CS 343H: Atrtificial Intelligence

Lecture 3: Uninformed Search
ues 1/21/14

Slides courtesy of Dan Klein at UC-Berkeley
Unless otherwise noted

Announcements

= PSO0 due this Thurs 1/23 by 11:59 pm
= All remaining reading response deadlines are firm
= Printing slides before lecture

Today

= Agents that Plan Ahead
= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

Recall: Rational Agents

An agent is an entity that
perceives and acts.

A rational agent selects
actions that maximize its
utility function.

Characteristics of the
percepts, environment,
and action space dictate
techniques for selecting
rational actions.

/Ag ent
Sensors
Percepts m
)
<.
2 o
’ -
3
D
=
Actuators :
Actions
\ -/

Reflex Agents

» Reflex agents:

= Choose action based on S
current percept (and C e e e ae e
maybe memory) -

= May have memory or a et

model of the world’s
current state

= Do not consider the
future consequences of
their actions

= Consider how the world
IS

= Can areflex agent be
rational?

[demo: reflex optimal / loop |

Planning Agents

Plan ahead
Ask “what if”

Decisions based on
(hypothesized)
consequences of
actions

Must have a model of
how the world evolves
INn response to actions

Consider how the
world WOULD BE

Search Problems

= A search problem consists of:

- e e 1 I O

= A successor function ‘N, 1.0 n
(with actions, costs)

\

“‘E", 1.0

= A start state and a goal test

= A solution Is a sequence of actions (a plan)
which transforms the start state to a goal state

Example: Romania

= State space:
= Cities

= Successor
function:

» Roads: Go to adj
118 J Clty with cost = dist

= Start state:
= Arad

= Goal test:

= |S state ==
Bucharest?

Eforie

[Giurgiu

= Solution?

What's in a State Space?

The world state o v
specifies every o

#* & # * & # & # *® #® »

* *

] L] - L] L] L] » L] L] L] » L] L] - L

last detall of the
environment

* L * * * * L

A search state keeps only the details needed (abstraction)
* Problem 2: Eat-All-Dots

= Problem 1: Pathing
= States: (X,y) location
= Actions: NSEW

= Successor: update location
only

= Goal test: is (X,y)=END

States: {(Xx,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
* Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(12%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(2309)

State Space Graphs

= State space graph: A
mathematical representation
of a search problem

= Nodes: abstracted world
configurations

» Arcs: successors (action results)

» Goal test is set of goal nodes
(maybe only one)

* |n a search graph, each state
I
OCCUrs Only once: Ridiculously tiny search graph
= We can rarely build this graph for a tiny search problem
iIn memory (so we don't)

Search Trees

' This is now / start

N 10— —E" 10

H Possible futures

= A search tree:

This is a “what if” tree of plans and outcomes

Start state at the root node

Children correspond to successors

Nodes contain states, correspond to PLANS to those states
For most problems, we can never actually build the whole tree

Recall: Romania example

o 92
Sibiu g9 Fagaras

118 [Vaslui

M Hirsova

75
Bucharest

Eforie

Searching with a search tree

= Search:
= Expand out possible plans
= Maintain a fringe of unexpanded plans
* Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
~
* |[mportant ideas:
* Fringe Detailed pseudocode
n Expansion IS in the book!

= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

Fringe (potential plans) Tree

State Graphs vs. Search Trees

Each NODE in in the
search tree is an
entire PATH in the
problem graph.

S
-
e

We construct both b C e h r q
on demand — and | N AN
we construct as a a h r p q f
little as possible. N | N

p q f q C G

| AN |

q G a

Depth First Search

Strategy: expand

deepest node first
State graph

Search tree

Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?
Optimal? Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Variables:
n Number of states in the problem (huge)
b The average branching factor B

(the average number of successors)

C* Cost of least cost solution

S Depth of the shallowest solution

m Max depth of the search tree

DFES

Algorithm

Complete

Optimal

Time

Space

DFS Depth First
Search

* Infinite paths make DFS incomplete...

= How can we fix this?

A2

DFES

= With cycle checking, DFS is complete.*

4 1 node
b nodes
b2 nodes
m tiers <
b™ nodes
\ N\
Algorithm Complete |Optimal |Time Space
DFS w/ Path
Checking

= When is DFS optimal?

* Or graph search — next lecture.

Breadth First Search

Strategy: expand 9
(9)% P @ o

shallowest node first

P
4 Hu
@
Tiers < | | }e{ SN
@ h r p q f
A A
q C
N P q /f\ - G
q C G a

BFS

Algorithm Complete |Optimal |[Time Space
DES w/ Path
Checking
BFS
-
1 node
b nodes
stiers <
b2 nodes
_ bs nodes
b™ nodes

When is BFS optimal?

C

BFS complexity: concretely

Depth Nodes Time Memory
2 110 .11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 101 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 1014 3.5 years 99 petabytes
16 1018 350 vyears 10 exabytes

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown
- assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Russell & Norvig

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[demo: dfs/bfs]

lterative Deepening

lterative deepening: BFS using DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete |Optimal |Time Space
DFS w/ Path
Checking

BFS

ID

Costs on Actions

Notice that BFS finds the shortest path in terms of humber of
transitions. It does not find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

@
/N
¢+ 7
Cost @ 6/ a
contours

Priority Queue Refresher

= A priority gueue Is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pg.push(key, value) |inserts (key, value) into the queue.

pPg.pop() returns the key with the lowest value, and
removes it from the queue.

* You can decrease a key’s priority by pushing it again

Unlike a regular queue, insertions aren’t constant time,
usually O(log n)

= We’'ll need priority queues for cost-sensitive search methods

Uniform Cost Search

= Remember: explores
Increasing cost contours

Uniform Cost Search

Algorithm Complete |Optimal |[Time Space
DES w/ Path
Checking
BFS
UCS
-

C*/ctiers <

Uniform Cost Issues

= Remember: explores
Increasing cost contours

* The good: UCS is
complete and optimal!

= The bad:
= Explores options in every

“direction”
= No information about goal
location Goal

Search Gone Wrong?

ARCTIC OCEAN

ICELAND

any ApeaiDow

- “opuea any ob|epiH
AAY MIIA 9YeT

7.-RUSSIA

onyy oBpry 1008S

AT ANTIC i h ﬁ}.}é ;

" Helsinki Tver

Telingfers

Rjga' w".,_ "

2. Smlensk

Yilniug _~ T
b @‘

¥ i
Eialf?'g;{.f.[{é’{'BELARUSr'U'
POLAHD -’mqr’ Kievy

@O R ANE

W EE

Chigifiau s,

L HGARY Vs
I ROMAHIA %

V' Zoom on map di

Start: Haugesund, Rogaland, Morway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

Summary

= Agents that Plan Ahead
= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

= Next time: informed search, A*

