
343H: Honors AI

Lecture 5 – Beyond classical search

1/30/2014

Slides courtesy of Dan Klein, UC-Berkeley

Unless otherwise noted

Today

 Review of A* and admissibility

 Graph search

 Consistent heuristics

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces

Recall: A* Search

 Uniform-cost orders by path cost, or backward cost g(n)

 Greedy orders by goal proximity, or forward cost h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

5

1

1

2

h=6
h=0

c

h=7

3

e h=1

1

Example: Teg Grenager

Recall: Creating Admissible Heuristics

 Most of the work in solving hard search problems

optimally is in coming up with admissible heuristics

 Often, admissible heuristics are solutions to relaxed

problems, where new actions are available

 Inadmissible heuristics are often useful too (why?)

15
366

Generating heuristics

 How about using the actual cost as a

heuristic?

 Would it be admissible?

 Would we save on nodes expanded?

 What’s wrong with it?

 With A*: a trade-off between quality of

estimate and work per node!

Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:

 Max of admissible heuristics is admissible

 Trivial heuristics

 Bottom of lattice is the zero heuristic (what

does this give us?)

 Top of lattice is the exact heuristic

Tree Search: Extra Work!

 Failure to detect repeated states can cause

exponentially more work. Why?

State graph Search tree

Graph Search

 In BFS, for example, we shouldn’t bother

expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

 Idea: never expand a state twice

 How to implement:

 Tree search + set of expanded states (“closed set”)

 Expand the search tree node-by-node, but…

 Before expanding a node, check to make sure its state is new

 If not new, skip it

 Important: store the closed set as a set, not a list

 Can graph search wreck completeness? Why/why not?

 How about optimality?

Warning: 3e book has a more complex, but also correct, variant

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Consistency of Heuristics

 Admissibility: heuristic cost <=

actual cost to goal

 h(A) <= actual cost from A to G

3

A

C

G

h=4
1

Consistency of Heuristics

 Stronger than admissibility

 Definition:

 heuristic cost <= actual cost per arc

 h(A) - h(C) <= cost(A to C)

 Consequences:

 The f value along a path never

decreases

 A* graph search is optimal

A

C
h=4

h=1

1

h=2

Optimality

 Tree search:
 A* is optimal if heuristic is admissible (and non-negative)

 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent

 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and

(estimates of) forward costs

 A* is optimal with admissible / consistent

heuristics

 Heuristic design is key: often use relaxed

problems

Today

 Review of A* and admissibility

 Graph search

 Consistent heuristics

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces

Local Search Methods

 Tree search keeps unexplored alternatives

on the fringe (ensures completeness)

 Local search: improve what you have until

you can’t make it better

 Tradeoff: Generally much faster and more

memory efficient (but incomplete)

Types of Search Problems

 Planning problems:
 We want a path to a solution

(examples?)

 Usually want an optimal path

 Incremental formulations

 Identification problems:
 We actually just want to know what

the goal is (examples?)

 Usually want an optimal goal

 Complete-state formulations

 Iterative improvement algorithms

Hill Climbing

 Simple, general idea:

 Start wherever

 Always choose the best neighbor

 If no neighbors have better scores than
current, quit

 Why can this be a terrible idea?

 Complete?

 Optimal?

 What’s good about it?

Hill Climbing Diagram

 Sideways steps?

 Random restarts?

Quiz

 Hill climbing on this graph:

Hill climbing Mona Lisa

 http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Could the computer paint a replica of the Mona Lisa

using only 50 semi transparent polygons?

Simulated Annealing

 Idea: Escape local maxima by allowing downhill moves

 But make them rarer as time goes on

Beam Search

 Like greedy hillclimbing search, but keep K
states at all times:

 Variables: beam size, encourage diversity?

 The best choice in many practical settings

Greedy Search Beam Search

Genetic Algorithms

 Genetic algorithms use a natural selection metaphor

 Like beam search (selection), but also have pairwise
crossover operators, with optional mutation

Example: N-Queens

 Why does crossover make sense here?

 When wouldn’t it make sense?

 What would mutation be?

 What would a good fitness function be?

Continuous Problems

 Placing airports in Romania

 States: (x1,y1,x2,y2,x3,y3)

 Cost: sum of squared distances to closest city

26

Gradient Methods

 How to deal with continous (therefore infinite)

state spaces?

 Discretization: bucket ranges of values

 E.g. force integral coordinates

 Continuous optimization

 E.g. gradient ascent

Image from vias.org27

Example: Continuous local search

Slide credit: Peter Stone

A parameterized walk

 Trot gait with elliptical locus on each leg

 12 continuous parameters (ellipse length, height, position,

body height, etc)

Slide credit: Peter Stone

Experimental setup

Policy gradient reinforcement learning

Slide credit: Peter Stone

Summary

 Graph search

 Keep closed set, avoid redundant work

 A* graph search

 Optimal if h is consistent

 Local search: Improve current state

 Avoid local min traps (simulated annealing,

crossover, beam search)

