CS 343H: Atrtificial Intelligence

Lecture 4: Informed Search
1/23/2014

Slides courtesy of Dan Klein at UC-Berkeley
Unless otherwise noted

Today

* Informed search
= Heuristics
» Greedy search
= A* search

= Graph search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs

= Successor function: a function from states to
lists of (state, action, cost) triples (world dynamics)

= Start state and goal test

= Search tree:

» Nodes: represent plans for reaching states
» Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree

= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

o

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

=" |
L

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

N\ (-
Action: flip top two Al Path to reach goal:
Cost: 2 Flip four, flip three

Total cost: 7

Recall: Uniform Cost Search

= Strategy: expand lowest
path cost

* The good: UCS is
complete and optimal!

= The bad:
= Explores options in every

“direction”
= No information about goal
location Goal

[demo: countours UCS]

Search heuristic

= A heuristic is:
= A function that estimates how close a state is to a goal
» Designed for a particular search problem

Example: Heuristic Functig

traight—line distance
to Bucharest

Arad 366
Bucharest 0
75 Craiova 160
Dobreta 242
Arad [Eforie 161
Fagaras 178
o Giurgiu 77
18] Vaslui Hirsova 151
Iasi 226
Timisoara Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
. Pitesti 98

] Hirsov . . .
] Mehadia Urziceni Rimnicu Vilcea 193
86 Sibiu 253

75 o
Timisoara 329

Urziceni 80
Vaslui
erind

Dobreta [

L Eforie
[] Giurgiu

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

p— e ()
1 I
4— 3_\\
S re—= o
= = A
==/

= How to use the heuristic?

» What about following the “arrow” of the
heuristic?.... Greedy search

Example: Heuristic Functig

traight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Oiziceni Rimnicu Vilcea 193
Sibiu 253
Timisoara 329

Dobreta [Urziceni 80
Vaslui

erind

[] Giurgiu

Best First / Greedy Search

* Expand the node that seems closest...

366 380 193

Caibin P @charsd

253 0

= What can go wrong?

Greedy search

= Strategy: expand a node
that you think is closest
to a goal state
* Heuristic: estimate of

distance to nearest goal
for each state

= A common case:

= Best-first takes you
straight to the (wrong) goal

= \Worst-case: like a badly-
guided DFS

[demo: countours greedy]

Enter: A* search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=1

d 2 (G)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we engueue a goal?

/ \
\/ho

= No: only stop when we dequeue a goal

Is A* Optimal?

e

o D

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

|dea: admissibility

Inadmissible (pessimistic): Admissible (optimistic):
break optimality by trapping slows down bad plans but
good plans on the fringe never outweigh true costs

Admissible Heuristics

= A heuristic h is admissible (optimistic) If:
h(n) < h*(n)

where h™(n) is the true cost to a nearest goal

= Examples:

4 —

= Coming up with admissible heuristics Is most of
what'’s involved in using A* in practice.

Optimality of A*

Notation:

= g(n) =costto node n

= h(n) = estimated cost from n A - \

to the nearest goal (heuristic)

= f(n) =g(n) + h(n) =
estimated total cost via n

A: a lowest cost goal node

B: another goal node
Claim: A will exit the fringe before B.

Claim: A will exit the fringe before B.

Optimality of A*

= |magine B is on the fringe.

= Some ancestor n of A must be on
the fringe too (maybe nis A)

= Claim: n will be expanded before B.
1. f(n) <=f(A)

« f(n) =g(n) + h(n) // by definition
« f(n) <=g(A) // by admissibility of h
* g(A) =1(A) // because h=0 at goal

Claim: A will exit the fringe before B.

Optimality of A*

= |magine B is on the fringe.

= Some ancestor n of A must be on
the fringe too (maybe nis A)

= Claim: n will be expanded before B.
1. f(n) <=f(A)
2. f(A) <f(B)

™

* g(A) <g(B) /B is suboptimal
« f(A)<f(B) //h=0 atgoals

Claim: A will exit the fringe before B.

Optimality of A*

= |magine B is on the fringe.

= Some ancestor n of A must be on
the fringe too (maybe nis A)

= Claim: n will be expanded before B.
1. f(n) <=f(A)

2. f(A) <f(B)

3. nwill expand before B

™

« f(n) <=1(A) <f(B) // from above
« f(n) <f(B)

W N e

Claim: A will exit the fringe before B.

Optimality of A*

Imagine B is on the fringe.

Some ancestor n of A must be on
the fringe too (maybe nis A)

Claim: n will be expanded before B.
f(n) <= f(A)
f(A) < f(B)
n will expand before B

All ancestors of A expand before B
A expands before B

Properties of A*

Uniform-Cost

b

A*

UCS vs A* Contours

» Uniform-cost expands

equally in all directions
Goal

= A* expands mainly
toward the goal, but

does hedge its bets to @
ensure optimality Goal

[demo: countours UCS / A*]

A* applications

Pathing / routing problems
Video games

Resource planning problems
Robot motion planning
_anguage analysis

Machine translation

Speech recognition

Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* |[nadmissible heuristics are often useful too (why?)

Example: 8 Puzzle

700 2 || 4 1 2

5 6 304 |fl s

sl 3 If 1 6 Il 7l 8
Start State Goal State

What are the states?

How many states?

What are the actions?

What states can | reach from the start state?
What should the costs be?

8 Puzzle |

Heuristic: Number of

tiles misplaced

Why is it admissible?

h(start) = 8

This Is a relaxed-
problem heuristic

l 2

5 6

4 5

8 3 l

6

7 8

Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps | ...12 steps
UCS |112 6,300 3.6 x 10°
TILES |13 39 227

8 Puzzle Il

What if we had an

easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

Total Manhattan
distance

Why admissible?

h(start) =
3+1+2+ ...
=18

l 2

6

4 5

8 3

6

7 8

Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps |...12 steps
TILES 13 39 227
MANHATTAN | 12 25 73

8 Puzzle Il

What if we had an

easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

Total Manhattan
distance

Why admissible?

h(start) =
3+1+2+ ...
=18

l 2

6

4 5

8 3

6

7 8

Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps |...12 steps
TILES 13 39 227
MANHATTAN | 12 25 73

8 Puzzle Il

= How about using the actual cost as a
heuristic?
= \Would it be admissible?
* \Would we save on nodes expanded?
» What's wrong with it?

= With A*: a trade-off between quality of
estimate and work per node!

Today

* Informed search
= Heuristics
» Greedy search
= A* search

= Graph search

Tree Search: Extra Work!

= Failure to detect repeated states can cause
exponentially more work. Why?

A {f —&— “'xT A
\. J ,,r’*’f
B ~ — -
a Y B
L !
C o—
e N C —~ C e
D —@—
4 ® ™
L Y

State graph Search tree

Graph Search

* |n BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

d € P
PN |
b/m h r q
| @ /N |
h r f
« @h o @@ 1
p q f q C G
| PN |

q <|: G a

Graph Search

* |dea: never expand a state twice

= How to implement:

= Tree search + set of expanded states (“closed set”)

= Expand the search tree node-by-node, but...

» Before expanding a node, check to make sure its state is new
» |f not new, skip it

* |mportant: store the closed set as a set, not a list
= Can graph search wreck completeness? Why/why not?

= How about optimality?

Warning: 3e book has a more complex, but also correct, variant

State space graph

A* Graph Search Gone Wrong?

Search tree

S (0+2)
/\

A (1+4) B (1+1)

! !

C (2+1) C (3+1)

! !

G (5+0) G (6+0)

Consistency of Heuristics

= Admissibility: heuristic cost <=
actual cost to goal

* h(A) <= actual cost from Ato G

Consistency of Heuristics

= Stronger than admissibility

= Definition:

» heuristic cost <= actual cost per arc

= h(A)-h(C) <=cost(Ato C)

= Conseguences:

= The f value along a path never

decreases

= A* graph search is optimal

Optimality

Tree search:
= A*is optimal if heuristic is admissible (and non-negative)
= UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Trivial Heuristics, Dominance

= Dominance: h_ 2 h, If
Vn i hg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact

Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* Is optimal with admissible / consistent
heuristics

= Heuristic design Is key: often use relaxed
problems

