343H: Honors Al

Lecture 5 – Beyond classical search 1/30/2014

Slides courtesy of Dan Klein, UC-Berkeley Unless otherwise noted

Today

- Review of A* and admissibility
- Graph search
- Consistent heuristics
- Local search
 - Hill climbing
 - Simulated annealing
 - Genetic algorithms
 - Continuous search spaces

Recall: A* Search

- Uniform-cost orders by <u>path cost</u>, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Recall: Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too (why?)

Generating heuristics

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) \ge h_c(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

Trivial heuristics

- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
 - If not new, skip it
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Warning: 3e book has a more complex, but also correct, variant

A* Graph Search Gone Wrong?

Consistency of Heuristics

- Admissibility: heuristic cost <= actual cost to goal
 - h(A) <= actual cost from A to G

Consistency of Heuristics

- Stronger than admissibility
- Definition:
- heuristic cost <= actual cost per arc</p>
- h(A) h(C) <= cost(A to C)</p>

- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and (estimates of) forward costs

 A* is optimal with admissible / consistent heuristics

 Heuristic design is key: often use relaxed problems

Today

- Review of A* and admissibility
- Graph search
- Consistent heuristics
- Local search
 - Hill climbing
 - Simulated annealing
 - Genetic algorithms
 - Continuous search spaces

Local Search Methods

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve what you have until you can't make it better

 Tradeoff: Generally much faster and more memory efficient (but incomplete)

Types of Search Problems

Planning problems:

- We want a path to a solution (examples?)
- Usually want an optimal path
- Incremental formulations

Identification problems:

- We actually just want to know what the goal is (examples?)
- Usually want an optimal goal
- Complete-state formulations
- Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What's good about it?

Hill Climbing Diagram

Random restarts?

Quiz

• Hill climbing on this graph:

Hill climbing Mona Lisa

Could the computer paint a replica of the Mona Lisa using only 50 semi transparent polygons?

904314.jpg

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Simulated Annealing

Idea: Escape local maxima by allowing downhill moves

But make them rarer as time goes on

function SIMULATED-ANNEALING (problem, schedule) returns a solution state **inputs**: *problem*, a problem schedule, a mapping from time to "temperature" local variables: *current*, a node *next*, a node T, a "temperature" controlling prob. of downward steps $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$ for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$ if T = 0 then return current $next \leftarrow a$ randomly selected successor of current $\Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]$ if $\Delta E > 0$ then $current \leftarrow next$ else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Beam Search

 Like greedy hillclimbing search, but keep K states at all times:

Greedy Search

Beam Search

- Variables: beam size, encourage diversity?
- The best choice in many practical settings

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Continuous Problems

- Placing airports in Romania
 - States: (x₁,y₁,x₂,y₂,x₃,y₃)
 - Cost: sum of squared distances to closest city

Gradient Methods

SP1

- How to deal with continous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

 $x \leftarrow x + \alpha \nabla f(x)$

Image from vias.org

▲ SP2

Example: Continuous local search

Goal: Enable an Aibo to walk as fast as possible

- Start with a **parameterized walk**
- Learn fastest possible parameters
- No simulator available:
 - Learn entirely on robots
 - Minimal human intervention

Slide credit: Peter Stone

A parameterized walk

- Trot gait with elliptical locus on each leg
- 12 continuous parameters (ellipse length, height, position, body height, etc)

Slide credit: Peter Stone

Experimental setup

- Policy $\pi = \{\theta_1, \dots, \theta_{12}\}$, $V(\pi) =$ walk speed when using π
- Training Scenario
 - Robots time themselves traversing fixed distance
 - Multiple traversals (3) per policy to account for **noise**
 - Multiple robots evaluate policies simultaneously
 - Off-board computer collects results, assigns policies

Policy gradient reinforcement learning

• From π want to move in direction of gradient of $V(\pi)$

- Can't compute $\frac{\partial V(\pi)}{\partial \theta_i}$ directly: **estimate** empirically

- Evaluate **neighboring policies** to estimate gradient
- Each trial randomly varies every parameter

Slide credit: Peter Stone

Summary

- Graph search
 - Keep closed set, avoid redundant work
- A* graph search
 - Optimal if h is consistent
- Local search: Improve current state
 - Avoid local min traps (simulated annealing, crossover, beam search)