
343H: Honors AI

Lecture 6: Adversarial Search

2/4/2014

Kristen Grauman

UT-Austin

1

Slides courtesy of Dan Klein, UC-Berkeley

Unless otherwise noted

Announcements

 Assignments

 Reminder - PS1 due Thursday by 11:59 pm

 PS2 will be out Thursday, due 2 weeks later

 Autograder:

 The autograder isn’t perfect, and it is only a lower bound on your

score (… though the autograder is quite good, and if your code

autogrades as wrong, the autograder is almost always correct)

2

Today

 Wrap up local search

 Adversarial search with game trees

3

Last time: local search

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces

Review: Exercise 4.1

 Which algorithm results from these special

cases?

1. Local beam search with k=1

2. Local beam search with one initial state and

no limit on the number of states retained

3. Simulated annealing with T=0 at all times

4. Simulated annealing with T= inf at all times

5. Genetic algorithm with population size N=1

Last time: local search

 Local search

 Hill climbing

 Simulated annealing

 Genetic algorithms

 Continuous search spaces

Continuous Problems

 Placing airports in Romania

 States: (x1,y1,x2,y2,x3,y3)

 Cost: sum of squared distances to closest city

7

Gradient Methods

 How to deal with continous (therefore infinite)

state spaces?

 Discretization: bucket ranges of values

 E.g. force integral coordinates

 Continuous optimization

 E.g. gradient ascent

Image from vias.org8

Example: Continuous local search

Peter Stone, UT Austin Villa

A parameterized walk

 Trot gait with elliptical locus on each leg

 12 continuous parameters (ellipse length, height, position,

body height, etc)

Experimental setup

Policy gradient reinforcement learning

Today

 Wrap up local search

 Adversarial search with game trees

 Minimax

 Alpha-beta pruning

Game Playing State-of-the-Art

 Checkers: 1950: First computer player. 1994: First computer champion.
Chinook ended 40-year-reign of human world champion Marion Tinsley in
1994. Used an endgame database defining perfect play for all positions
involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions. Checkers is now solved!

 Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods for
extending some lines of search up to 40 ply. Current programs are even
better, if less historic.

 Go: Human champions are just beginning to be challenged by machines,
though the best humans still beat the best machines. In go, b > 300!
Classic programs use pattern knowledge bases, but big recent advances
using Monte Carlo (randomized) expansion methods.

 Pacman: ?

Game Playing

 Many different kinds of games!

 Axes:

 Deterministic or stochastic?

 One, two, or more players?

 Zero sum?

 Perfect information (can you see the state)?

 Want algorithms for calculating a strategy

(policy) which recommends a move in each state

Deterministic Games

 Many possible formalizations, one is:

 States: S (start at s0)

 Players: P={1...N} (usually take turns)

 Actions: A (may depend on player / state)

 Transition Function: SxA S

 Terminal Test: S {t,f}

 Terminal Utilities: SxP R

 Solution for a player is a policy: S A

17

Zero-sum games

 Zero-sum games
 Agents have opposite utilities (values on the

outcomes)

 Lets us think of a single value that one

maximizes and the other minimizes

 Adversarial, pure competition

 General games
 Agents have independent utilities

 Cooperation, indifference, competition, …

 More later on non-zero-sum games

Adapted from Dan Klein

From single player to adversarial

 Deterministic, single player,
perfect information:
 Know the rules
 Know what actions do
 Know when you win
 E.g. Freecell, 8-Puzzle, Rubik’s

cube
 … it’s just search!

 Now, a reinterpretation:
 Each node stores a value: the

best outcome it can reach
 This is the maximal outcome of

its children (the max value)
 Note that we don’t have path

sums as before (utilities at end)

 After search, can pick move that
leads to best node

win loselose

Recall: Single-agent trees

2 0 … 2 6 …. 4 6

8

Value of a state

2 0 … 2 6 …. 4 6

8

Value of a state: the

best achievable outcome

(utility) from that state

Terminal states:

Non-terminal states:

Adversarial game trees

-20 -8 … -18 -5 …. -10 +4 -20 +8

What is the value of a state in the case of an adversary?

Minimax values

-8 -5 -10 +8

Terminal states:

States under agent’s control: States under opponent’s control:

Tic-tac-toe Game Tree

Agent

Agent

Opponent

Opponent

Adversarial search: Minimax

 Deterministic, zero-sum game

 Minimax search:

 A state-space search tree

 Players alternate turns

 Compute each node’s

minimax value: best

achievable utility against a

rational (optimal) adversary 8 2 5 6

max

min2 5

5

Terminal values:

part of the game

Minimax values:

computed recursively

Minimax implementation

def max-value(state):

initialize v = -∞

for each successor of state:

v = max(v, min-value(successor))

return v

def min-value(state):

initialize v = +∞

for each successor of state:

v = min(v, max-value(successor))

return v

Minimax implementation

def max-value(state):

initialize v = -∞

for each successor of state:

v = max(v, value(successor))

return v

def min-value(state):

initialize v = +∞

for each successor of state:

v = min(v, value(successor))

return v

def value(state):

If the state is a terminal state: return the state’s utility

If the next agent is MAX: return max-value(state)

If the next agent is MIN: return min-value(state)

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Minimax efficiency

 Time complexity?
 O(bm)

 Space complexity?
 O(bm)

 For chess, b 35, m 100
 Exact solution is completely infeasible

 But, do we need to explore the whole tree?

Minimax efficiency

Otherwise?

10 10 9 100

max

min10 9

10

Optimal
against a

perfect player.

Adapted from Dan Klein

Quiz: Minimax

Dealing with resource limits

 Problem: In realistic games, cannot
search to leaves!

 Solution: Depth-limited search
 Instead, search only to a limited depth

 Replace terminal utilities with an
evaluation function for non-terminal
positions

 Guarantee of optimal play is gone

 Example:
 Suppose we have 100 seconds, can

explore 10K nodes / sec

 So can check 1M nodes per move

 With - reaches about depth 8 – decent
chess program

? ? ? ?

-1 -2 4 9

4

min min

max

-2 4

Iterative deepening

for “anytime” algorithm

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of

length 1 or less. (DFS gives up on any path of

length 2)

2. If “1” failed, do a DFS which only searches paths

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths

of length 3 or less.

….and so on.

…
b

Trade offs in complexity

 Evaluation functions are always imperfect

 The deeper in the tree the evaluation function is

buried, the less the quality of the evaluation

function matters

 An important example of the tradeoff between

complexity of features and complexity of

computation

Evaluation Functions

 Function which scores non-terminals in depth-limited search

 Ideal function: returns the utility of the position

 In practice: typically weighted linear sum of features:

 e.g. f1(s) = (num white queens – num black queens), etc.

What should the evaluation

function report?

Danger of replanning agents

 He knows his score will go up by eating the dot now (west, east)

 He knows his score will go up just as much by eating the dot later (east, west)

 There are no point-scoring opportunities after eating the dot (within the

horizon, two here)

 Therefore, waiting seems just as good as eating: he may go east, then back

west in the next round of replanning!

Quiz: collaboration

 By modeling each ghost as a minimizer, the

“collaboration” behavior we saw before naturally arises

from minimax.

 Below is an example of a game tree with two minimizer

players (min 1 and min 2), and one maximizer player.

Pruning in Minimax Search

12 8 5 23 2 14

3 <= 2 <= 14<= 5 2

3

Here, as soon as a node we’re minimizing dropped

below the available max so far, we could stop.

Alpha-Beta Pruning

 General case (MIN version)

 We’re computing the MIN-VALUE at n

 We’re looping over n’s children

 n’s value estimate is dropping

 Who cares about n’s value? MAX

 Let a be the best value MAX can get at

any choice point along the current path

from the root

 If n becomes worse than a, MAX will

avoid it, so can stop considering n’s

other children

 MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Pseudocode

b

v

If so large that

MIN prefers β

elsewhere in the

tree, then stop.

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

Alpha-Beta Pruning Properties

 This pruning has no effect on final result at the root

 Values of intermediate nodes might be wrong!
 Important: children of the root may have the wrong value

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)

 Doubles solvable depth!

 Full search of, e.g. chess, is still hopeless…

 This is a simple example of metareasoning (computing
about what to compute)

Quiz: alpha-beta pruning

Quiz: alpha-beta pruning

Next time: Uncertainty!

 What if some other agents are not

necessarily adversaries?

 Indifferent to you – e.g., a roll of a die

 Inept adversary that makes mistakes

 Where do the terminal utilities come from?

