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Announcements

 PS1 is out, due in 2 weeks



Last time

 Adversarial search with game trees

 Minimax

 Alpha-beta pruning
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Key ideas
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 Now we have an adversarial opponent, 

must reason about impact of their 

actions when computing value of a state

 Game trees interleave “MIN” nodes 

 Minimax algorithm to select optimal 

action

 Alpha-beta pruning to avoid exploring 

entire tree

 Evaluation function + cutoff test (or 

iterative deepening) to deal with 

resource limits.



Today

 Search in the presence of uncertainty



Worst-case vs. Average-case

Imperfect adversaries
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Optimal against a 
perfect player.

Factors of chance

But what about…

Kristen Grauman



Reminder: Probabilities

 Example: traffic on freeway?
 Random variable: T = traffic level

 Outcomes: T in {none, light, heavy}

 Distribution: P(T=none) = 0.25, P(T=light) = 
0.50, P(T=heavy) = 0.25

 A random variable represents an event whose outcome is unknown

 A probability distribution is an assignment of weights to outcomes

 Some laws of probability (more later):
 Probabilities are always non-negative

 Probabilities over all possible outcomes sum to one

 As we get more evidence, probabilities may change:
 P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60

 We’ll talk about methods for reasoning and updating probabilities later



Reminder: Expectations

 The expected value of a function is its average value, 
weighted by the probability distribution over inputs

 Example: How long to get to the airport?
 Length of driving time as a function of traffic:

L(none) = 20, L(light) = 30, L(heavy) = 60 min

E[ L(T) ] = L(none)*P(none) + L(light)*P(light) + L(heavy)*P(heavy)

E[ L(T) ] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35 minutes



Expectimax search

 Why wouldn’t we know what the result 
of an action will be?
 Explicit randomness: rolling dice
 Unpredictable opponents: ghosts 

respond randomly
 Actions can fail: when moving a robot, 

wheels could slip

 Values should now reflect average-
case outcomes, not worst-case 
(minimax) outcomes

 Expectimax search: compute average 
score under optimal play
 Max nodes as in minimax search
 Chance nodes, like min nodes, except 

the outcome is uncertain
 Calculate expected utilities
 I.e. take weighted average (expectation) 

of values of children
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Expectimax Pseudocode

def value(s)

if s is a terminal node return utility(s)

if s is a max node return maxValue(s)

if s is an exp node return expValue(s)

def maxValue(s)

values = [value(s’) for s’ in successors(s)]

return max(values)

def expValue(s)

values = [value(s’) for s’ in successors(s)]

weights = [probability(s’) for s’ in successors(s)]

return expectation(values, weights)
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Expectimax: computing expectations

def exp-value(state):

initialize v=0

for each successor of state:

p = probability(successor)

v += p * value(successor)

return v

1/2
1/3

1/6

8 24 -12

v = (1/2)(8)  + (1/3)(24) + (1/6)(-12) = 10



Expectimax Example

12 9 6 03 2 154 6

8 4 7

Suppose all children are equally likely



Expectimax Pruning?

12 93 2 4
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Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true 

expectimax value 

(which would 

require a lot of 

work to compute)



What Utilities to Use?

 For minimax, terminal function scale doesn’t matter

 We just want better states to have higher evaluations 

(get the ordering right)

 We call this insensitivity to monotonic transformations

0 40 20 30 x2 0 1600 400 900



What Utilities to Use?

 For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

20 25 800 650



What Probabilities to Use?

 In expectimax search, we have a 
probabilistic model of how the 
opponent (or environment) will 
behave in any state

 Model could be a simple uniform 
distribution (roll a die)

 Model could be sophisticated and 
require a great deal of computation

 We have a chance node for every 
outcome out of our control: opponent 
or environment

 The model might say that 
adversarial actions are likely!

 For now, assume for any state we 
magically have a distribution to 
assign probabilities to opponent 
actions / environment outcomes

Having a probabilistic belief about 

an agent’s action does not mean 

that agent is flipping any coins!



Dangers of optimism and pessimism

Dangerous optimism
Assuming chance when the 

world is adversarial

Dangerous pessimism
Assuming the worst case when 

it’s not likely

Adapted from Dan Klein



World Asssumptions

Adversarial 

Ghost

Random

Ghost

Minimax

Pacman

Won 5/5

Avg. Score:

483

Won 5/5

Avg Score: 

493

Expectimax

Pacman

Won 1/5

Avg. Score:

-303

Won 5/5

Avg. Score:

503

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman



Mixed Layer Types

 E.g. Backgammon

 Expectiminimax

 Environment is an extra 

player that moves after 

each agent

 Chance nodes take 

expectations, otherwise 

like minimax

ExpectiMinimax-Value(state):



Example: Backgammon

 Dice rolls increase b: 21 possible rolls 

with 2 dice

 Backgammon  20 legal moves

 Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

 As depth increases, probability of 

reaching a given search node shrinks

 So usefulness of search is diminished

 So limiting depth is less damaging

 But pruning is trickier…

 TDGammon (1992) uses depth-2 

search + very good evaluation function 

+ reinforcement learning: 

world-champion level play

 1st AI world champion in any game!



Multi-Agent Utilities

 Generalization of 
minimax:
 Terminals have 

utility tuples

 Node values are 
also utility tuples

 Each player 
maximizes its 
own component 

 Can give rise to 
cooperation and 
competition 
dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

What if the game is not zero-sum, or has multiple players?

[1,6,6]



Maximum Expected Utility

 Why should we average utilities?  Why not minimax?

 Principle of maximum expected utility:
 A rational agent should chose the action which maximizes its 

expected utility, given its knowledge
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Utilities

20 points

10 points

5 points

Kristen Grauman



Utilities

 Utilities are functions from 
outcomes (states of the world) to 
real numbers that describe an 
agent’s preferences

 Where do utilities come from?
 In a game, may be simple (+1/-1)

 Utilities summarize the agent’s goals

 Theorem: any “rational” preferences 
can be summarized as a utility function

 We hard-wire utilities and let 
behaviors emerge
 Why don’t we let agents pick utilities?

 Why don’t we prescribe behaviors?



Utilities: Uncertain Outcomes

Getting ice cream

Get

Single

Get

Double

Oops Whew



Preferences

 An agent must have 

preferences among:

 Prizes: A, B, etc.

 Lotteries: situations with 

uncertain prizes

 Notation:



Rational Preferences

 We want some constraints on 
preferences before we call 
them rational, e.g.

 For example: an agent with 
intransitive preferences can 
be induced to give away all 
of its money
 If B > C, then an agent with C 

would pay (say) 1 cent to get B

 If A > B, then an agent with B 
would pay (say) 1 cent to get A

 If C > A, then an agent with A 
would pay (say) 1 cent to get C

)()()( CACBBA  

Axiom of transitivity



Rational Preferences

 Preferences of a rational agent must obey constraints.
 The axioms of rationality:

 Theorem: Rational preferences imply behavior 
describable as maximization of expected utility



MEU Principle

 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

 Given any preferences satisfying these constraints, there exists 
a real-valued function U such that:

 i.e., values assigned by U preserve preferences of both prizes 
and lotteries!

 Maximum expected utility (MEU) principle:
 Choose the action that maximizes expected utility

 Note: an agent can be entirely rational (consistent with MEU) 
without ever representing or manipulating utilities and 
probabilities
 E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner



Utility Scales, Units

 Normalized utilities: u+ = 1.0, u- = 0.0

 Micromorts: one-millionth chance of death, useful for paying to 
reduce product risks, etc.

 QALYs: quality-adjusted life years, useful for medical decisions 
involving substantial risk

 Note: behavior is invariant under positive linear transformation

 With deterministic prizes only (no lottery choices), only ordinal utility
can be determined, i.e., total order on prizes



Eliciting human utilities

 Utilities map states to real numbers. Which numbers?

 Standard approach to assessment of human utilities:

 Compare a state A to a standard lottery Lp between

 “best possible prize” u+ with probability p

 “worst possible catastrophe” u- with probability 1-p

 Adjust lottery probability p until A ~ Lp

 Resulting p is a utility in [0,1]



Money

 Money does not behave as a utility function, but we can talk about 

the utility of having money (or being in debt)

 Given a lottery L = [p, $X; (1-p), $Y]

 The expected monetary value EMV(L) is p*X + (1-p)*Y

 U(L) = p*U($X) + (1-p)*U($Y)

 Typically, U(L) < U( EMV(L) ): why?

 In this sense, people are risk-averse

 When deep in debt, we are risk-prone



Example: Insurance

 Consider the lottery [0.5,$1000;  0.5,$0]

 What is its expected monetary value?  ($500)

 What is its certainty equivalent?

 Monetary value acceptable in lieu of lottery

 $400 for most people

 Difference of $100 is the insurance premium

 There’s an insurance industry because people will pay to 

reduce their risk

 If everyone were risk-neutral, no insurance needed!



Example: Human Rationality?

 Famous example of Allais (1953)

 A: [0.8,$4k;  0.2,$0]

 B: [1.0,$3k;  0.0,$0]

 C: [0.2,$4k;  0.8,$0]

 D: [0.25,$3k;  0.75,$0]

 Most people prefer B > A, C > D

 But if U($0) = 0, then
 B > A  U($3k) > 0.8 U($4k)

 C > D  0.8 U($4k) > U($3k)



Summary

 Games with uncertainty

 Expectimax search

 Mixed layer and multi-agent games

 Defining utilities

 Rational preferences

 Human rationality, risk, and money

 Next time: Probability


