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Announcements

 Assignments

 Reminder - PS1 due Thursday by 11:59 pm

 PS2 will be out Thursday, due 2 weeks later

 Autograder:

 The autograder isn’t perfect, and it is only a lower bound on your 

score (… though the autograder is quite good, and if your code 

autogrades as wrong, the autograder is almost always correct)
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Today

 Wrap up local search

 Adversarial search with game trees
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Last time: local search

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces



Review: Exercise 4.1

 Which algorithm results from these special 

cases?

1. Local beam search with k=1

2. Local beam search with one initial state and 

no limit on the number of states retained

3. Simulated annealing with T=0 at all times

4. Simulated annealing with T= inf at all times

5. Genetic algorithm with population size N=1



Last time: local search

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces



Continuous Problems

 Placing airports in Romania

 States: (x1,y1,x2,y2,x3,y3)

 Cost: sum of squared distances to closest city
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Gradient Methods

 How to deal with continous (therefore infinite) 

state spaces?

 Discretization: bucket ranges of values 

 E.g. force integral coordinates

 Continuous optimization

 E.g. gradient ascent

Image from vias.org8



Example: Continuous local search

Peter Stone, UT Austin Villa 



A parameterized walk

 Trot gait with elliptical locus on each leg

 12 continuous parameters (ellipse length, height, position, 

body height, etc)



Experimental setup



Policy gradient reinforcement learning





Today

 Wrap up local search

 Adversarial search with game trees

 Minimax

 Alpha-beta pruning



Game Playing State-of-the-Art

 Checkers: 1950: First computer player.  1994: First computer champion.  
Chinook ended 40-year-reign of human world champion Marion Tinsley in 
1994. Used an endgame database defining perfect play for all positions 
involving 8 or fewer pieces on the board, a total of 443,748,401,247 
positions.  Checkers is now solved!

 Chess: Deep Blue defeated human world champion Gary Kasparov in a 
six-game match in 1997. Deep Blue examined 200 million positions per 
second, used very sophisticated evaluation and undisclosed methods for 
extending some lines of search up to 40 ply.  Current programs are even 
better, if less historic.

 Go: Human champions are just beginning to be challenged by machines, 
though the best humans still beat the best machines. In go, b > 300!  
Classic programs use pattern knowledge bases, but big recent advances 
using Monte Carlo (randomized) expansion methods.

 Pacman: ?



Game Playing

 Many different kinds of games!

 Axes:

 Deterministic or stochastic?

 One, two, or more players?

 Zero sum?

 Perfect information (can you see the state)?

 Want algorithms for calculating a strategy 

(policy) which recommends a move in each state



Deterministic Games

 Many possible formalizations, one is:

 States: S (start at s0)

 Players: P={1...N} (usually take turns)

 Actions: A (may depend on player / state)

 Transition Function: SxA  S

 Terminal Test: S  {t,f}

 Terminal Utilities: SxP  R

 Solution for a player is a policy: S  A
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Zero-sum games

 Zero-sum games
 Agents have opposite utilities (values on the 

outcomes)

 Lets us think of a single value that one 

maximizes and the other minimizes

 Adversarial, pure competition

 General games
 Agents have independent utilities 

 Cooperation, indifference, competition, …

 More later on non-zero-sum games

Adapted from Dan Klein



From single player to adversarial

 Deterministic, single player, 
perfect information:
 Know the rules
 Know what actions do
 Know when you win
 E.g. Freecell, 8-Puzzle, Rubik’s 

cube
 … it’s just search!

 Now, a reinterpretation:
 Each node stores a value: the 

best outcome it can reach
 This is the maximal outcome of 

its children (the max value)
 Note that we don’t have path 

sums as before (utilities at end)

 After search, can pick move that 
leads to best node

win loselose



Recall: Single-agent trees

2   0        …     2    6       ….    4     6             
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Value of a state

2   0        …     2    6       ….    4     6             
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Value of a state: the 

best achievable outcome 

(utility) from that state

Terminal states:

Non-terminal states:



Adversarial game trees

-20      -8     …    -18     -5      ….     -10    +4            -20      +8

What is the value of a state in the case of an adversary?



Minimax values

-8               -5             -10            +8

Terminal states:

States under agent’s control: States under opponent’s control: 



Tic-tac-toe Game Tree

Agent

Agent

Opponent

Opponent



Adversarial search: Minimax

 Deterministic, zero-sum game

 Minimax search:

 A state-space search tree

 Players alternate turns

 Compute each node’s 

minimax value: best 

achievable utility against a 

rational (optimal) adversary 8 2 5 6

max

min2 5

5

Terminal values:

part of the game 

Minimax values:

computed recursively



Minimax implementation

def max-value(state):

initialize v = -∞

for each successor of state:

v = max(v, min-value(successor))

return v

def min-value(state):

initialize v = +∞

for each successor of state:

v = min(v, max-value(successor))

return v



Minimax implementation

def max-value(state):

initialize v = -∞

for each successor of state:

v = max(v, value(successor))

return v

def min-value(state):

initialize v = +∞

for each successor of state:

v = min(v, value(successor))

return v

def value(state):

If the state is a terminal state: return the state’s utility

If the next agent is MAX: return max-value(state)

If the next agent is MIN: return min-value(state)



Minimax Example

12 8 5 23 2 144 6

3 2 2
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Minimax efficiency

 Time complexity?
 O(bm)

 Space complexity?
 O(bm)

 For chess, b  35, m  100
 Exact solution is completely infeasible

 But, do we need to explore the whole tree?



Minimax efficiency

Otherwise?

10 10 9 100

max

min10 9

10

Optimal 
against a 

perfect player.

Adapted from Dan Klein



Quiz: Minimax



Dealing with resource limits

 Problem: In realistic games, cannot 
search to leaves!

 Solution: Depth-limited search
 Instead, search only to a limited depth

 Replace terminal utilities with an 
evaluation function for non-terminal 
positions

 Guarantee of optimal play is gone

 Example:
 Suppose we have 100 seconds, can 

explore 10K nodes / sec

 So can check 1M nodes per move

 With - reaches about depth 8 – decent 
chess program

? ? ? ?

-1 -2 4 9

4

min min

max

-2 4



Iterative deepening

for “anytime” algorithm

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 

length 1 or less.  (DFS gives up on any path of 

length 2)

2. If “1” failed, do a DFS which only searches paths 

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths 

of length 3 or less.

….and so on.

…
b



Trade offs in complexity

 Evaluation functions are always imperfect

 The deeper in the tree the evaluation function is 

buried, the less the quality of the evaluation 

function matters

 An important example of the tradeoff between 

complexity of features and complexity of 

computation



Evaluation Functions

 Function which scores non-terminals in depth-limited search

 Ideal function: returns the utility of the position

 In practice: typically weighted linear sum of features:

 e.g. f1(s) = (num white queens – num black queens), etc.



What should the evaluation 

function report?



Danger of replanning agents

 He knows his score will go up by eating the dot now (west, east)

 He knows his score will go up just as much by eating the dot later (east, west)

 There are no point-scoring opportunities after eating the dot (within the 

horizon, two here)

 Therefore, waiting seems just as good as eating: he may go east, then back 

west in the next round of replanning!



Quiz: collaboration

 By modeling each ghost as a minimizer, the 

“collaboration” behavior we saw before naturally arises 

from minimax.  

 Below is an example of a game tree with two minimizer 

players (min 1 and min 2), and one maximizer player.



Pruning in Minimax Search

12 8 5 23 2 14

3 <= 2 <= 14<= 5 2

3

Here, as soon as a node we’re minimizing dropped 

below the available max so far, we could stop.



Alpha-Beta Pruning

 General case (MIN version)

 We’re computing the MIN-VALUE at n

 We’re looping over n’s children

 n’s value estimate is dropping

 Who cares about n’s value? MAX

 Let a be the best value MAX can get at 

any choice point along the current path 

from the root

 If n becomes worse than a, MAX will 

avoid it, so can stop considering n’s 

other children

 MAX version is symmetric

MAX

MIN

MAX

MIN

a

n



Alpha-Beta Pseudocode

b

v

If so large that 

MIN prefers β

elsewhere in the 

tree, then stop.



Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1
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Alpha-Beta Pruning Properties

 This pruning has no effect on final result at the root

 Values of intermediate nodes might be wrong!
 Important: children of the root may have the wrong value

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)

 Doubles solvable depth!

 Full search of, e.g. chess, is still hopeless…

 This is a simple example of metareasoning (computing 
about what to compute)



Quiz: alpha-beta pruning



Quiz: alpha-beta pruning



Next time: Uncertainty!

 What if some other agents are not 

necessarily adversaries?

 Indifferent to you – e.g., a roll of a die

 Inept adversary that makes mistakes

 Where do the terminal utilities come from?


