
343H: Honors AI

Lecture 5 – Beyond classical search

1/30/2014

Slides courtesy of Dan Klein, UC-Berkeley

Unless otherwise noted

Today

 Review of A* and admissibility

 Graph search

 Consistent heuristics

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces

Recall: A* Search

 Uniform-cost orders by path cost, or backward cost g(n)

 Greedy orders by goal proximity, or forward cost h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

5

1

1

2

h=6
h=0

c

h=7

3

e h=1

1

Example: Teg Grenager

Recall: Creating Admissible Heuristics

 Most of the work in solving hard search problems

optimally is in coming up with admissible heuristics

 Often, admissible heuristics are solutions to relaxed

problems, where new actions are available

 Inadmissible heuristics are often useful too (why?)

15
366

Generating heuristics

 How about using the actual cost as a

heuristic?

 Would it be admissible?

 Would we save on nodes expanded?

 What’s wrong with it?

 With A*: a trade-off between quality of

estimate and work per node!

Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:

 Max of admissible heuristics is admissible

 Trivial heuristics

 Bottom of lattice is the zero heuristic (what

does this give us?)

 Top of lattice is the exact heuristic

Tree Search: Extra Work!

 Failure to detect repeated states can cause

exponentially more work. Why?

State graph Search tree

Graph Search

 In BFS, for example, we shouldn’t bother

expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

 Idea: never expand a state twice

 How to implement:

 Tree search + set of expanded states (“closed set”)

 Expand the search tree node-by-node, but…

 Before expanding a node, check to make sure its state is new

 If not new, skip it

 Important: store the closed set as a set, not a list

 Can graph search wreck completeness? Why/why not?

 How about optimality?

Warning: 3e book has a more complex, but also correct, variant

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Consistency of Heuristics

 Admissibility: heuristic cost <=

actual cost to goal

 h(A) <= actual cost from A to G

3

A

C

G

h=4
1

Consistency of Heuristics

 Stronger than admissibility

 Definition:

 heuristic cost <= actual cost per arc

 h(A) - h(C) <= cost(A to C)

 Consequences:

 The f value along a path never

decreases

 A* graph search is optimal

A

C
h=4

h=1

1

h=2

Optimality

 Tree search:
 A* is optimal if heuristic is admissible (and non-negative)

 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent

 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and

(estimates of) forward costs

 A* is optimal with admissible / consistent

heuristics

 Heuristic design is key: often use relaxed

problems

Today

 Review of A* and admissibility

 Graph search

 Consistent heuristics

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces

Local Search Methods

 Tree search keeps unexplored alternatives

on the fringe (ensures completeness)

 Local search: improve what you have until

you can’t make it better

 Tradeoff: Generally much faster and more

memory efficient (but incomplete)

Types of Search Problems

 Planning problems:
 We want a path to a solution

(examples?)

 Usually want an optimal path

 Incremental formulations

 Identification problems:
 We actually just want to know what

the goal is (examples?)

 Usually want an optimal goal

 Complete-state formulations

 Iterative improvement algorithms

Hill Climbing

 Simple, general idea:

 Start wherever

 Always choose the best neighbor

 If no neighbors have better scores than
current, quit

 Why can this be a terrible idea?

 Complete?

 Optimal?

 What’s good about it?

Hill Climbing Diagram

 Sideways steps?

 Random restarts?

Quiz

 Hill climbing on this graph:

Hill climbing Mona Lisa

 http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Could the computer paint a replica of the Mona Lisa

using only 50 semi transparent polygons?

Simulated Annealing

 Idea: Escape local maxima by allowing downhill moves

 But make them rarer as time goes on

Beam Search

 Like greedy hillclimbing search, but keep K
states at all times:

 Variables: beam size, encourage diversity?

 The best choice in many practical settings

Greedy Search Beam Search

Genetic Algorithms

 Genetic algorithms use a natural selection metaphor

 Like beam search (selection), but also have pairwise
crossover operators, with optional mutation

Example: N-Queens

 Why does crossover make sense here?

 When wouldn’t it make sense?

 What would mutation be?

 What would a good fitness function be?

Continuous Problems

 Placing airports in Romania

 States: (x1,y1,x2,y2,x3,y3)

 Cost: sum of squared distances to closest city

26

Gradient Methods

 How to deal with continous (therefore infinite)

state spaces?

 Discretization: bucket ranges of values

 E.g. force integral coordinates

 Continuous optimization

 E.g. gradient ascent

Image from vias.org27

Example: Continuous local search

Slide credit: Peter Stone

A parameterized walk

 Trot gait with elliptical locus on each leg

 12 continuous parameters (ellipse length, height, position,

body height, etc)

Slide credit: Peter Stone

Experimental setup

Policy gradient reinforcement learning

Slide credit: Peter Stone

Summary

 Graph search

 Keep closed set, avoid redundant work

 A* graph search

 Optimal if h is consistent

 Local search: Improve current state

 Avoid local min traps (simulated annealing,

crossover, beam search)

