343H: Honors Al

Lecture 5 — Beyond classical search
1/30/2014

Slides courtesy of Dan Klein, UC-Berkeley
Unless otherwise noted

Today

= Review of A* and admissibility
= Graph search
= Consistent heuristics

* Local search
= Hill climbing
= Simulated annealing
= Genetic algorithms
= Continuous search spaces

Recall: A* Search

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=1

d 2 (G)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Recall: Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* |[nadmissible heuristics are often useful too (why?)

Generating heuristics

= How about using the actual cost as a
heuristic?
* Would it be admissible?
= \Would we save on nodes expanded?
= What's wrong with it?

= With A*: a trade-off between quality of
estimate and work per node!

Trivial Heuristics, Dominance

= Dominance: h, 2 h_ if
Vn i hg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact

Tree Search: Extra Work!

= Failure to detect repeated states can cause
exponentially more work. Why?

A {f —&— “'xT A
\. J ,,r’*’f
B ~ — -
a Y B
L !
C o—
e N C —~ C e
D —@—
4 ® ™
L Y

State graph Search tree

Graph Search

* |n BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

d PN 7
b/m h o o q
| @ N

h r f
i por @@
p q f q C G
| PN |

q C|> G d

Graph Search

* |dea: never expand a state twice

= How to implement:

* Tree search + set of expanded states (“closed set”)

= Expand the search tree node-by-node, but...

» Before expanding a node, check to make sure its state is new
= |f not new, skip it

= |mportant: store the closed set as a set, not a list
= Can graph search wreck completeness? Why/why not?

= How about optimality?

Warning: 3e book has a more complex, but also correct, variant

State space graph

A* Graph Search Gone Wrong?

Search tree

S (0+2)
/\

A (1+4) B (1+1)

! !

C (2+1) C (3+1)

! !

G (5+0) G (6+0)

Consistency of Heuristics

= Admissibility: heuristic cost <=
actual cost to goal

* h(A) <= actual cost from Ato G

Consistency of Heuristics

= Stronger than admissibility

= Definition:

» heuristic cost <= actual cost per arc

= h(A)-h(C) <=cost(Ato C)

= Consequences:

= The f value along a path never

decreases

= A* graph search is optimal

Optimality

Tree search:
= A*is optimal if heuristic is admissible (and non-negative)
= UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* Is optimal with admissible / consistent
heuristics

= Heuristic design Is key: often use relaxed
problems

Today

= Review of A* and admissibility
= Graph search
= Consistent heuristics

* Local search
= Hill climbing
= Simulated annealing
= Genetic algorithms
= Continuous search spaces

Local Search Methods

* Tree search keeps unexplored alternatives
on the fringe (ensures completeness)

» | ocal search: improve what you have until
you can’'t make it better

* Tradeoff: Generally much faster and more
memory efficient (but incomplete)

Types of Search Problems

= Planning problems:

= \We want a path to a solution
(examples?)

= Usually want an optimal path ——
= |[ncremental formulations

= |dentification problems:

= We actually just want to know what
the goal is (examples?)

» Usually want an optimal goal
= Complete-state formulations
* |terative improvement algorithms

Hill Climbing

= Simple, general idea:
= Start wherever
= Always choose the best neighbor

* [f no neighbors have better scores than
current, quit

= Why can this be a terrible idea?
= Complete?
= Optimal?

= What's good about it?

Hill Climbing Diagram

obiectixe function n/q|0|:)a‘=?t| maximum

shoulder

\ local maximum

"flat" local maximum

»state space
current

state
= Sideways steps?
= Random restarts?

Quiz

= Hill climbing on this graph:

Objective Function

| i\

State Space
>

Hill climbing Mona Lisa

Could the computer paint a replica of the Mona Lisa
using only 50 semi transparent polygons?

904314 Jpg

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Simulated Annealing

* |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
1, a "temperature” controlling prob. of downward steps

current +— MAKE-NODE(INITIAL-STATE[problem])
for t<— 1 to oo do N
T'— schedulelt]
if 7'= 0 then return current
next «— a randomly selected successor of current
AE+— VALUE[nezt] — VALUE[current]

if AE > 0 then current — next

. . / !
else current < next only with probability e® £/

v

Beam Search

= Like greedy hillclimbing search, but keep K
states at all times:

()‘\ I()‘\ I()‘\ I()
N\ N
\\\ ~ ~

N
N

NS ~

RN s S N
N O IR e I

\

N ~ N

N A Y N
“O “O O

Greedy Search Beam Search

= Variables: beam size, encourage diversity?
= The best choice in many practical settings

Genetic Algorithms

24748552 | 24 31% _| 32752411 >_< 32748552 3274802

32752411 [23 29% | 24748552 24752411 24752411

24415124 | 20 26% ~| 32752411 >_< 32752124 32252124

32543213 | 11 14% | 24415124 24415411 2441541[7]
Fithness Selection Pairs Cross—-Over

= Genetic algorithms use a natural selection metaphor

= Like beam search (selection), but also have pairwise
crossover operators, with optional mutation

Example: N-Queens

|
Why does crossover make sense here?
= \When wouldn’t it make sense?
What would mutation be?
What would a good fitness function be?

Continuous Problems

= Placing airports in Romania
= States: (Xq,Y1,X2,Y2:X3,Y3)

= Cost: sum of squared distances to closest city
YW

Arad

] Vaslui

Timisoara

Pitesti

7] Mehadia

] Hirsova

Urziceni

Bucharest
Dobreta [

=l Craiova Eforie
] Giurgiu

26

Gradient Methods

= How to deal with continous (therefore infinite)
state spaces?

= Discretization: bucket ranges of values
» E.g. force integral coordinates

= Continuous optimization / /
= E.g. gradient ascent >

of of of of of of
dx1’ Oy1 Ozp Oyo Ox3 dys

v — x4+ aVf(z)

vr =

. ; 5 s *
. SP4

sp3 Y
Asp2

Image from vias.otg

Example: Continuous local search

Goal: Enable an Aibo to walk as fast as possible

e Start with a parameterized walk
e Learn fastest possible parameters

e No simulator available:

— Learn entirely on robots
— Minimal human intervention

Slide credit: Peter Stone

A parameterized walk

= Trot gait with elliptical locus on each leg

= 12 continuous parameters (ellipse length, height, position,
body height, etc)

Slide credit: Peter Stone

Experimental setup

o Policy m = {0,...,012}, V(m) = walk speed when using =

e Training Scenario

— Robots time themselves fraversing fixed distance

— Multiple traversals (3) per policy to account for noise
— Multiple robots evaluate policies simulfaneously

— Off-board computer collects results, assigns policies

Peter Stone

Policy gradient reinforcement learning

e From 7 want to move in direction of gradient of V (r)

— Can’t compute 25 directly: estimate empirically
e Evaluate neighboring policies to estimate gradient

e Each frial randomly varies every parameter

T(rn
A e, T,
/‘/'¥I T .Tt d

Slide credit: Peter Stone

Summary

= Graph search

» Keep closed set, avoid redundant work
= A* graph search

= Optimal if h Is consistent
= | ocal search: Improve current state

= Avoid local min traps (simulated annealing,
crossover, beam search)

