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Announcements

 PS0 due this Thurs 1/23 by 11:59 pm

 All remaining reading response deadlines are firm

 Printing slides before lecture



Today

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods
 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search



Recall: Rational Agents

 An agent is an entity that 

perceives and acts.

 A rational agent selects 

actions that maximize its 

utility function.  

 Characteristics of the 

percepts, environment,

and action space dictate 

techniques for selecting 

rational actions.
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Reflex Agents

 Reflex agents:
 Choose action based on 

current percept (and 
maybe memory)

 May have memory or a 
model of the world’s 
current state

 Do not consider the 
future consequences of 
their actions

 Consider how the world 
IS

 Can a reflex agent be 
rational?

[demo: reflex optimal / loop ]



Planning Agents

 Plan ahead

 Ask “what if”

 Decisions based on 
(hypothesized) 
consequences of 
actions

 Must have a model of 
how the world evolves 
in response to actions

 Consider how the 
world WOULD BE



Search Problems

 A search problem consists of:

 A state space

 A successor function

(with actions, costs)

 A start state and a goal test

 A solution is a sequence of actions (a plan) 
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



Example: Romania

 State space:

 Cities

 Successor 

function:

 Roads: Go to adj 

city with cost = dist

 Start state:

 Arad

 Goal test:

 Is state == 

Bucharest?

 Solution?



What’s in a State Space?

 Problem 1: Pathing

 States: (x,y) location

 Actions: NSEW

 Successor: update location 

only

 Goal test: is (x,y)=END

 Problem 2: Eat-All-Dots

 States: {(x,y), dot booleans}

 Actions: NSEW

 Successor: update location 

and possibly a dot boolean

 Goal test: dots all false

The world state

specifies every

last detail of the

environment

A search state keeps only the details needed (abstraction)



State Space Sizes?

 World state:

 Agent positions: 120

 Food count: 30

 Ghost positions: 12

 Agent facing: NSEW

 How many

 World states?

120x(230)x(122)x4

 States for pathing?

120

 States for eat-all-dots?

120x(230)



State Space Graphs

 State space graph: A 

mathematical representation 

of a search problem

 Nodes: abstracted world 

configurations

 Arcs: successors (action results)

 Goal test is set of goal nodes 

(maybe only one)

 In a search graph, each state 

occurs only once!

 We can rarely build this graph 

in memory (so we don’t)
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Search Trees

 A search tree:

 This is a “what if” tree of plans and outcomes

 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



Recall: Romania example



Searching with a search tree

 Search:

 Expand out possible plans

 Maintain a fringe of unexpanded plans

 Try to expand as few tree nodes as possible



General Tree Search

 Important ideas:
 Fringe

 Expansion

 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode 

is in the book!



Example: Tree Search
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State Graphs vs. Search Trees
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Depth First Search
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Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?

Optimal? Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Variables:

n Number of states in the problem (huge)

b The average branching factor B

(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree



DFS

 Infinite paths make DFS incomplete…

 How can we fix this?

Algorithm Complete Optimal Time Space

DFS Depth First 

Search
N N O(BLMAX) O(LMAX)

START

GOAL

a

b



DFS

 With cycle checking, DFS is complete.* 

 When is DFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path 

Checking

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

* Or graph search – next lecture.



Breadth First Search
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BFS

 When is BFS optimal?

Algorithm Complete Optimal Time Space

DFS w/ Path 

Checking

BFS

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



BFS complexity: concretely

 Russell & Norvig



Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

[demo: dfs/bfs]



Iterative Deepening

Iterative deepening: BFS using DFS as a subroutine:

1. Do a DFS which only searches for paths of 

length 1 or less.  

2. If “1” failed, do a DFS which only searches paths 

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths 

of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path 

Checking

BFS

ID

…
b



Costs on Actions

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path.
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Uniform Cost Search
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Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and 
removes it from the queue.

 You can decrease a key’s priority by pushing it again

 Unlike a regular queue, insertions aren’t constant time, 

usually O(log n)

 We’ll need priority queues for cost-sensitive search methods

 A priority queue is a data structure in which you can insert 

and retrieve (key, value) pairs with the following operations:



Uniform Cost Search

 Remember: explores 
increasing cost contours

…

c  3

c  2

c  1



Uniform Cost Search

Algorithm Complete Optimal Time Space

DFS w/ Path 

Checking
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Uniform Cost Issues

 Remember: explores 
increasing cost contours

 The good: UCS is 
complete and optimal!

 The bad:
 Explores options in every 

“direction”

 No information about goal 
location Start Goal

…

c  3

c  2

c  1



Search Gone Wrong?



Summary

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods
 Depth-First Search

 Breadth-First Search

 Uniform-Cost Search

 Next time: informed search, A*


