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Today

* Informed search
= Heuristics
» Greedy search
= A* search

= Graph search



Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs

= Successor function: a function from states to
lists of (state, action, cost) triples (world dynamics)

= Start state and goal test

= Search tree:

» Nodes: represent plans for reaching states
» Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree

= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans



Example: Pancake Problem

o

Cost: Number of pancakes flipped



Example: Pancake Problem

State space graph with costs as weights
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General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

N\ ( -
Action: flip top two Al Path to reach goal:
Cost: 2 Flip four, flip three

Total cost: 7




Recall: Uniform Cost Search

= Strategy: expand lowest
path cost

* The good: UCS is
complete and optimal!

= The bad:
= Explores options in every

“direction”
= No information about goal
location Goal

[demo: countours UCS]



Search heuristic

= A heuristic is:
= A function that estimates how close a state is to a goal
» Designed for a particular search problem




Example: Heuristic Functig
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Example: Heuristic Function

Heuristic: the largest pancake that is still out of place
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= How to use the heuristic?

» What about following the “arrow” of the
heuristic?.... Greedy search



Example: Heuristic Functig

traight—line distance
to Bucharest
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Best First / Greedy Search

* Expand the node that seems closest...

366 380 193
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253 0

= What can go wrong?




Greedy search

= Strategy: expand a node
that you think is closest
to a goal state
* Heuristic: estimate of

distance to nearest goal
for each state

= A common case:

= Best-first takes you
straight to the (wrong) goal

= \Worst-case: like a badly-
guided DFS

[demo: countours greedy]



Enter: A* search




Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=1

d 2 (G)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



When should A* terminate?

= Should we stop when we engueue a goal?

/ \
\/ho

= No: only stop when we dequeue a goal



Is A* Optimal?

e
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= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!



|dea: admissibility

Inadmissible (pessimistic): Admissible (optimistic):
break optimality by trapping slows down bad plans but
good plans on the fringe never outweigh true costs



Admissible Heuristics

= A heuristic h is admissible (optimistic) If:
h(n) < h*(n)

where h™(n) is the true cost to a nearest goal

= Examples:

4 —

= Coming up with admissible heuristics Is most of
what'’s involved in using A* in practice.



Optimality of A*

Notation:

= g(n) =costto node n

= h(n) = estimated cost from n A - \

to the nearest goal (heuristic)

= f(n) =g(n) + h(n) =
estimated total cost via n

A: a lowest cost goal node

B: another goal node
Claim: A will exit the fringe before B.



Claim: A will exit the fringe before B.

Optimality of A*

= |magine B is on the fringe.

= Some ancestor n of A must be on
the fringe too (maybe nis A)

= Claim: n will be expanded before B.
1. f(n) <=f(A)

« f(n) =g(n) + h(n) // by definition
« f(n) <=g(A) // by admissibility of h
* g(A) =1(A) // because h=0 at goal




Claim: A will exit the fringe before B.

Optimality of A*

= |magine B is on the fringe.

= Some ancestor n of A must be on
the fringe too (maybe nis A)

= Claim: n will be expanded before B.
1. f(n) <=f(A)
2. f(A) <f(B)

™

* g(A) <g(B) /B is suboptimal
« f(A)<f(B) //h=0 atgoals




Claim: A will exit the fringe before B.

Optimality of A*

= |magine B is on the fringe.

= Some ancestor n of A must be on
the fringe too (maybe nis A)

= Claim: n will be expanded before B.
1. f(n) <=f(A)

2. f(A) <f(B)

3. nwill expand before B

™

« f(n) <=1(A) <f(B) // from above
« f(n) <f(B)
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Claim: A will exit the fringe before B.

Optimality of A*

Imagine B is on the fringe.

Some ancestor n of A must be on
the fringe too (maybe nis A)

Claim: n will be expanded before B.
f(n) <= f(A)
f(A) < f(B)
n will expand before B

All ancestors of A expand before B
A expands before B



Properties of A*

Uniform-Cost

b

A*




UCS vs A* Contours

» Uniform-cost expands

equally in all directions
Goal

= A* expands mainly
toward the goal, but

does hedge its bets to @
ensure optimality Goal

[demo: countours UCS / A*]



A* applications

Pathing / routing problems
Video games

Resource planning problems
Robot motion planning
_anguage analysis

Machine translation

Speech recognition




Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* |[nadmissible heuristics are often useful too (why?)



Example: 8 Puzzle

700 2 || 4 1 2

5 6 304 |fl s

sl 3 If 1 6 Il 7l 8
Start State Goal State

What are the states?

How many states?

What are the actions?

What states can | reach from the start state?
What should the costs be?



8 Puzzle |

Heuristic: Number of

tiles misplaced

Why is it admissible?

h(start) = 8

This Is a relaxed-
problem heuristic

l 2

5 6

4 5

8 3 l

6

7 8

Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps | ...12 steps
UCS |112 6,300 3.6 x 10°
TILES |13 39 227




8 Puzzle Il

What if we had an

easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

Total Manhattan
distance

Why admissible?

h(start) =
3+1+2+ ...
=18

l 2

6

4 5

8 3

6

7 8

Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps |...12 steps
TILES 13 39 227
MANHATTAN | 12 25 73




8 Puzzle Il

What if we had an

easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

Total Manhattan
distance

Why admissible?

h(start) =
3+1+2+ ...
=18

l 2

6
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8 3

6

7 8

Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps |...12 steps
TILES 13 39 227
MANHATTAN | 12 25 73




8 Puzzle Il

= How about using the actual cost as a
heuristic?
= \Would it be admissible?
* \Would we save on nodes expanded?
» What's wrong with it?

= With A*: a trade-off between quality of
estimate and work per node!



Today

* Informed search
= Heuristics
» Greedy search
= A* search

= Graph search



Tree Search: Extra Work!

= Failure to detect repeated states can cause
exponentially more work. Why?
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Graph Search

* |n BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)
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Graph Search

* |dea: never expand a state twice

= How to implement:

= Tree search + set of expanded states (“closed set”)

= Expand the search tree node-by-node, but...

» Before expanding a node, check to make sure its state is new
» |f not new, skip it

* |mportant: store the closed set as a set, not a list
= Can graph search wreck completeness? Why/why not?

= How about optimality?

Warning: 3e book has a more complex, but also correct, variant



State space graph

A* Graph Search Gone Wrong?

Search tree

S (0+2)
/\

A (1+4) B (1+1)
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C (2+1) C (3+1)
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G (5+0) G (6+0)



Consistency of Heuristics

= Admissibility: heuristic cost <=
actual cost to goal

* h(A) <= actual cost from Ato G




Consistency of Heuristics

= Stronger than admissibility

= Definition:

» heuristic cost <= actual cost per arc

= h(A)-h(C) <=cost(Ato C)

= Conseguences:

= The f value along a path never

decreases

= A* graph search is optimal



Optimality

Tree search:
= A*is optimal if heuristic is admissible (and non-negative)
= UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems



Trivial Heuristics, Dominance

= Dominance: h_ 2 h, If
Vn i hg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact



Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* Is optimal with admissible / consistent
heuristics

= Heuristic design Is key: often use relaxed
problems



