
343H: Honors AI

Lecture 5 – Beyond classical search

1/30/2014

Slides courtesy of Dan Klein, UC-Berkeley

Unless otherwise noted



Today

 Review of A* and admissibility

 Graph search

 Consistent heuristics

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces



Recall: A* Search

 Uniform-cost orders by path cost, or backward cost  g(n)

 Greedy orders by goal proximity, or forward cost  h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)
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Recall: Creating Admissible Heuristics

 Most of the work in solving hard search problems 

optimally is in coming up with admissible heuristics

 Often, admissible heuristics are solutions to relaxed 

problems, where new actions are available

 Inadmissible heuristics are often useful too (why?)
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Generating heuristics

 How about using the actual cost as a 

heuristic?

 Would it be admissible?

 Would we save on nodes expanded?

 What’s wrong with it?

 With A*: a trade-off between quality of 

estimate and work per node!



Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:

 Max of admissible heuristics is admissible

 Trivial heuristics

 Bottom of lattice is the zero heuristic (what 

does this give us?)

 Top of lattice is the exact heuristic



Tree Search: Extra Work!

 Failure to detect repeated states can cause 

exponentially more work.  Why?

State graph Search tree



Graph Search

 In BFS, for example, we shouldn’t bother 

expanding the circled nodes (why?)
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Graph Search

 Idea: never expand a state twice

 How to implement: 

 Tree search + set of expanded states (“closed set”)

 Expand the search tree node-by-node, but…

 Before expanding a node, check to make sure its state is new

 If not new, skip it

 Important: store the closed set as a set, not a list

 Can graph search wreck completeness?  Why/why not?

 How about optimality?

Warning: 3e book has a more complex, but also correct, variant



A* Graph Search Gone Wrong?
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Consistency of Heuristics

 Admissibility: heuristic cost <= 

actual cost to goal

 h(A) <= actual cost from A to G
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Consistency of Heuristics

 Stronger than admissibility

 Definition: 

 heuristic cost <= actual cost per arc

 h(A) - h(C) <= cost(A to C)

 Consequences:

 The f value along a path never 

decreases

 A* graph search is optimal
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Optimality

 Tree search:
 A* is optimal if heuristic is admissible (and non-negative)

 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent

 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, most natural admissible heuristics tend to be 
consistent, especially if from relaxed problems



Summary: A*

 A* uses both backward costs and 

(estimates of) forward costs

 A* is optimal with admissible / consistent 

heuristics

 Heuristic design is key: often use relaxed 

problems
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Local Search Methods

 Tree search keeps unexplored alternatives 

on the fringe (ensures completeness)

 Local search: improve what you have until 

you can’t make it better

 Tradeoff: Generally much faster and more 

memory efficient (but incomplete)



Types of Search Problems

 Planning problems:
 We want a path to a solution 

(examples?)

 Usually want an optimal path

 Incremental formulations

 Identification problems:
 We actually just want to know what 

the goal is (examples?)

 Usually want an optimal goal

 Complete-state formulations

 Iterative improvement algorithms



Hill Climbing

 Simple, general idea:

 Start wherever

 Always choose the best neighbor

 If no neighbors have better scores than 
current, quit

 Why can this be a terrible idea?

 Complete?

 Optimal?

 What’s good about it?



Hill Climbing Diagram

 Sideways steps?

 Random restarts?



Quiz

 Hill climbing on this graph:



Hill climbing Mona Lisa

 http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Could the computer paint a replica of the Mona Lisa 

using only 50 semi transparent polygons?



Simulated Annealing

 Idea:  Escape local maxima by allowing downhill moves

 But make them rarer as time goes on



Beam Search

 Like greedy hillclimbing search, but keep K 
states at all times:

 Variables: beam size, encourage diversity?

 The best choice in many practical settings

Greedy Search Beam Search



Genetic Algorithms

 Genetic algorithms use a natural selection metaphor

 Like beam search (selection), but also have pairwise 
crossover operators, with optional mutation



Example: N-Queens

 Why does crossover make sense here?

 When wouldn’t it make sense?

 What would mutation be?

 What would a good fitness function be?



Continuous Problems

 Placing airports in Romania

 States: (x1,y1,x2,y2,x3,y3)

 Cost: sum of squared distances to closest city
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Gradient Methods

 How to deal with continous (therefore infinite) 

state spaces?

 Discretization: bucket ranges of values 

 E.g. force integral coordinates

 Continuous optimization

 E.g. gradient ascent

Image from vias.org27



Example: Continuous local search

Slide credit: Peter Stone



A parameterized walk

 Trot gait with elliptical locus on each leg

 12 continuous parameters (ellipse length, height, position, 

body height, etc)

Slide credit: Peter Stone



Experimental setup



Policy gradient reinforcement learning

Slide credit: Peter Stone



Summary

 Graph search

 Keep closed set, avoid redundant work

 A* graph search

 Optimal if h is consistent

 Local search: Improve current state 

 Avoid local min traps (simulated annealing, 

crossover, beam search)


