CS 343H: Artificial Intelligence

Lecture 4: Informed Search 1/23/2014

Slides courtesy of Dan Klein at UC-Berkeley Unless otherwise noted

Today

Informed search

- Heuristics
- Greedy search
- A* search
- Graph search

Recap: Search

Search problem:

- States (configurations of the world)
- Actions and costs
- Successor function: a function from states to lists of (state, action, cost) triples (world dynamics)
- Start state and goal test

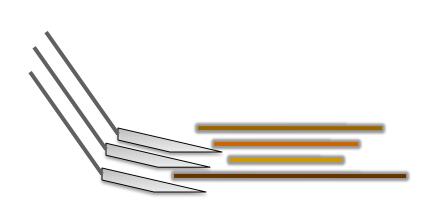
Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

• Search algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans

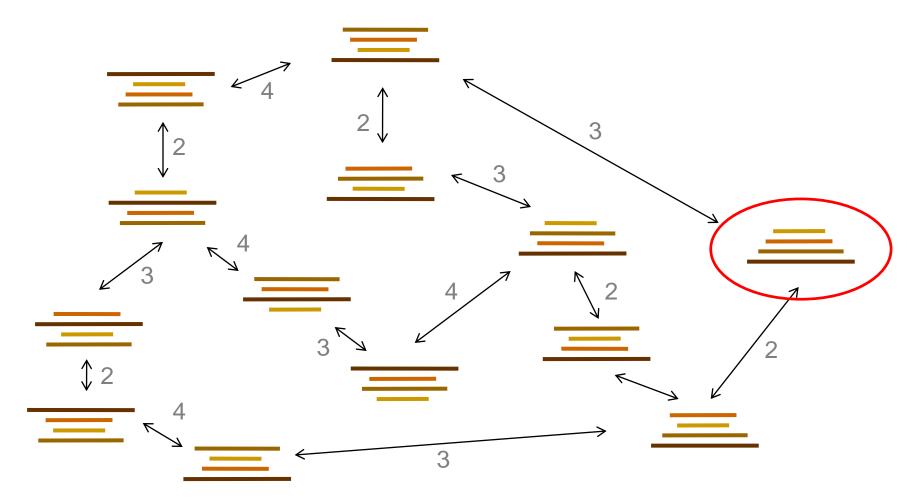
Example: Pancake Problem



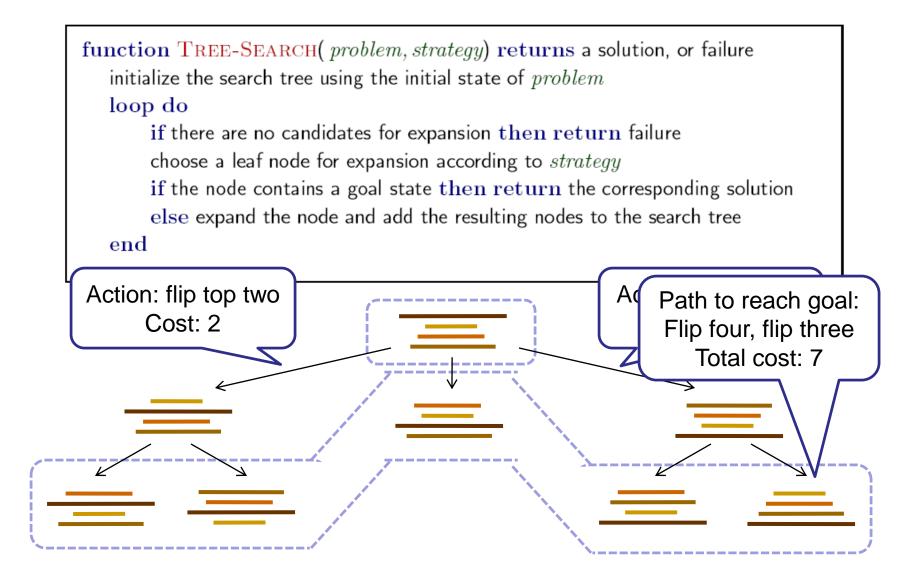
Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights

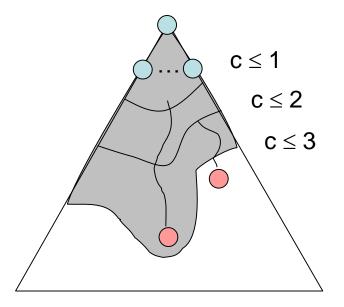


General Tree Search

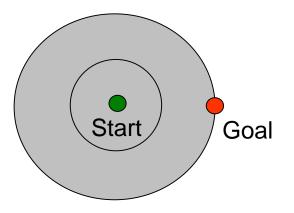


Recall: Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!



- The bad:
 - Explores options in every "direction"
 - No information about goal location

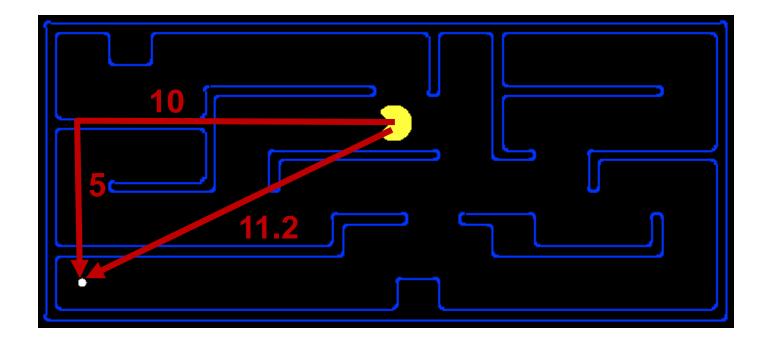


[demo: countours UCS]

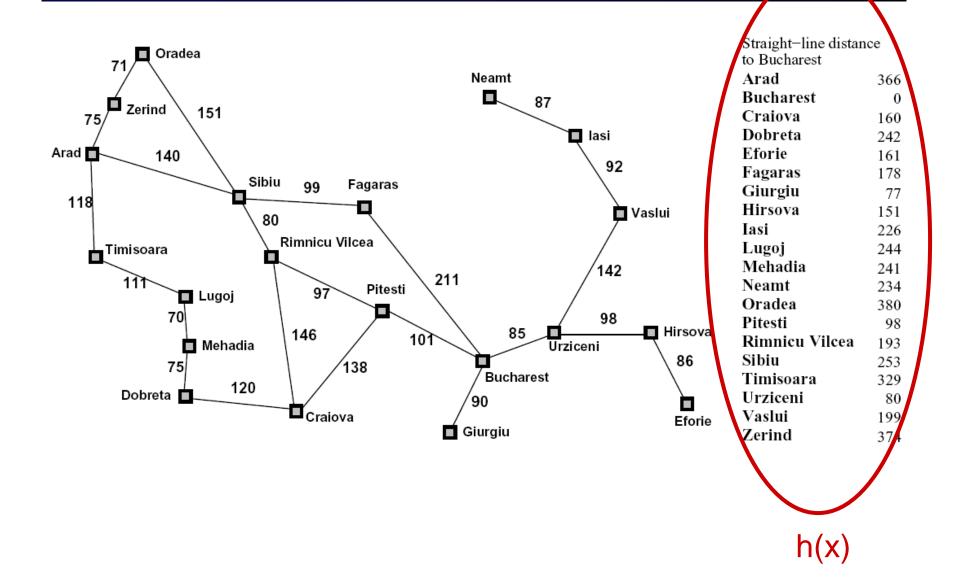
Search heuristic

• A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem

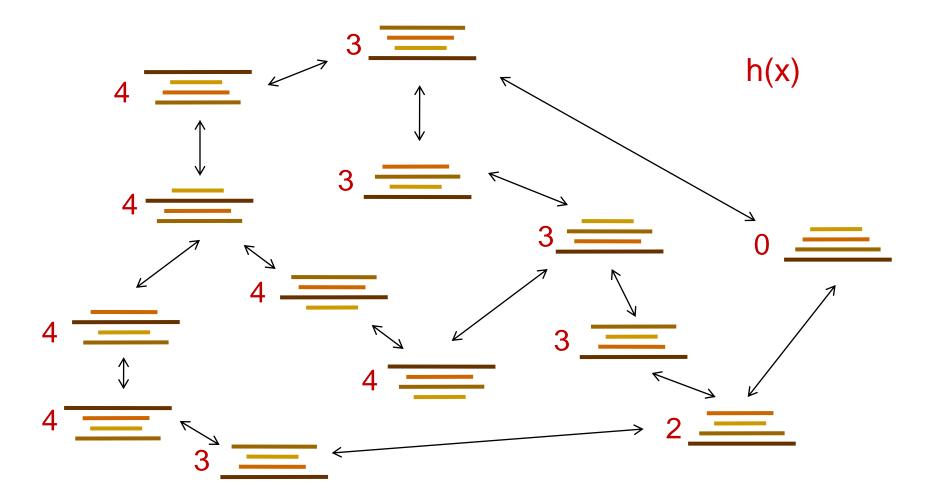


Example: Heuristic Function



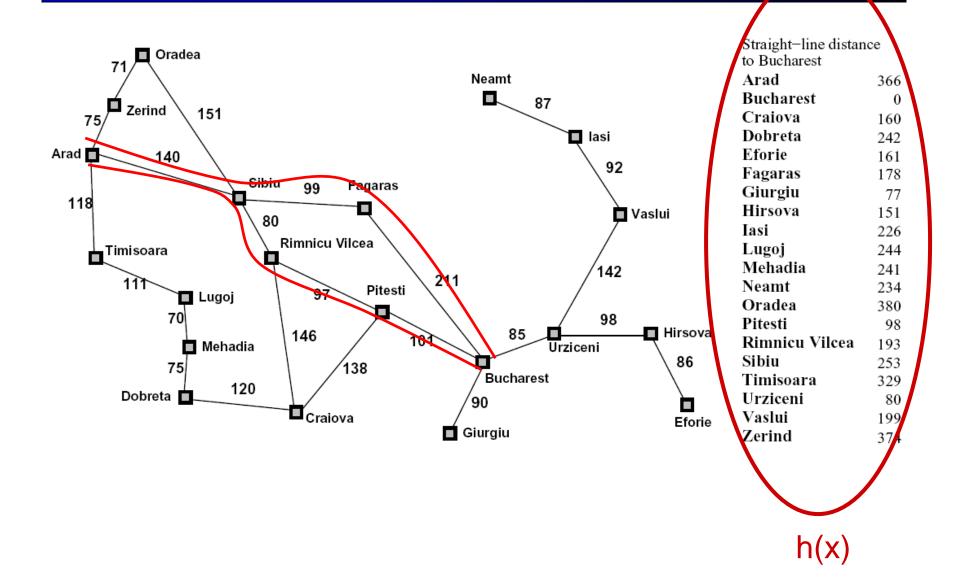
Example: Heuristic Function

Heuristic: the largest pancake that is still out of place



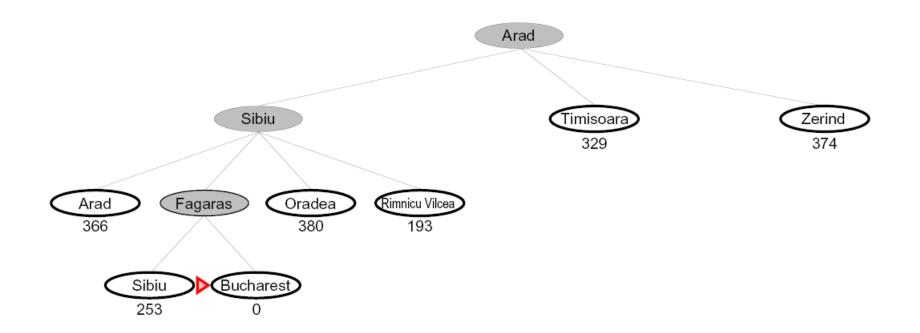
- How to use the heuristic?
- What about following the "arrow" of the heuristic?.... Greedy search

Example: Heuristic Function



Best First / Greedy Search

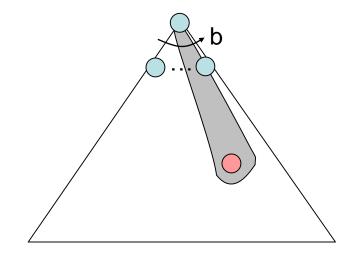
Expand the node that seems closest...

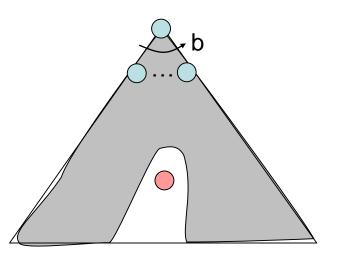


What can go wrong?

Greedy search

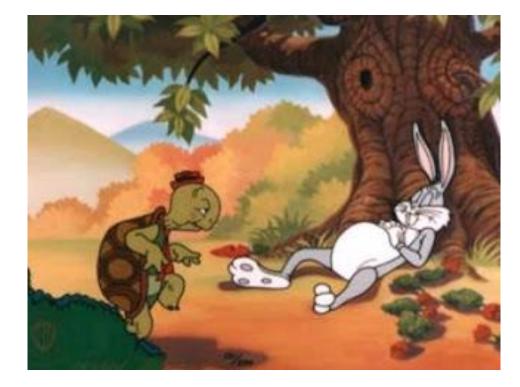
- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS





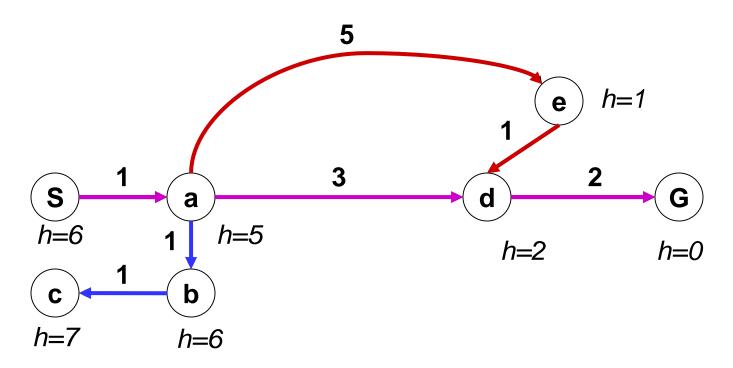
[demo: countours greedy]

Enter: A* search



Combining UCS and Greedy

- Uniform-cost orders by <u>path cost</u>, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

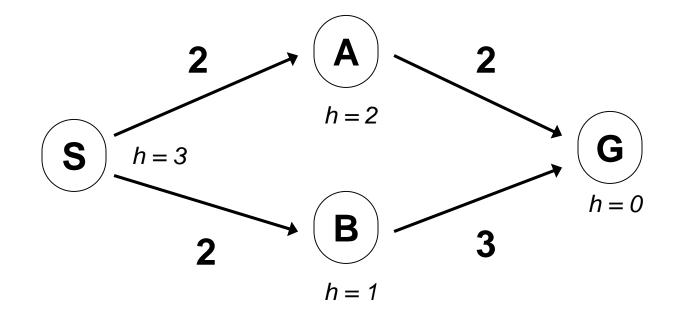


• A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

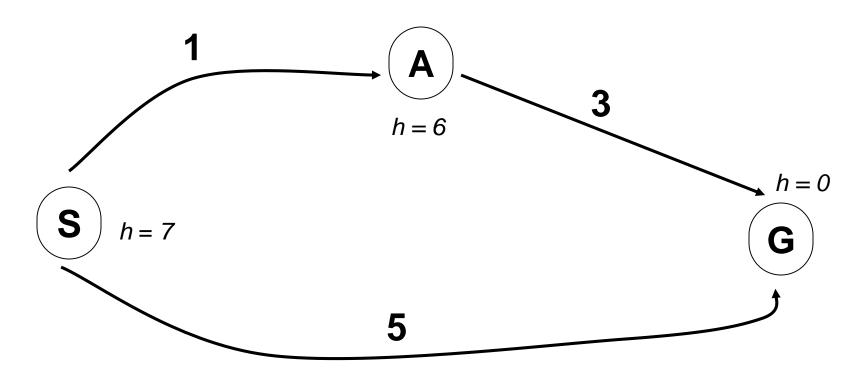
When should A* terminate?

Should we stop when we enqueue a goal?



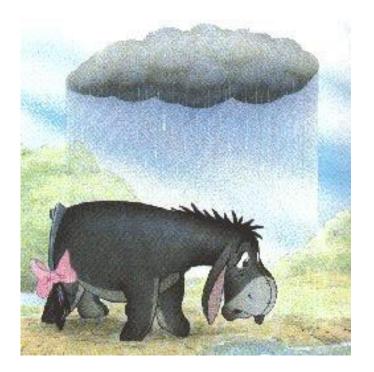
No: only stop when we dequeue a goal

Is A* Optimal?



- What went wrong?
- Actual bad goal cost < estimated good goal cost</p>
- We need estimates to be <u>less</u> than actual costs!

Idea: admissibility





Inadmissible (pessimistic): break optimality by trapping good plans on the fringe Admissible (optimistic): slows down bad plans but never outweigh true costs

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

 $h(n) \leq h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

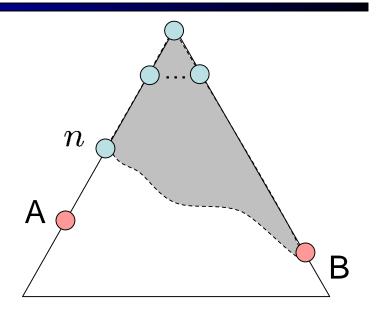
 Coming up with admissible heuristics is most of what's involved in using A* in practice.

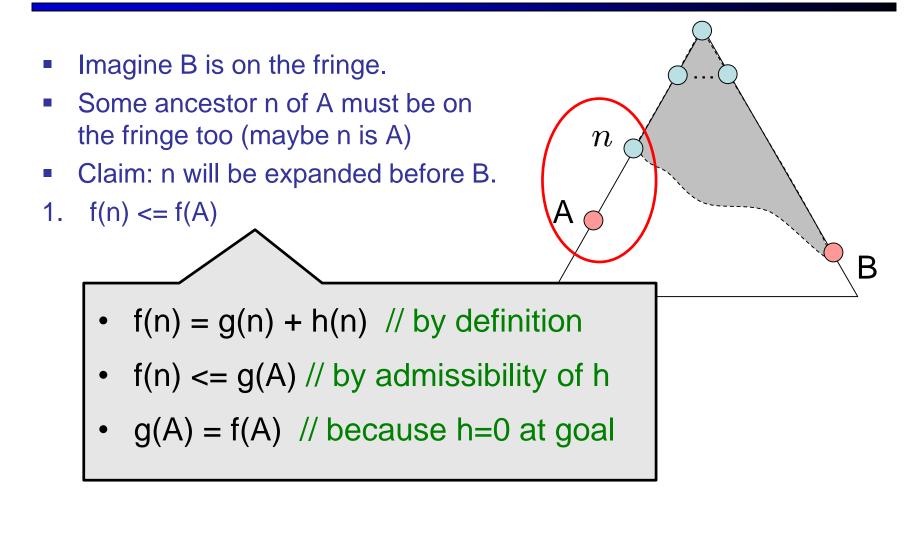
Optimality of A*

Notation:

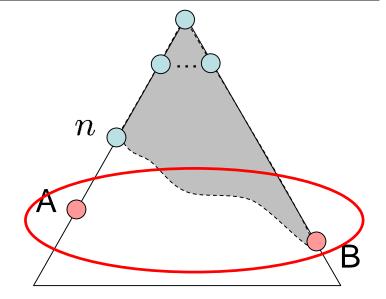
- g(n) = cost to node n
- h(n) = estimated cost from n
 to the nearest goal (heuristic)
- f(n) = g(n) + h(n) =
 estimated total cost via n
- A: a lowest cost goal node
- B: another goal node

Claim: A will exit the fringe before B.



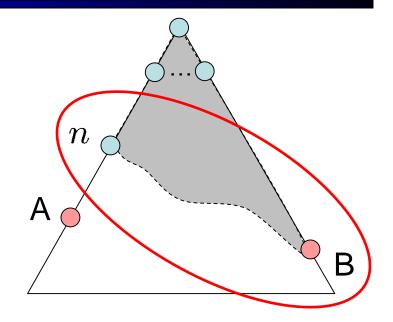


- Imagine B is on the fringe.
- Some ancestor n of A must be on the fringe too (maybe n is A)
- Claim: n will be expanded before B.
- 1. $f(n) \le f(A)$
- 2. f(A) < f(B)



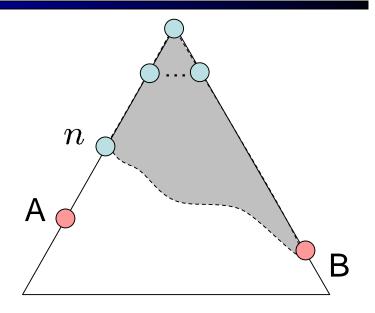
- g(A) < g(B) // B is suboptimal
- f(A) < f(B) // h=0 at goals

- Imagine B is on the fringe.
- Some ancestor n of A must be on the fringe too (maybe n is A)
- Claim: n will be expanded before B.
- 1. f(n) <= f(A)
- 2. f(A) < f(B)
- 3. n will expand before B



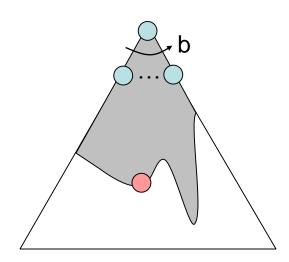
- f(n) <= f(A) < f(B) // from above
- f(n) < f(B)

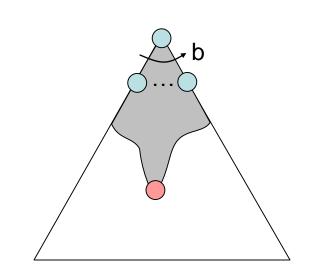
- Imagine B is on the fringe.
- Some ancestor n of A must be on the fringe too (maybe n is A)
- Claim: n will be expanded before B.
- 1. f(n) <= f(A)
- 2. f(A) < f(B)
- 3. n will expand before B
- All ancestors of A expand before B
- A expands before B



Properties of A*

Uniform-Cost



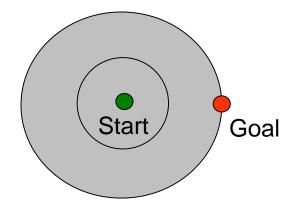


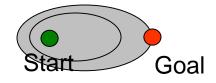
A*

UCS vs A* Contours

 Uniform-cost expands equally in all directions

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality





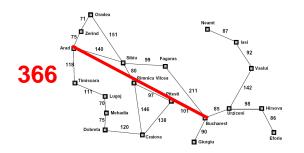
[demo: countours UCS / A*]

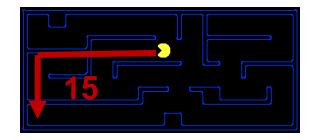
A* applications

- Pathing / routing problems
- Video games
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

Creating Admissible Heuristics

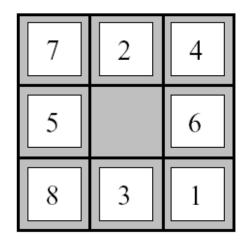
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available



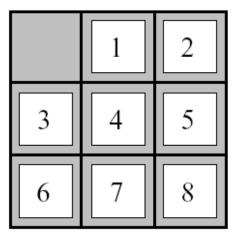


Inadmissible heuristics are often useful too (why?)

Example: 8 Puzzle



Start State

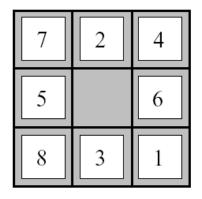


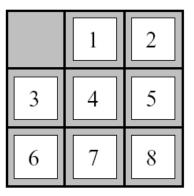
Goal State

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?





Start State

Goal State

h(start) = 8

Average nodes expanded when optimal path has length...

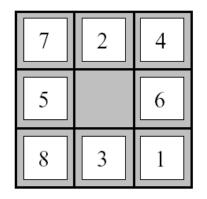
 This is a relaxedproblem heuristic

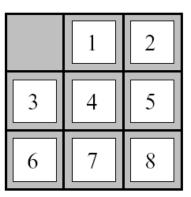
	4 steps	8 steps	12 steps
UCS	112	6,300	3.6 x 10 ⁶
TILES	13	39	227

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- h(start) =

3 + 1 + 2 + ... = 18





Start State

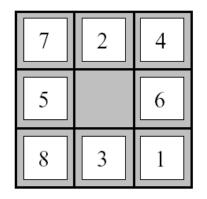
Goal State

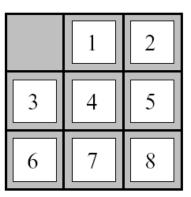
	Average nodes expanded when optimal path has length				
	4 steps	8 steps	12 steps		
TILES	13	39	227		
MANHATTAN	12	25	73		

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- h(start) =

3 + 1 + 2 + ... = 18





Start State

Goal State

	Average nodes expanded when optimal path has length				
	4 steps	8 steps	12 steps		
TILES	13	39	227		
MANHATTAN	12	25	73		

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

With A*: a trade-off between quality of estimate and work per node!

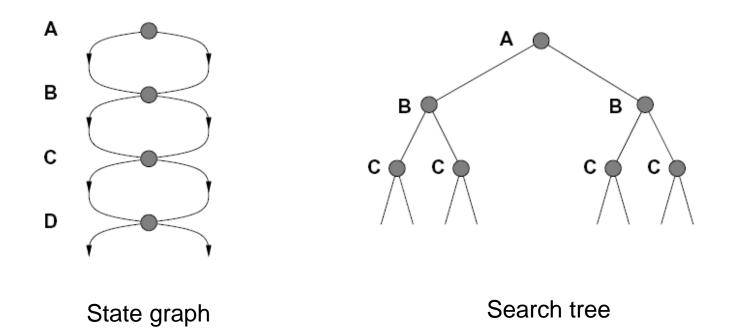
Today

Informed search

- Heuristics
- Greedy search
- A* search
- Graph search

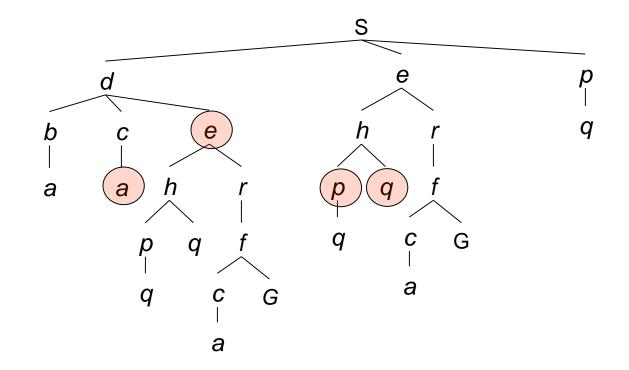
Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work. Why?



Graph Search

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

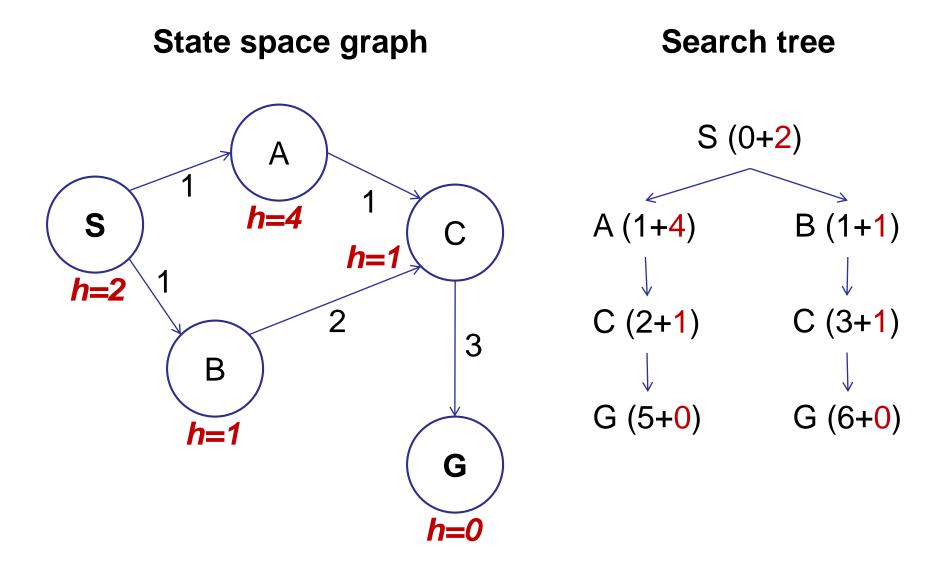


Graph Search

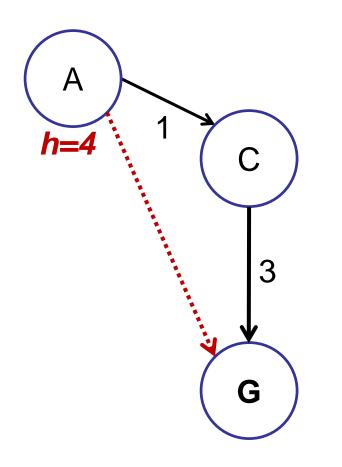
- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
 - If not new, skip it
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Warning: 3e book has a more complex, but also correct, variant

A* Graph Search Gone Wrong?

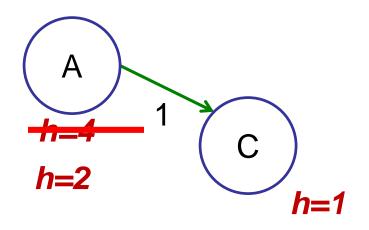


Consistency of Heuristics



- Admissibility: heuristic cost <= actual cost to goal
 - h(A) <= actual cost from A to G

Consistency of Heuristics



- Stronger than admissibility
- Definition:
- heuristic cost <= actual cost per arc</p>
- h(A) h(C) <= cost(A to C)</p>

- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

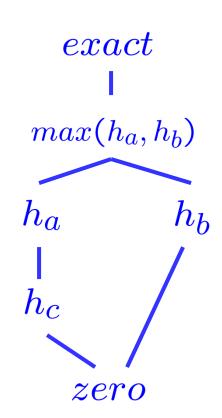
Trivial Heuristics, Dominance

- Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) \ge h_c(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

Trivial heuristics

- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic



Summary: A*

 A* uses both backward costs and (estimates of) forward costs

 A* is optimal with admissible / consistent heuristics

 Heuristic design is key: often use relaxed problems