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Announcements

 Blackboard: view your grades and 

feedback on assignments.

 Typically can expect Pset grades by 1 

week after deadline.
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Today

 Last time: Games with uncertainty

 Expectimax search

 Mixed layer and multi-agent games

 Defining utilities

 Rational preferences

 Human rationality, risk, and money

 Today: Probability



Recall: Rational Preferences

 Preferences of a rational agent must obey constraints.
 The axioms of rationality:

 Theorem: Rational preferences imply behavior 
describable as maximization of expected utility



Recall: MEU Principle

 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

 Given any preferences satisfying these constraints, there exists 
a real-valued function U such that:

 i.e., values assigned by U preserve preferences of both prizes 
and lotteries!

 Maximum expected utility (MEU) principle:
 Choose the action that maximizes expected utility

 Note: an agent can be entirely rational (consistent with MEU) 
without ever representing or manipulating utilities and 
probabilities
 E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner



Recall: Money

 Money does not behave as a utility function, but we can talk about 

the utility of having money (or being in debt)

 Given a lottery L = [p, $X; (1-p), $Y]

 The expected monetary value EMV(L) is p*X + (1-p)*Y

 U(L) = p*U($X) + (1-p)*U($Y)

 Typically, U(L) < U( EMV(L) ): why?

 In this sense, people are risk-averse

 When deep in debt, we are risk-prone



Example: Insurance

 Consider the lottery [0.5,$1000;  0.5,$0]

 What is its expected monetary value?  ($500)

 What is its certainty equivalent?

 Monetary value acceptable in lieu of lottery

 $400 for most people

 Difference of $100 is the insurance premium

 There’s an insurance industry because people will pay to 

reduce their risk

 If everyone were risk-neutral, no insurance needed!



Example: Human Rationality?

 Famous example of Allais (1953)

 A: [0.8,$4k;  0.2,$0]

 B: [1.0,$3k;  0.0,$0]

 C: [0.2,$4k;  0.8,$0]

 D: [0.25,$3k;  0.75,$0]

 Most people prefer B > A, C > D

 But if U($0) = 0, then
 B > A  U($3k) > 0.8 U($4k)

 C > D  0.8 U($4k) > U($3k)



Today

 Last time: Games with uncertainty

 Expectimax search

 Mixed layer and multi-agent games

 Defining utilities

 Rational preferences

 Human rationality, risk, and money

 Today: Probability



Need for probability

 Search and planning

 Probabilistic reasoning (Part II of course)

 Diagnosis

 Speech recognition

 Tracking objects

 Robot mapping

 Genetics

 Error correcting codes

 …lots more!

 Machine learning (Part III of course)
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Topics

 Probability

 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 Independence

 You’ll need all this stuff A LOT in subsequent 

weeks, so make sure you go over it now!
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Inference in Ghostbusters

 A ghost is in the grid 

somewhere

 Sensor readings tell 

how close a square 

is to the ghost

 On the ghost: red

 1 or 2 away: orange

 3 or 4 away: yellow

 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

 Sensors are noisy, but we know P(Color | Distance)



Inference in Ghostbusters
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Uncertainty

 General situation:

 Observed variables (evidence): Agent 
knows certain things about the state of 
the world (e.g., sensor readings or 
symptoms)

 Unobserved variables: Agent needs to 
reason about other aspects (e.g. where 
an object is or what disease is present)

 Model: Agent knows something about 
how the known variables relate to the 
unknown variables

 Probabilistic reasoning gives us a 
framework for managing our beliefs 
and knowledge 14



Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty

 R = Is it raining?

 D = How long will UT delay for winter weather?

 L = Where is the ghost?

 We denote random variables with capital letters

 Random variables have domains

 R in {true, false}   (sometimes write as {+r, r})

 D in [0, 8)

 L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values

 A probability (lower case value) is a single number

 Must have: 

T P

warm 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

 A joint distribution over a set of random variables:

specifies a real number for each assignment (or outcome): 

 Size of distribution if n variables with domain sizes d?

 Must obey:

 For all but the smallest distributions, impractical to write out

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Models

 A probabilistic model is a joint 
distribution over a set of random 
variables

 Probabilistic models:

 (Random) variables with domains 

 Assignments are called outcomes

 Joint distributions: say whether 
assignments (outcomes) are likely

 Normalized: sum to 1.0

 Ideally: only certain variables directly 
interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Distribution over T,W



Events

 An event is a set E of outcomes

 From a joint distribution, we can calculate 
the probability of any event

 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

 Typically, the events we care about are 
partial assignments, like P(T=hot)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz

1. P(+x, +y)?

2. P(+x)?

3. P(-y OR +x) ?



Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables 

 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: marginal distributions



Conditional Probabilities

 A simple relation between joint and conditional probabilities

 In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: conditional probabilities



Conditional Distributions

 Conditional distributions are probability distributions over 

some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions Joint Distribution



Computing conditional probabilities
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Normalization Trick

 A trick to get a whole conditional distribution at once:
1. Select the joint probabilities matching the evidence

2. Normalize the selection (make it sum to one)

 Why does this work? Sum of selection is P(evidence)!  (P(c) here)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T R P

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6
Select Normalize

0.5

P(c,W) P(W | T=c)



Quiz: normalization trick



Probabilistic Inference

 Probabilistic inference: compute a desired probability 

from other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities 

 P(on time | no reported accidents) = 0.90

 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:

 P(on time | no accidents, 5 a.m.) = 0.95

 P(on time | no accidents, 5 a.m., raining) = 0.80

 Observing new evidence causes beliefs to be updated



Inference by Enumeration

 P(sun)?

 P(sun | winter)?

 P(sun | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration

 General case:
 Evidence variables: 

 Query* variable:

 Hidden variables:

 We want:

1. Select the entries consistent with the evidence

2. Sum out H to get joint of Query and evidence:

3. Normalize

All variables

* Works fine with 

multiple query 

variables, too



The Product Rule

 Sometimes have conditional distributions but want the joint

 Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

 Why is this always true?



Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

 Why is this at all helpful?
 Lets us build one conditional from its reverse

 Often one conditional is tricky but the other one is simple

 Foundation of many systems we’ll see later 

 In the running for most important AI equation!

That’s my rule!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:

 m is meningitis, s is stiff neck

 Note: posterior probability of meningitis still very small

 Note: you should still get stiff necks checked out!  Why?

Example

givens



Example: learning skin colors

 We can represent a class-conditional density using a 

histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)

Percentage of skin 

pixels in each bin

Kristen Grauman



Example: learning skin colors

 We can represent a class-conditional density using a 

histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)
Now we get a new image, 

and want to label each pixel 

as skin or non-skin. 

What’s the probability we 

care about to do skin 

detection?

Kristen Grauman
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Where might the prior come from?

Example: learning skin colors



Now for every pixel in a new image, we can 

estimate probability that it is generated by skin.

Classify pixels based on these probabilities

Brighter pixels 

higher probability 

of being skin

Kristen Grauman

Example: learning skin colors



Quiz: Bayes’ Rule

 What is P(W | dry) ?



Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform

 Sensor reading model: P(R | G)

 Given: we know what our sensors do

 R = reading color measured at (1,1)

 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:



Summary

 Probability

 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 Next time: 

 Independence

 Bayesian Networks


