest to a positive example from the training set, so classify it as positive.

Voronoi partitioning of feature space for 2-category 2D data

K-Nearest Neighbors classification

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify

Black = negative Red = positive

6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Global texture: capturing the "Gist" of the scene

Capture global image properties while keeping some spatial information

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

The Importance of Data

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

Recap

- Deep learning for image recognition
- Body pose estimation from decision forests
- Non-parametric scene recognition
- Visual recognition tasks with supervised classification
 - Variety of features and models
 - Training data quality and/or quantity essential