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Outline

 Last time: Probability

 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 Today:

 Independence

 Intro to Bayesian Networks



Quiz: Bayes’ Rule

 What is P(W | dry) ?



Models and simplifications
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Probabilistic Models

 Models describe how (a portion of) the world works

 Models are always simplifications
 May not account for every variable

 May not account for all interactions between variables

 “All models are wrong; but some are useful.”
– George E. P. Box

 What do we do with probabilistic models?
 We (or our agents) need to reason about unknown variables, 

given evidence

 Example: explanation (diagnostic reasoning)

 Example: prediction (causal reasoning)

 Example: value of information



Probabilistic Models

 A probabilistic model is a joint distribution over a set of 
variables

 Given a joint distribution, we can reason about 
unobserved variables given observations (evidence)

 General form of a query:

 This kind of posterior distribution is also called the belief 
function of an agent which uses this model

Stuff you 

care about

Stuff you 

already know
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Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent

 What could we assume for {Weather, Traffic, Cavity, 
Toothache}? 7



Example: Independence?

T W P

warm sun 0.4

warm rain 0.1

cold sun 0.2

cold rain 0.3

T W P

warm sun 0.3

warm rain 0.2

cold sun 0.3

cold rain 0.2

T P

warm 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

 N fair, independent coin flips:

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5



Conditional Independence

 P(Toothache, Cavity, Catch)

 If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, cavity) = P(+catch| cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)

 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)



Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments.

 X is conditionally independent of Y given Z iff:

 Or, equivalently, iff:



Conditional independence

 What about this domain?  

 Traffic

 Umbrella

 Raining



Conditional independence

 What about this domain?  

 Fire

 Smoke

 Alarm



Cond indep and the Chain Rule

 Trivial decomposition:

 With assumption of conditional independence:

 Bayes’ nets / graphical models help us express conditional 
independence assumptions



Ghostbusters Chain Rule

T B G P(T,B,G)

+t +b +g 0.16

+t +b g 0.16

+t b +g 0.24

+t b g 0.04

t +b +g 0.04

t +b g 0.24

t b +g 0.06

t b g 0.06

 Each sensor depends only
on where the ghost is

 That means, the two sensors are 
conditionally independent, given the 
ghost position

 T: Top square is red
B: Bottom square is red
G: Ghost is in the top

 Givens:

P( +g ) = 0.5

P( +t  | +g ) = 0.8
P( +t  | g ) = 0.4
P( +b | +g ) = 0.4
P( +b | g ) = 0.8

= P(G) P(T|G) P(B|G)

P(G)

P(T|G)

P(B|G)

P(T,B,G) = P(G) P(T|G) P(B|T,G)



Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly

 Hard to learn (estimate) anything empirically about more than a 
few variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models

 We describe how variables locally interact

 Local interactions chain together to give global, indirect 
interactions

 For now, we’ll be vague about how these interactions are 
specified



Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car
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Graphical Model Notation

 Nodes: variables (with domains)
 Can be assigned (observed) or 

unassigned (unobserved)

 Arcs: interactions
 Indicate “direct influence” between 

variables

 Formally: encode conditional 
independence (more later)

 For now: imagine that arrows 
mean direct causation (in 
general, they don’t!)



Example: Coin Flips

X1 X2 Xn

 N independent coin flips

 No interactions between variables: 

absolute independence



Example: Traffic

 Variables:

 R: It rains

 T: There is traffic

 Model 1: independence

 Model 2: rain causes traffic

 Why is an agent using model 2 better?

R

T



Example: Traffic II

 Let’s build a causal graphical model

 Variables
 T: Traffic

 R: It rains

 L: Low pressure

 D: Roof drips

 B: Ballgame

 C: Cavity



Example: Alarm Network

 Variables

 B: Burglary

 A: Alarm goes off

 M: Mary calls

 J: John calls

 E: Earthquake!



Example: Part-based object models

Kristen Grauman

[Fischler and Elschlager, 1973]



One possible graphical model:

N image features, P parts in the model

x1

x3

x4

x6

x5

x2

Fully connected 

constellation model

 e.g. Constellation Model

 Parts fully connected

Slide credit: Rob Fergus

Example: Part-based object models



Probabilistic constellation model

h: assignment of features to parts

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Part

descriptors

Part

locations

Candidate parts

Source: Lana Lazebnik

x1

x3

x4

x6

x5

x2



Probabilistic constellation model

h: assignment of features to parts

Part 2

Part 3

Part 1

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Source: Lana Lazebnik

x1

x3

x4

x6

x5

x2



Probabilistic constellation model

h: assignment of features to parts

Part 2

Part 3

Part 1

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Source: Lana Lazebnik

x1

x3

x4

x6

x5

x2



Face model

Recognition 

results

Appearance: 10 

patches closest 

to mean for 

each part

Fergus et al. CVPR 2003



Face model

Recognition 

results

Appearance: 10 

patches closest 

to mean for 

each part

Test images: size 

of circles indicates 

score of 

hypothesis

Fergus et al. CVPR 2003Kristen Grauman



Appearance: 10 

patches closest 

to mean for 

each part

Motorbike 

model

Recognition 

results

Fergus et al. CVPR 2003Kristen Grauman



Appearance: 10 

patches closest 

to mean for 

each part

Spotted cat 

model

Recognition 

results

Fergus et al. CVPR 2003Kristen Grauman



x1

x3

x4

x6

x5

x2

“Star” shape model

 e.g. implicit shape model

 Parts mutually independent

 Recognition complexity: O(NP)

N image features, P parts in the model

x1

x3

x4

x6

x5

x2

Fully connected 

constellation model

 e.g. Constellation Model

 Parts fully connected

 Recognition complexity: O(NP)

Slide credit: Rob Fergus

Two possible graphical models:

Example: Part-based object models



Star-shaped graphical model

• Discrete set of part appearances are used to 

index votes for object position

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 

ECCV Workshop on Statistical Learning in Computer Vision 2004

Part with

displacement vectors

training image annotated with object localization info

x1

x3
x4

x6

x5

x2

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Star-shaped graphical model

• Discrete set of part appearances are used to 

index votes for object position

test image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 

ECCV Workshop on Statistical Learning in Computer Vision 2004

x1

x3
x4

x6

x5

x2

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Naïve Bayes model of parts

)|()( cwpcp

Prior prob. of 

the object classes

Image likelihood

given the class





N

n

n cwpcp
1

)|()(

Object class

decision

)|( wcp
c

c maxarg

patches

x1

x3
x4

x6

x5

x2



Bayes’ Net Semantics

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

 Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + 

Local Conditional Probabilities



Probabilities in BNs

P(Cavity) * P(Ache | Cavity) * P(Catch | Cavity)

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 Example:



 Why are we guaranteed that setting

results in a proper distribution?

Probabilities in BNs



Recall: The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

 Why is this always true?



 Why are we guaranteed that setting

results in a proper distribution?

 Chain rule (valid for all distributions):

 Due to assumed conditional independences:

 Consequence:

Probabilities in BNs

=



Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

Only distributions whose variables are absolutely 

independent can be represented by a Bayes’ net with no arcs.

?



Example: Traffic

R

T

+r 1/4

r 3/4

+r +t 3/4

t 1/4

r +t 1/2

t 1/2



Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls
Mary 

calls

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99



Example: Traffic

 Causal direction

R

T

r 1/4

r 3/4

r t 3/4

t 1/4

r t 1/2

t 1/2

r t 3/16

r t 1/16

r t 6/16

r t 6/16
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Example: Reverse Traffic

 Reverse causality?

T

R

t 9/16

t 7/16

t r 1/3

r 2/3

t r 1/7

r 6/7

r t 3/16

r t 1/16

r t 6/16

r t 6/16



Causality?

 When Bayes’ nets reflect the true causal patterns:
 Often simpler (nodes have fewer parents)

 Often easier to think about

 Often easier to elicit from experts

 BNs need not actually be causal
 Sometimes no causal net exists over the domain (especially if 

variables are missing)

 E.g. consider the variables Traffic and Drips

 End up with arrows that reflect correlation, not causation

 What do the arrows really mean?
 Topology may happen to encode causal structure

 Topology really encodes conditional independence



Summary: Bayes’ Nets

 So far: how a Bayes’ net encodes a joint distribution

 Next: how to answer queries about that distribution

 Key idea: conditional independence

 Today: assembled BNs using an intuitive notion of conditional 
independence as causality

 Next: formalize these ideas

 Main goal: answer queries about conditional independence and 
influence

 After that: how to answer numerical queries (inference)



Next week

 Making complex decisions
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