
CS 343H: Artificial Intelligence

Lecture 3: Uninformed Search

Tues 1/21/14

Slides courtesy of Dan Klein at UC-Berkeley

Unless otherwise noted

Announcements

 PS0 due this Thurs 1/23 by 11:59 pm

 All remaining reading response deadlines are firm

 Printing slides before lecture

Today

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods
 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

Recall: Rational Agents

 An agent is an entity that

perceives and acts.

 A rational agent selects

actions that maximize its

utility function.

 Characteristics of the

percepts, environment,

and action space dictate

techniques for selecting

rational actions.

Agent

Sensors

?

Actuators

E
n

v
iro

n
m

e
n

t

Percepts

Actions

Reflex Agents

 Reflex agents:
 Choose action based on

current percept (and
maybe memory)

 May have memory or a
model of the world’s
current state

 Do not consider the
future consequences of
their actions

 Consider how the world
IS

 Can a reflex agent be
rational?

[demo: reflex optimal / loop]

Planning Agents

 Plan ahead

 Ask “what if”

 Decisions based on
(hypothesized)
consequences of
actions

 Must have a model of
how the world evolves
in response to actions

 Consider how the
world WOULD BE

Search Problems

 A search problem consists of:

 A state space

 A successor function

(with actions, costs)

 A start state and a goal test

 A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Example: Romania

 State space:

 Cities

 Successor

function:

 Roads: Go to adj

city with cost = dist

 Start state:

 Arad

 Goal test:

 Is state ==

Bucharest?

 Solution?

What’s in a State Space?

 Problem 1: Pathing

 States: (x,y) location

 Actions: NSEW

 Successor: update location

only

 Goal test: is (x,y)=END

 Problem 2: Eat-All-Dots

 States: {(x,y), dot booleans}

 Actions: NSEW

 Successor: update location

and possibly a dot boolean

 Goal test: dots all false

The world state

specifies every

last detail of the

environment

A search state keeps only the details needed (abstraction)

State Space Sizes?

 World state:

 Agent positions: 120

 Food count: 30

 Ghost positions: 12

 Agent facing: NSEW

 How many

 World states?

120x(230)x(122)x4

 States for pathing?

120

 States for eat-all-dots?

120x(230)

State Space Graphs

 State space graph: A

mathematical representation

of a search problem

 Nodes: abstracted world

configurations

 Arcs: successors (action results)

 Goal test is set of goal nodes

(maybe only one)

 In a search graph, each state

occurs only once!

 We can rarely build this graph

in memory (so we don’t)

S

G

d

b

p
q

c

e

h

a

f

r

Ridiculously tiny search graph

for a tiny search problem

Search Trees

 A search tree:

 This is a “what if” tree of plans and outcomes

 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Recall: Romania example

Searching with a search tree

 Search:

 Expand out possible plans

 Maintain a fringe of unexpanded plans

 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe

 Expansion

 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode

is in the book!

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Fringe (potential plans) Tree

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both

on demand – and

we construct as

little as possible.

Each NODE in in the

search tree is an

entire PATH in the

problem graph.

Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand

deepest node first
State graph

Search tree

Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?

Optimal? Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Variables:

n Number of states in the problem (huge)

b The average branching factor B

(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree

DFS

 Infinite paths make DFS incomplete…

 How can we fix this?

Algorithm Complete Optimal Time Space

DFS Depth First

Search
N N O(BLMAX) O(LMAX)

START

GOAL

a

b

DFS

 With cycle checking, DFS is complete.*

 When is DFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

* Or graph search – next lecture.

Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand

shallowest node first

BFS

 When is BFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

BFS complexity: concretely

 Russell & Norvig

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

[demo: dfs/bfs]

Iterative Deepening

Iterative deepening: BFS using DFS as a subroutine:

1. Do a DFS which only searches for paths of

length 1 or less.

2. If “1” failed, do a DFS which only searches paths

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths

of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

ID

…
b

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expand cheapest node first:

S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and
removes it from the queue.

 You can decrease a key’s priority by pushing it again

 Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

 We’ll need priority queues for cost-sensitive search methods

 A priority queue is a data structure in which you can insert

and retrieve (key, value) pairs with the following operations:

Uniform Cost Search

 Remember: explores
increasing cost contours

…

c  3

c  2

c  1

Uniform Cost Search

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

UCS

…
b

C*/ tiers

Uniform Cost Issues

 Remember: explores
increasing cost contours

 The good: UCS is
complete and optimal!

 The bad:
 Explores options in every

“direction”

 No information about goal
location Start Goal

…

c  3

c  2

c  1

Search Gone Wrong?

Summary

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods
 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

 Next time: informed search, A*

