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Announcements

= Blackboard: view your grades and
feedback on assignments.

= Typically can expect Pset grades by 1
week after deadline.



Today

= |Last time: Games with uncertainty
» Expectimax search
= Mixed layer and multi-agent games
= Defining utilities
» Rational preferences
= Human rationality, risk, and money

= Today: Probability



Recall: Rational Preferences

= Preferences of a rational agent must obey constraints.
» The axioms of rationality:

Orderability

(A=B)V(B»=A)V (A~ B)
Transitivity

(A-B)AN(B=C)= (A=C)
Continuity

A=-B>=C=3 [p,A; 1—p,C]~ B
Substitutability

A~B=[p,A; 1—p,C]l~[p,B;1—p,C]
Monotonicity

A>B=

(p>qg&[p, A 1—-p,Bl = [q,A; 1—q,B])

» Theorem: Rational preferences imply behavior
describable as maximization of expected utility



Recall: MEU Principle

= Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= Given any preferences satisfying these constraints, there exists
a real-valued function U such that:

U(A) > U(B) & Ax B
U(lp1,S1; --- ; pn,Sn]) = > p;U(S;)

= |.e., values assigned by U preserve preferences of both prizes
and lotteries!

= Maximum expected utility (MEU) principle:
» Choose the action that maximizes expected utility

= Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and
probabilities
= E.g., alookup table for perfect tictactoe, reflex vacuum cleaner



Recall: Money

Money does not behave as a utility function, but we can talk about
the utility of having money (or being in debt)

Given a lottery L = [p, $X; (1-p), $VY]

» The expected monetary value EMV(L) is p*X + (1-p)*Y
U(L) = p*U($X) + (1-p)*U($Y)
Typically, U(L) < U( EMV(L) ): why?

A 00 o

+$
In this sense, people are risk-averse  -1so,00 800,000

When deep in debt, we are risk-prone




Example: Insurance

= Consider the lottery [0.5,$1000; 0.5,%$0]

= What is its expected monetary value? ($500)

= What is its certainty equivalent?
= Monetary value acceptable in lieu of lottery

= $400 for most people

= Difference of $100 is the insurance premium

= There's an insurance industry because people will pay to
reduce their risk

= |If everyone were risk-neutral, no insurance needed!



Example: Human Rationality?

= Famous example of Allais (1953)

= A:[0.8,%4k; 0.2,%0]
= B:[1.0,$3k; 0.0,%0]

= C:[0.2,%4k; 0.8,%0]
= D:[0.25,%3k; 0.75,%0]

= Most people preferB>A,C>D

= But if U($0) =0, then
» B> A = U($3k) > 0.8 U($4k)
» C>D = 0.8 U($4k) > U($3K)



Today

= |Last time: Games with uncertainty
» Expectimax search
= Mixed layer and multi-agent games
= Defining utilities
» Rational preferences
= Human rationality, risk, and money

= Today: Probability



Need for probability

= Search and planning

* Probabillistic reasoning (Part Il of course)
= Diagnosis
» Speech recognition
* Tracking objects
= Robot mapping
= Genetics
* Error correcting codes
= ...lots more!

= Machine learning (Part Il of course)
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Topics

= Probabillity
= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
* Product Rule, Chain Rule, Bayes’ Rule
* |Inference
* |ndependence

= You'll need all this stuff A LOT in subsequent
weeks, so make sure you go over it now!
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Inference in Ghostbusters

= A ghostisin the grid
somewhere
= Sensor readings tell
how close a square
IS to the ghost
= On the ghost: red
= 1 or 2 away: orange
= 3 o0r4 away: yellow
= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Inference in Ghostbusters

n 0.17 0.10

n 0.17

13



Uncertainty

= General situation:

= Observed variables (evidence): Agent
knows certain things about the state of
the world (e.g., sensor readings or
symptoms)

= Unobserved variables: Agent needs to
reason about other aspects (e.g. where
an object is or what disease Is present)

= Model: Agent knows something about
how the known variables relate to the
unknown variables

= Probabilistic reasoning gives us a
framework for managing our beliefs
and knowledge

.
|

.
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Random Variables

= Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=Isitraining?
= D =How long will UT delay for winter weather?
= L =Where is the ghost?

= We denote random variables with capital letters

= Random variables have domains
= Rin {true, false} (sometimes write as {+r, —r})
= Din|[0, 8)
»= L in possible locations, maybe {(0,0), (0,1), ...}



Probabillity Distributions

= Unobserved random variables have distributions

P(T) P(W)
100
T P W P
@l
warm | 0.5 sun 0.6 R
cold | 0.5 rain 01| | 2 il
fog 0.3 Ik bt wid
meteor 0.0

= A distribution is a TABLE of probabillities of values
= A probability (lower case value) Is a single number

P(W = rain) = 0.1 P(rain) = 0.1

= Must have: Vz P(z) >0 Y P(z)=1
£



Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,... Xy,
specifies a real number for each assignment (or outcome):

P(X1{=x21,Xo=2o,... Xpn = zn) P(T, W)

P(xz1,xo,...Tn) T ]l w | p

hot sun | 0.4

= Size of distribution if n variables with domain sizes d? -
hot | rain | 0.1

= Must obey: cold | sun | 0.2

P(z1,25,...2n) > 0

cold | rain | 0.3

Z P(x1,25,...2n) = 1
(z1,22,...27n)

= For all but the smallest distributions, impractical to write out



Probabilistic Models

= A probabilistic model is a joint
distribution over a set of random
variables

Probabilistic models:

(Random) variables with domains
Assignments are called outcomes

Joint distributions: say whether
assignments (outcomes) are likely

Normalized: sum to 1.0

|deally: only certain variables directly
Interact

Distribution over T W

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Events

An event is a set E of outcomes

P(E) = > P(z1...zn)

From a joint distribution, we can calculate
the probability of any event

= Probability that it's hot AND sunny?
= Probability that it's hot?

= Probability that it's hot OR sunny?

Typically, the events we care about are
partial assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




1. P(+x, +y)?
2. P(+x)?

3. P(-y OR +x) ?

P(X.,Y)
X Y P
+X +y 0.2
+x -\f 0.3
-X +y 0.4

0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

————
P(t) = Z P(t,s)

—
P(s) = Z P(t, s)
{

P(T)

T P
hot 0.5
cold 0.5

P(W)

W P
sun 0.6
rain 0.4

P(X1 =z1) =Y P(X1=ux1,X0=ap)

L2



Quiz: marginal distributions

P(X,Y)
X Y P
+X ‘ +y ! 0.2
+X . -\ | 0.3
X . +y | 0.4
X -y 0.1

P(x) = z P(x,y)

P(y) = Z P(z,y)

P(X)

X

™

=X

F

P(Y)

*y




Conditional Probabilities

= A simple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(alb) = P(a,b)
P(b)
P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(a,b)

P(a) P(b)

PW =r|T'=c¢) =777



Quiz: conditional probabillities

" P(+x| +y)?
P(X,Y)
X Y P
+X +y 0.2 = P(-x| +y)?
+X -\ 0.3
X +y 0.4
X -y 0.1

* P(-y|+x)?



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

- P(W|T = hot) P(T, W)

W P T W P
- sun 0.8 hot sun 0.4
§ rain 0.2 hot rain 0.1
- P(W|T — cold) cold sun 0.2
- cold rain 0.3

W P

sun 0.4

rain 0.6




Computing conditional probabilities

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(W =3,T =c¢)

P(T =c)
In P(W =3,T =c)
CPW=sT=c)+PW=r,T=c)

P(W =3s|T =c¢)=

0.2
= =0.4
02403 ° P(W|T = ¢)
sun 0.4
LI S, rain 0.6
P(W=rT=c¢c)= P(HP(T r,=IC) )

N P(W=r,T=c¢c)
CPW=s5T=c)+P(W=rT=c)
=93 _o5

0.2+40.3

26



Normalization Trick

= A trick to get a whole conditional distribution at once:
1. Select the joint probabilities matching the evidence
2. Normalize the selection (make it sum to one)

P(T, W)

T W | P P(c,W) P(W [ T=c)
hot sun 0.4 T R P W P
hot rain | 0.1 ) cold| sun | 0.2 | sun 0.4

Select ) Normalize )

cold sun 0.2 cold | rain | 0.3 rain 0.6
cold rain | 0.3 05

= Why does this work? Sum of selection is P(evidence)! (P(c) here)

Plxq.,x P(x1.,.x
P(QZHCBQ) — ( 1 2) — ( 1 2)

P(x3) >oxy P(w1,22)



Quiz: normalization trick

* P(X | Y=-y) ?
P(X,Y) SELECT the joint NORMALIZE the
probabilities selection

X v ] ¥ matching the (make it sum to one)
+X +y 0.2 evidence

+X -y 0.3 —T —

-X +y 0.4

-X -y 0.1




Probabilistic Inference

= Probabillistic inference: compute a desired probability
from other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities

= P(ontime | no reported accidents) = 0.90
* These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated



Inference by Enumeration

= P(sun)?

= P(sun | winter)?

= P(sun | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05

winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= General case:

= Evidence variables: £1-..Ep =e1...¢; X1, X0, ... Xn
» Query* variable: Q |
= Hidden variables: H;...H, All variables

= We want: P(Qleq...ep)

1. Select the entries consistent with the evidence
2. Sum out H to get joint of Query and evidence:

P(Q,h1...hr,e1...€
P(Q.e1...e5) = h;:m\(Q ' \; ' @

X1, Xo,...Xp

3. Normalize
7 = ZP(Q,@I,...,ek)

1 * \Works fine with

1
PQler,....ex) = — > P(Q.er,... ) multiple query
q

variables, too



The Product Rule

= Sometimes have conditional distributions but want the joint

P(aly) = &Y =2 P(a,y) = P(aly)P(y)

P(y)
= Example:
P(D|W) P(D,W)

p(W) D W P D W P
R P wet sun 0.1 wet sun
sun | 0.8 dry su.n 0.9 <:’> dry su.n
cain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(xz|x1)P(a3|zy, x2)

P(z1,x2,...2n) = || P(zilzy ... 2-1)
7

= Why is this always true?



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(z|y)P(y) = P(y|z) P(z) That's my rule! }

= Dividing, we get:

P(y|z)
P(y)

= Why is this at all helpful?
» Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later

P(xly) = P(x)

= |n the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(Effect|Cause)P(Cause
P(Cause|Effect) = ( | )P )

P(Effect)
= Example:
" m IS meningitis, s is stiff neck p(s‘m) — (0.8
- | Example
P(m) = 0.0001 givens
P(S) — 01 B
P P 0.8 x 0.0001
P(m|s) = (s|m)P(m) — x = 0.0008

P(s) 0.1

» Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why?



Example: learning skin colors

= We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

Percentage of skin
pixels in each bin

Feature x = Hue

Kristen Grauman



Example: learning skin colors

= We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

P(x|skin)

Feature x = Hue
P(x|not skin)

Now we get a hew image,
and want to label each pixel
as skin or non-skin.

What’s the probability we
care about to do skin

detection?
Feature x = Hue

Kristen Grauman



Example: learning skin colors

P (x| skin)P(skin)

P(skin| x) = P(X)

P(skin| x) a P(x| skin)P(skin)

Where might the prior come from?



Example: learning skin colors

Now for every pixel in a new image, we can
estimate probability that it is generated by skin.

Brighter pixels -
higher probability
of being skin

Classify pixels based on these probabilities
e if p(skin|x) > 6, classify as skin

o if p(skin|z) < 0, classify as not skin

Kristen Grauman



Quiz: Bayes’ Rule

= What is P(W | dry) ?

P(D|W)
P(”} D W P
. > wet sun . 0.1
po— I 0.8 dry sun 0.9
rain . 0.2 wet | rain | 0.7
dry rain 0.3




Ghostbusters, Revisited

Let’'s say we have two distributions:
= Prior distribution over ghost location: P(G) Ol g ol g ol
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1) o, o, o
= E.g. P(R =yellow | G=(1,1)) =0.1
= We can calculate the posterior
R : 0.17 ||| 0.10 |} 0.10
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:
0.17 | 0.10
P(g|r) o< P(r|g)P(g) .n.
<0.01 0.17




Summary

= Probability
= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
* Product Rule, Chain Rule, Bayes’ Rule
* |nference

= Next time:
* |Independence
= Bayesian Networks



