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Outline

 Last time: Probability

 Random Variables

 Joint and Marginal Distributions

 Conditional Distribution

 Product Rule, Chain Rule, Bayes’ Rule

 Inference

 Today:

 Independence

 Intro to Bayesian Networks



Quiz: Bayes’ Rule

 What is P(W | dry) ?



Models and simplifications
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Probabilistic Models

 Models describe how (a portion of) the world works

 Models are always simplifications
 May not account for every variable

 May not account for all interactions between variables

 “All models are wrong; but some are useful.”
– George E. P. Box

 What do we do with probabilistic models?
 We (or our agents) need to reason about unknown variables, 

given evidence

 Example: explanation (diagnostic reasoning)

 Example: prediction (causal reasoning)

 Example: value of information



Probabilistic Models

 A probabilistic model is a joint distribution over a set of 
variables

 Given a joint distribution, we can reason about 
unobserved variables given observations (evidence)

 General form of a query:

 This kind of posterior distribution is also called the belief 
function of an agent which uses this model

Stuff you 

care about

Stuff you 

already know
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Independence

 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent

 What could we assume for {Weather, Traffic, Cavity, 
Toothache}? 7



Example: Independence?

T W P

warm sun 0.4

warm rain 0.1

cold sun 0.2

cold rain 0.3

T W P

warm sun 0.3

warm rain 0.2

cold sun 0.3

cold rain 0.2

T P

warm 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

 N fair, independent coin flips:

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5



Conditional Independence

 P(Toothache, Cavity, Catch)

 If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, cavity) = P(+catch| cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)

 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)



Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments.

 X is conditionally independent of Y given Z iff:

 Or, equivalently, iff:



Conditional independence

 What about this domain?  

 Traffic

 Umbrella

 Raining



Conditional independence

 What about this domain?  

 Fire

 Smoke

 Alarm



Cond indep and the Chain Rule

 Trivial decomposition:

 With assumption of conditional independence:

 Bayes’ nets / graphical models help us express conditional 
independence assumptions



Ghostbusters Chain Rule

T B G P(T,B,G)

+t +b +g 0.16

+t +b g 0.16

+t b +g 0.24

+t b g 0.04

t +b +g 0.04

t +b g 0.24

t b +g 0.06

t b g 0.06

 Each sensor depends only
on where the ghost is

 That means, the two sensors are 
conditionally independent, given the 
ghost position

 T: Top square is red
B: Bottom square is red
G: Ghost is in the top

 Givens:

P( +g ) = 0.5

P( +t  | +g ) = 0.8
P( +t  | g ) = 0.4
P( +b | +g ) = 0.4
P( +b | g ) = 0.8

= P(G) P(T|G) P(B|G)

P(G)

P(T|G)

P(B|G)

P(T,B,G) = P(G) P(T|G) P(B|T,G)



Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly

 Hard to learn (estimate) anything empirically about more than a 
few variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models

 We describe how variables locally interact

 Local interactions chain together to give global, indirect 
interactions

 For now, we’ll be vague about how these interactions are 
specified



Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car
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Graphical Model Notation

 Nodes: variables (with domains)
 Can be assigned (observed) or 

unassigned (unobserved)

 Arcs: interactions
 Indicate “direct influence” between 

variables

 Formally: encode conditional 
independence (more later)

 For now: imagine that arrows 
mean direct causation (in 
general, they don’t!)



Example: Coin Flips

X1 X2 Xn

 N independent coin flips

 No interactions between variables: 

absolute independence



Example: Traffic

 Variables:

 R: It rains

 T: There is traffic

 Model 1: independence

 Model 2: rain causes traffic

 Why is an agent using model 2 better?

R

T



Example: Traffic II

 Let’s build a causal graphical model

 Variables
 T: Traffic

 R: It rains

 L: Low pressure

 D: Roof drips

 B: Ballgame

 C: Cavity



Example: Alarm Network

 Variables

 B: Burglary

 A: Alarm goes off

 M: Mary calls

 J: John calls

 E: Earthquake!



Example: Part-based object models

Kristen Grauman

[Fischler and Elschlager, 1973]



One possible graphical model:

N image features, P parts in the model

x1

x3

x4

x6

x5

x2

Fully connected 

constellation model

 e.g. Constellation Model

 Parts fully connected

Slide credit: Rob Fergus

Example: Part-based object models



Probabilistic constellation model

h: assignment of features to parts

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Part

descriptors

Part

locations

Candidate parts

Source: Lana Lazebnik

x1

x3

x4

x6

x5

x2



Probabilistic constellation model

h: assignment of features to parts

Part 2

Part 3

Part 1

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Source: Lana Lazebnik

x1

x3

x4

x6

x5

x2



Probabilistic constellation model

h: assignment of features to parts

Part 2

Part 3

Part 1

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Source: Lana Lazebnik

x1

x3

x4

x6

x5

x2



Face model

Recognition 

results

Appearance: 10 

patches closest 

to mean for 

each part

Fergus et al. CVPR 2003



Face model

Recognition 

results

Appearance: 10 

patches closest 

to mean for 

each part

Test images: size 

of circles indicates 

score of 

hypothesis

Fergus et al. CVPR 2003Kristen Grauman



Appearance: 10 

patches closest 

to mean for 

each part

Motorbike 

model

Recognition 

results

Fergus et al. CVPR 2003Kristen Grauman



Appearance: 10 

patches closest 

to mean for 

each part

Spotted cat 

model

Recognition 

results

Fergus et al. CVPR 2003Kristen Grauman



x1

x3

x4

x6

x5

x2

“Star” shape model

 e.g. implicit shape model

 Parts mutually independent

 Recognition complexity: O(NP)

N image features, P parts in the model

x1

x3

x4

x6

x5

x2

Fully connected 

constellation model

 e.g. Constellation Model

 Parts fully connected

 Recognition complexity: O(NP)

Slide credit: Rob Fergus

Two possible graphical models:

Example: Part-based object models



Star-shaped graphical model

• Discrete set of part appearances are used to 

index votes for object position

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 

ECCV Workshop on Statistical Learning in Computer Vision 2004

Part with

displacement vectors

training image annotated with object localization info

x1

x3
x4

x6

x5

x2

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Star-shaped graphical model

• Discrete set of part appearances are used to 

index votes for object position

test image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 

ECCV Workshop on Statistical Learning in Computer Vision 2004

x1

x3
x4

x6

x5

x2

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Naïve Bayes model of parts

)|()( cwpcp

Prior prob. of 

the object classes

Image likelihood

given the class





N

n

n cwpcp
1

)|()(

Object class

decision

)|( wcp
c

c maxarg

patches

x1

x3
x4

x6

x5

x2



Bayes’ Net Semantics

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

 Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + 

Local Conditional Probabilities



Probabilities in BNs

P(Cavity) * P(Ache | Cavity) * P(Catch | Cavity)

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 Example:



 Why are we guaranteed that setting

results in a proper distribution?

Probabilities in BNs



Recall: The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

 Why is this always true?



 Why are we guaranteed that setting

results in a proper distribution?

 Chain rule (valid for all distributions):

 Due to assumed conditional independences:

 Consequence:

Probabilities in BNs

=



Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

Only distributions whose variables are absolutely 

independent can be represented by a Bayes’ net with no arcs.

?



Example: Traffic

R

T

+r 1/4

r 3/4

+r +t 3/4

t 1/4

r +t 1/2

t 1/2



Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls
Mary 

calls

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99



Example: Traffic

 Causal direction

R

T

r 1/4

r 3/4

r t 3/4

t 1/4

r t 1/2

t 1/2

r t 3/16

r t 1/16

r t 6/16

r t 6/16
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Example: Reverse Traffic

 Reverse causality?

T

R

t 9/16

t 7/16

t r 1/3

r 2/3

t r 1/7

r 6/7

r t 3/16

r t 1/16

r t 6/16

r t 6/16



Causality?

 When Bayes’ nets reflect the true causal patterns:
 Often simpler (nodes have fewer parents)

 Often easier to think about

 Often easier to elicit from experts

 BNs need not actually be causal
 Sometimes no causal net exists over the domain (especially if 

variables are missing)

 E.g. consider the variables Traffic and Drips

 End up with arrows that reflect correlation, not causation

 What do the arrows really mean?
 Topology may happen to encode causal structure

 Topology really encodes conditional independence



Summary: Bayes’ Nets

 So far: how a Bayes’ net encodes a joint distribution

 Next: how to answer queries about that distribution

 Key idea: conditional independence

 Today: assembled BNs using an intuitive notion of conditional 
independence as causality

 Next: formalize these ideas

 Main goal: answer queries about conditional independence and 
influence

 After that: how to answer numerical queries (inference)



Next week

 Making complex decisions
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