
CS 343H: Artificial Intelligence

Lecture 3: Uninformed Search

Tues 1/21/14

Slides courtesy of Dan Klein at UC-Berkeley

Unless otherwise noted

Announcements

 PS0 due this Thurs 1/23 by 11:59 pm

 All remaining reading response deadlines are firm

 Printing slides before lecture

Today

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods
 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

Recall: Rational Agents

 An agent is an entity that

perceives and acts.

 A rational agent selects

actions that maximize its

utility function.

 Characteristics of the

percepts, environment,

and action space dictate

techniques for selecting

rational actions.

Agent

Sensors

?

Actuators

E
n

v
iro

n
m

e
n

t

Percepts

Actions

Reflex Agents

 Reflex agents:
 Choose action based on

current percept (and
maybe memory)

 May have memory or a
model of the world’s
current state

 Do not consider the
future consequences of
their actions

 Consider how the world
IS

 Can a reflex agent be
rational?

[demo: reflex optimal / loop]

Planning Agents

 Plan ahead

 Ask “what if”

 Decisions based on
(hypothesized)
consequences of
actions

 Must have a model of
how the world evolves
in response to actions

 Consider how the
world WOULD BE

Search Problems

 A search problem consists of:

 A state space

 A successor function

(with actions, costs)

 A start state and a goal test

 A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Example: Romania

 State space:

 Cities

 Successor

function:

 Roads: Go to adj

city with cost = dist

 Start state:

 Arad

 Goal test:

 Is state ==

Bucharest?

 Solution?

What’s in a State Space?

 Problem 1: Pathing

 States: (x,y) location

 Actions: NSEW

 Successor: update location

only

 Goal test: is (x,y)=END

 Problem 2: Eat-All-Dots

 States: {(x,y), dot booleans}

 Actions: NSEW

 Successor: update location

and possibly a dot boolean

 Goal test: dots all false

The world state

specifies every

last detail of the

environment

A search state keeps only the details needed (abstraction)

State Space Sizes?

 World state:

 Agent positions: 120

 Food count: 30

 Ghost positions: 12

 Agent facing: NSEW

 How many

 World states?

120x(230)x(122)x4

 States for pathing?

120

 States for eat-all-dots?

120x(230)

State Space Graphs

 State space graph: A

mathematical representation

of a search problem

 Nodes: abstracted world

configurations

 Arcs: successors (action results)

 Goal test is set of goal nodes

(maybe only one)

 In a search graph, each state

occurs only once!

 We can rarely build this graph

in memory (so we don’t)

S

G

d

b

p
q

c

e

h

a

f

r

Ridiculously tiny search graph

for a tiny search problem

Search Trees

 A search tree:

 This is a “what if” tree of plans and outcomes

 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Recall: Romania example

Searching with a search tree

 Search:

 Expand out possible plans

 Maintain a fringe of unexpanded plans

 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe

 Expansion

 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode

is in the book!

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Fringe (potential plans) Tree

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both

on demand – and

we construct as

little as possible.

Each NODE in in the

search tree is an

entire PATH in the

problem graph.

Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand

deepest node first
State graph

Search tree

Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?

Optimal? Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Variables:

n Number of states in the problem (huge)

b The average branching factor B

(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree

DFS

 Infinite paths make DFS incomplete…

 How can we fix this?

Algorithm Complete Optimal Time Space

DFS Depth First

Search
N N O(BLMAX) O(LMAX)

START

GOAL

a

b

DFS

 With cycle checking, DFS is complete.*

 When is DFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

* Or graph search – next lecture.

Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand

shallowest node first

BFS

 When is BFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

BFS complexity: concretely

 Russell & Norvig

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

[demo: dfs/bfs]

Iterative Deepening

Iterative deepening: BFS using DFS as a subroutine:

1. Do a DFS which only searches for paths of

length 1 or less.

2. If “1” failed, do a DFS which only searches paths

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths

of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

ID

…
b

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expand cheapest node first:

S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and
removes it from the queue.

 You can decrease a key’s priority by pushing it again

 Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

 We’ll need priority queues for cost-sensitive search methods

 A priority queue is a data structure in which you can insert

and retrieve (key, value) pairs with the following operations:

Uniform Cost Search

 Remember: explores
increasing cost contours

…

c 3

c 2

c 1

Uniform Cost Search

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

UCS

…
b

C*/ tiers

Uniform Cost Issues

 Remember: explores
increasing cost contours

 The good: UCS is
complete and optimal!

 The bad:
 Explores options in every

“direction”

 No information about goal
location Start Goal

…

c 3

c 2

c 1

Search Gone Wrong?

Summary

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods
 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

 Next time: informed search, A*

