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Announcements

 Blackboard: view your grades and 

feedback on assignments.

 Typically can expect Pset grades by 1 

week after deadline.
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Today

 Last time: Games with uncertainty

 Expectimax search

 Mixed layer and multi-agent games

 Defining utilities

 Rational preferences

 Human rationality, risk, and money

 Today: Probability



Recall: Rational Preferences

 Preferences of a rational agent must obey constraints.
 The axioms of rationality:

 Theorem: Rational preferences imply behavior 
describable as maximization of expected utility



Recall: MEU Principle

 Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

 Given any preferences satisfying these constraints, there exists 
a real-valued function U such that:

 i.e., values assigned by U preserve preferences of both prizes 
and lotteries!

 Maximum expected utility (MEU) principle:
 Choose the action that maximizes expected utility

 Note: an agent can be entirely rational (consistent with MEU) 
without ever representing or manipulating utilities and 
probabilities
 E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner



Recall: Money

 Money does not behave as a utility function, but we can talk about 

the utility of having money (or being in debt)

 Given a lottery L = [p, $X; (1-p), $Y]

 The expected monetary value EMV(L) is p*X + (1-p)*Y

 U(L) = p*U($X) + (1-p)*U($Y)

 Typically, U(L) < U( EMV(L) ): why?

 In this sense, people are risk-averse

 When deep in debt, we are risk-prone



Example: Insurance

 Consider the lottery [0.5,$1000;  0.5,$0]

 What is its expected monetary value?  ($500)

 What is its certainty equivalent?

 Monetary value acceptable in lieu of lottery

 $400 for most people

 Difference of $100 is the insurance premium

 There’s an insurance industry because people will pay to 

reduce their risk

 If everyone were risk-neutral, no insurance needed!



Example: Human Rationality?

 Famous example of Allais (1953)

 A: [0.8,$4k;  0.2,$0]

 B: [1.0,$3k;  0.0,$0]

 C: [0.2,$4k;  0.8,$0]

 D: [0.25,$3k;  0.75,$0]

 Most people prefer B > A, C > D

 But if U($0) = 0, then
 B > A  U($3k) > 0.8 U($4k)

 C > D  0.8 U($4k) > U($3k)



Today

 Last time: Games with uncertainty

 Expectimax search

 Mixed layer and multi-agent games

 Defining utilities

 Rational preferences

 Human rationality, risk, and money

 Today: Probability



Need for probability

 Search and planning

 Probabilistic reasoning (Part II of course)

 Diagnosis

 Speech recognition

 Tracking objects

 Robot mapping

 Genetics

 Error correcting codes

 …lots more!

 Machine learning (Part III of course)
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Topics

 Probability

 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 Independence

 You’ll need all this stuff A LOT in subsequent 

weeks, so make sure you go over it now!
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Inference in Ghostbusters

 A ghost is in the grid 

somewhere

 Sensor readings tell 

how close a square 

is to the ghost

 On the ghost: red

 1 or 2 away: orange

 3 or 4 away: yellow

 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

 Sensors are noisy, but we know P(Color | Distance)



Inference in Ghostbusters
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Uncertainty

 General situation:

 Observed variables (evidence): Agent 
knows certain things about the state of 
the world (e.g., sensor readings or 
symptoms)

 Unobserved variables: Agent needs to 
reason about other aspects (e.g. where 
an object is or what disease is present)

 Model: Agent knows something about 
how the known variables relate to the 
unknown variables

 Probabilistic reasoning gives us a 
framework for managing our beliefs 
and knowledge 14



Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty

 R = Is it raining?

 D = How long will UT delay for winter weather?

 L = Where is the ghost?

 We denote random variables with capital letters

 Random variables have domains

 R in {true, false}   (sometimes write as {+r, r})

 D in [0, 8)

 L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values

 A probability (lower case value) is a single number

 Must have: 

T P

warm 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

 A joint distribution over a set of random variables:

specifies a real number for each assignment (or outcome): 

 Size of distribution if n variables with domain sizes d?

 Must obey:

 For all but the smallest distributions, impractical to write out

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Models

 A probabilistic model is a joint 
distribution over a set of random 
variables

 Probabilistic models:

 (Random) variables with domains 

 Assignments are called outcomes

 Joint distributions: say whether 
assignments (outcomes) are likely

 Normalized: sum to 1.0

 Ideally: only certain variables directly 
interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Distribution over T,W



Events

 An event is a set E of outcomes

 From a joint distribution, we can calculate 
the probability of any event

 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

 Typically, the events we care about are 
partial assignments, like P(T=hot)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz

1. P(+x, +y)?

2. P(+x)?

3. P(-y OR +x) ?



Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables 

 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: marginal distributions



Conditional Probabilities

 A simple relation between joint and conditional probabilities

 In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: conditional probabilities



Conditional Distributions

 Conditional distributions are probability distributions over 

some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions Joint Distribution



Computing conditional probabilities
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Normalization Trick

 A trick to get a whole conditional distribution at once:
1. Select the joint probabilities matching the evidence

2. Normalize the selection (make it sum to one)

 Why does this work? Sum of selection is P(evidence)!  (P(c) here)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T R P

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6
Select Normalize

0.5

P(c,W) P(W | T=c)



Quiz: normalization trick



Probabilistic Inference

 Probabilistic inference: compute a desired probability 

from other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities 

 P(on time | no reported accidents) = 0.90

 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:

 P(on time | no accidents, 5 a.m.) = 0.95

 P(on time | no accidents, 5 a.m., raining) = 0.80

 Observing new evidence causes beliefs to be updated



Inference by Enumeration

 P(sun)?

 P(sun | winter)?

 P(sun | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration

 General case:
 Evidence variables: 

 Query* variable:

 Hidden variables:

 We want:

1. Select the entries consistent with the evidence

2. Sum out H to get joint of Query and evidence:

3. Normalize

All variables

* Works fine with 

multiple query 

variables, too



The Product Rule

 Sometimes have conditional distributions but want the joint

 Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

 Why is this always true?



Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

 Why is this at all helpful?
 Lets us build one conditional from its reverse

 Often one conditional is tricky but the other one is simple

 Foundation of many systems we’ll see later 

 In the running for most important AI equation!

That’s my rule!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:

 m is meningitis, s is stiff neck

 Note: posterior probability of meningitis still very small

 Note: you should still get stiff necks checked out!  Why?

Example

givens



Example: learning skin colors

 We can represent a class-conditional density using a 

histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)

Percentage of skin 

pixels in each bin

Kristen Grauman



Example: learning skin colors

 We can represent a class-conditional density using a 

histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)
Now we get a new image, 

and want to label each pixel 

as skin or non-skin. 

What’s the probability we 

care about to do skin 

detection?

Kristen Grauman
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Where might the prior come from?

Example: learning skin colors



Now for every pixel in a new image, we can 

estimate probability that it is generated by skin.

Classify pixels based on these probabilities

Brighter pixels 

higher probability 

of being skin

Kristen Grauman

Example: learning skin colors



Quiz: Bayes’ Rule

 What is P(W | dry) ?



Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform

 Sensor reading model: P(R | G)

 Given: we know what our sensors do

 R = reading color measured at (1,1)

 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:



Summary

 Probability

 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 Next time: 

 Independence

 Bayesian Networks


