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1. (16 points) True/False

For the following questions, a correct answer is worth 2 points, no answer is worth 1 point, and an incorrect
answer is worth 0 points. Circle true or false to indicate your answer.

a) (true or false) Inverse reinforcement learning (which makes helicopters fly by themselves) is primarily
concerned with learning an expert’s transition model.
Solution:
False. Inverse reinforcement learning focuses on learning an expert’s reward function. Experts and lousy
agents alike all use the same transition model.

b) (true or false) A∗ search will always expand fewer search nodes than uniform cost search.
Solution:
False. A heuristic can lead the search algorithm astray. Consider states S, 1, 2, 3 & G where S leads to 1
and 2 with cost 1, 1 leads to G with cost 1, and 2 leads to 3 with cost 2. UCS will expand S, 1, 2, G. For a
heuristic that is zero everywhere except h(1) = 3, then A* will expand S, 2, 3, 1, G.

c) (true or false) K-means is a clustering algorithm that is guaranteed to converge.
Solution:
True. The convergence proof was given in class.

d) (true or false) A MIRA classifier is guaranteed to perform better on unseen data than a perceptron.
Solution:
False. MIRA provides no such guarantee.

e) (true or false) For a two-player zero-sum game tree of depth 4 or greater, alpha-beta pruning must prune
at least one node.
Solution:
False. As a simple counterexample, if every player only has one legal move at each turn, then there will be
no pruning.

f) (true or false) A CSP with only boolean variables can always be solved in polynomial time.
Solution:
False. For instance, a boolean CSP can encode a 3-SAT problem, which is NP-complete.

g) (true or false) Sampling from a Bayes net using likelihood weighting will systematically overestimate the
posterior of a variable conditioned on one of its descendants.
Solution:
False. Likelihood weighting is an unbiased sampling procedure.

h) (true or false) Every discrete-valued dynamic Bayes net is equivalent to some hidden Markov model.
Solution:
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True and False (everyone wins). The answer is false because dynamic Bayes nets can have dependence
between evidence variables when conditioning on hidden variables, but a lecture slide says it’s true. The
general case for which DBNs are equivalent to HMMs is when no hidden variable is a child of an evidence
variable in the DBN.
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2. (14 points) MDP: Walk or Jump?

Consider an MDP with states {4, 3, 2, 1, 0}, where 4 is the starting state. In states k ≥ 1, you can walk (W)
and T (k, W, k− 1) = 1. In states k ≥ 2, you can also jump (J) and T (k, J, k− 2) = T (k, J, k) = 1/2. State 0 is
a terminal state. The reward R(s, a, s′) = (s− s′)2 for all (s, a, s′). Use a discount of γ = 1/2.

(a) (3 pt) Compute V ∗(2).
Solution:
We compute the value function from state 0 to state 2.

V ∗(0) = 0

V ∗(1) = max{1 + γV ∗(0),
1
2
(1 + γV ∗(0)) +

1
2
γV ∗(1)}

= max{1,
1
2

+
1
4
V ∗(1)}

= max{1,
1
2

4
3
}

= 1

V ∗(2) = max{1 + γV ∗(1),
1
2
(4 + γV ∗(0)) +

1
2
γV ∗(2)}

= max{3
2
, 2 +

1
4
V ∗(2)}

= max{3
2
, 2

4
3
} =

8
3

where 1
2

4
3 comes from supposing that if 1

2 + 1
4V ∗(1) were the maximum, then

V ∗(1) =
1
2

+
1
4
V ∗(1)

3
4
V ∗(1) =

1
2

V ∗(1) =
1
2

4
3

and similarly for 2 4
3 .

(b) (3 pt) Compute Q∗(4,W )?
Solution:

V ∗(3) =
1
2
(4 +

1
2
V ∗(1)) +

1
2

1
2
V ∗(3)

=
9
4

+
1
4
V ∗3

= 3

Q∗(4,W ) = 1 +
1
2
V ∗(3) =

5
2
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(c) (4 pt) Now consider the same MDP, but with infinite states {4, 3, 2, 1, 0,−1, ...} and no terminal states.
Like before, T (k, J, k − 2) = T (k, J, k) = 1/2 and T (k, W, k − 1) = 1. R(s, a, s′) = (s − s′)2. Compute
V ∗(2).
Solution:
By symmetry, V ∗(s) is constant. This implies:

V ∗(2) = max{1 + γV ∗(1),
1
2
(4 + γV ∗(0)) +

1
2
γV ∗(2)}

= max{1 + γV ∗(2),
1
2
4 + γV ∗(2)}

=
2

1− γ

= 4

(d) (4 pt) In the infinite MDP above, an agent acts randomly at each time step. With probability p, it walks.
With probability 1− p, it jumps. What is its expected utility in terms of p, starting in state 4?
Solution:
Here, the expected utility is the expected sum of discounted rewards. We have a modified Bellman equation
for this stochastic policy:

V p(4) = p(1 + 0.5V p(3)) + (1− p) ∗ (0.5 ∗ (4 + 0.5 ∗ V p(2)) + 0.5 ∗ (0.5 ∗ V p(4)))

But again all states have the same value because of symmetry, so the above equation simplifies to:

V p(4) = p(1 + 0.5V p(4)) + (1− p) ∗ (0.5 ∗ 4 + 0.5 ∗ V p(4))

, so V p(4) = 4− 2p.
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3. (21 points) Very Big V Structures

Let Vn be a Bayes net with nodes X(i,j) for all i + j ≤ n + 1, where both i ≥ 1 and j ≥ 1, and where the
parents of X(i,j) are X(i−1,j) and X(i−1,j+1). Nodes X(1,j) have no parents. V1, V2, and V3 are shown below.

1 2 3 

1 

2 

3 

4 !

"

#

$

%

!

"

#

$

%

Bayes net 1 Bayes net 2 

X(1,1)! X(1,2)! X(1,3)!

X(2,1)! X(2,2)!

X(3,1)!

X(1,1)! X(1,2)!

X(2,1)!
X(1,1)!

V1! V2! V3!

(a) (4 pt) For any Vn, give general conditions in terms of i, j, k, and ` that guarantee X(i,j) independent of
X(k,`) (i.e., X(i,j) ⊥⊥ X(k,`)), assuming i < k.
Solution:
In general, two nodes are independent (conditioned on nothing) if they are not both descendants of the
same node, and neither is a descendent of the other. General conditions which enforce this are l > j + i−1
and k + l < j + 1.
We also gave full credit to the nearly-correct answer of conditions that ensure the second is not a descendent
of the first. X(k,`) is a descendent of X(i,j) if k+ ` ≥ i+ j and ` ≤ j. So, X(i,j) ⊥⊥ X(k,`) when k+ ` < i+ j
or ` > j.
Solutions that were too specific but otherwise correct received 1 point. Covering one of the two cases for
either acceptable answer received 2 points.

(b) (4 pt) For Vn, give conditions in terms of i, j, k, and ` that guarantee X(1,i) ⊥⊥ X(1,j) | X(k,`) for i < j.
Solution:
X(k,`) must not be a descendent of both. So, either k + ` < j + 1, or ` > i.

(c) (2 pt) When computing P (X(3,1)) with variable elimination, what factor is created by first eliminating
X(1,2) from V3?
Solution:
P (X(2,1), X(2,2)|X(1,1), X(1,3)). Using factor notation m(X(2,1), X(2,2), X(1,1), X(1,3)) or m(X(2,1), X(2,2)|X(1,1), X(1,3))
is also acceptable.
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For the remaining parts of this question, consider V4 where each X(i,j) takes values true and false.

(d) (2 pt) Given the factors below, fill in the table for P (X(1,1)|¬x(3,1)), or state “not enough information.”

X(1,1) P (X(1,1))
x(1,1) 1/3

¬x(1,1) 2/3

X(1,1) X(3,1) P (X(3,1)|X(1,1))
x(1,1) x(3,1) 1/3
x(1,1) ¬x(3,1) 2/3

¬x(1,1) x(3,1) 0
¬x(1,1) ¬x(3,1) 1

X(1,1) X(3,1) P (X(1,1)|¬x(3,1))

x(1,1) ¬x(3,1)

¬x(1,1) ¬x(3,1)

Solution:
Using Bayes’ rule P (x(1,1)|¬x(3,1)) = 1/4, P (¬x(1,1)|¬x(3,1)) = 3/4.

(e) (3 pt) In V4, if P (X(1,h) = true) = 1
3 for all h, and the CPT for X(i,j) is defined below for all i > 1, what

is the joint probability of all variables when X(i,j) is true if and only if i + j is even.

X(i,j) X(i−1,j) X(i−1,j+1) P (X(i,j)|X(i−1,j), X(i−1,j+1))
true true true 1
true false true 1/2
true true false 1/2
true false false 1/3

Clarification: Compute P (X(1,1) = true, X(1,2) = false, X(1,3) = true, ..., X(4,1) = false)
Solution:
( 1
3 )2 · ( 2

3 )2 · ( 1
2 )6 = 1

1296

(f) (4 pt) Given the definition of V4 above, formulate a CSP over variables X(i,j) that is satisfied by only
and all assignments with non-zero joint probability.
Solution:
Variables: X(i,j); Values: true, false; Constraint: (X(i,j), X(i−1,j), X(i−1,j+1)) 6= (false, true, true) for all
i > 1. Only the constraint is necessary for full credit, and the i > 1 condition is optional.

(g) (2 pt) Does there exist a binary CSP that is equivalent to the CSP you defined?
Solution:
Yes. All finite-valued CSPs are equivalent to some binary CSP.
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4. (10 points) Linear Naive Bayes

Recall that a naive Bayes classifier with features Fi (i = 1, . . . , n) and label Y uses the classification rule:

arg max
y

P (y|f1, . . . , fn) = arg max
y

P (y)
n∏

i=1

P (fi|y)

And a linear classifier (for example, perceptron) uses the classification rule:

arg max
y

n∑
i=0

wy,i · fi where f0 is a bias feature that is always 1 for all data

(a) (8 pt) For a naive Bayes classifier with binary-valued features, i.e. fi ∈ {0, 1}, prove that it is also a linear
classifier by defining weights wy,i (for i = 0, . . . , n) such that both decision rules above are equivalent.
The weights should be expressed in terms of the naive Bayes probabilities — P (y), P (Fi = 1|y), and
P (Fi = 0|y). Assume that all these probabilities are non-zero.
Solution:

arg max
y

P (y)
n∏

i=1

P (fi|y) = arg max
y

log P (y) +
n∑

i=1

log P (fi|y)

= arg max
y

log P (y) +
n∑

i=1

[fi log P (Fi = 1|y) + (1− fi) log P (Fi = 0|y)]

= arg max
y

log P (y) +
n∑

i=1

log P (Fi = 0|y) +
n∑

i=1

fi log
P (Fi = 1|y)
P (Fi = 0|y)

This is clearly equivalent to a linear classifier with the weights:

wy,0 = log P (y) +
n∑

i=1

log P (Fi = 0|y)

wy,i = log
P (Fi = 1|y)
P (Fi = 0|y)

For i = 1, . . . , n

(b) (2 pt) For the training set below with binary features F1 and F2 and label Y , name a smoothing method
that would estimate a naive Bayes model that would correctly classify all four data, or answer “impossible”
if there is no smoothing method that would give appropriate distributions P (Y ) and P (Fi|Y ). Briefly
justify your answer.
F1 F2 Y
0 0 0
0 1 1
1 0 1
1 1 0

Solution:
The data is clearly not linearly separable. Since we know from the previous problem that a naive Bayes
classifier on binary-valued features can be re-written as a linear classifier, no Naive Bayes classifier can
exist for this data.
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5. (17 points) Blind Connect Three

In Connect Three, players alternate dropping pieces into one of four columns. A player wins by having three
consecutive pieces of their color either horizontally, vertically, or diagonally. Assume columns have infinite
height. A dropped piece always occupies the lowest open space in that column.

You are playing the game blind-folded against a random opponent. You can’t see the opponent’s moves.
However, you can always hear the opponent’s piece sliding into place. When the opponent drops his piece
along the edge of the board, it makes a zing sound; and when he drops it in one of the center two columns, it
makes a zang sound. On the other hand, you know exactly the move which you have made. When a player
wins, the referee stops the game and announces the winner.

We’ll assume that you are representing your belief with a particle filter where each particle is a complete
description of the board. Also, assume that you are the first player and that you are playing white. The only
observations you get are the zing and the zang of the opponent pieces falling down.

(a) (8 pt) For each pair of particles below, answer true if it is possible to have both particles simultaneously
present together in your particle filter immediately after a resampling step. If you answer false, justify
your answer for full credit.

i. (true or false)

Solution:
False. There is no uncertainty about the number of moves played.

ii. (true or false)

Solution:
False. There is no uncertainty about the number of opponent pieces along the edge versus the center.

iii. (true or false)

Solution:
True.

iv. (true or false)

Solution:
False. There is no uncertainty about whether the game is over. (In the second particle, white has
three in a row before black’s last move)
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Now, assume that you have the following 10 particles in your particle filter after two rounds of
moves, where the count indicates a number of duplicate particles for the same game state.
Your utility is 1 if you win on the next move, and 0 if you do not.
Note: even if you win eventually, your utility is 0 unless you win in one move.

count=4
count = 3 count=1 count=2

(b) (2 pt) According to your particle filter, what is your belief that it is possible to win in the next move?
Solution:
A total of 2 + 4 = 6 particles out of 10 are winnable, so you believe that you can possibly win with
probability 0.6.

(c) (3 pt) What is your maximum expected utility?
Solution:
The left and right columns are the only moves which have a non-zero probability of winning. Out of them,
the left-most column has a greater probability of winning. MEU = .4.

(d) (4 pt) What is the value of peeking at the board before moving?
Solution:
The odds that you are in a winning position is 2+4

10 . Hence your expected MEU after peeking will be .6.
The value of peeking is thus .6− .4 = .2.
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6. (22 points) The Last Dot

Pacman is one dot away from summer vacation. He just has to outsmart the ghost,
starting in the game state to the right. Pacman fully observes every game state
and will move first. The ghost only observes the starting state, the layout, its own
positions after each move, and whether or not Pacman is in a middle row (2 and 3)
or an edge row (1 and 4). The ghost probabilistically tracks what row pacman is
in, and it moves around in column 2 to block Pacman. 1 2 3 

1 

2 

3 

4 

Starting state

Details of the ghost agent:

• The ghost knows that Pacman starts in row 2. It assumes Pacman changes rows according to:

– In rows 1 and 4, Pacman stays in the same row with probability 9
10 and moves into the adjacent center

row otherwise.
– In rows 2 and 3, Pacman moves up with probability 1

2 , down with probability 3
8 , and stays in the

same row with probability 1
8 .

• After each of Pacman’s turns (but before the ghost moves), the ghost observes whether Pacman is in a
middle row (2 and 3) or an edge row (1 and 4).

• Each turn, the ghost moves up, moves down or stops

• The ghost moves toward the row that most probably contains Pacman according to its model and obser-
vations. If the ghost believes Pacman is most likely in its current row, then it will stop.

(a) (3 pt) According to the ghost’s assumed transition and emission models, what will be the ghost’s belief
distribution over Pacman’s row if Pacman moves up twice, starting from the game state shown?

Row 1 Row 2 Row 3 Row 4

Solution:
The ghost believes Pacman is in row 4 with probability 16

19 , and in row 1 with probability 3
19 .

(b) (3 pt) If Pacman stops twice in a row (starting from the start state), where will the ghost be according
to its policy? With what probability does the ghost believe it is in the same row as Pacman?

Ghost position Ghost belief probability

Solution:
After one observation that Pacman is in the middle, the ghost’s belief distribution will be B(2) = 1/8

1/8+1/2 =
1
5 and B(3) = 1/2

1/8+1/2 = 4
5 . After a second observation, we have B(2) = 4/5∗3/8+1/5∗1/8

4/5∗3/8+1/5∗1/8+4/5∗1/8+1/5∗1/2 ,
which works out to 13

21 . Thus, the ghost will be in position (2,2) (row 2), because 13
21 > 1

2 .
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(c) (2 pt) If Pacman moves down, then up repeatedly, alternating between positions (1,1) and (1,2), what
will the ghost’s belief distribution be about Pacman’s row after n moves, as n goes to infinity?
Hint: you may want to consider multiple cases.
Solution:
If n is even, P (Rn = (1, 2)) = 1. If n is odd, P (Rn = (1, 1)) = 1.

(d) (6 pt) If Pacman moves up, then down repeatedly, alternating between positions (1,3) and (1,2), what
will the ghost’s belief distribution be about Pacman’s row after n moves as n goes to infinity?
Hint: if ax2 + bx + c = 0, then x = −b±

√
b2−4ac
2a .

Solution:
Solving for B(3) as x, we get x = 1/8∗x+1/2∗(1−x)

1/8∗x+1/2∗(1−x)+3/8∗x+1/8∗(1−x) , which gives 4−
√

12 = 0.536. Likewise,

B(2) =
√

12− 3 = 0.464.

(e) (4 pt) Describe the state space for a search problem that Pacman could solve to find the shortest safe
path to the food.
Solution:
The state includes the game state and the ghost’s belief distribution. Note that without the ghost’s belief
distribution, you cannot tell where the ghost will go next based on the state, so you cannot correctly
define the successor function.

(f) (4 pt) List the action sequence that Pacman should follow in order to reach the food in as few steps as
possible. Briefly justify your answer.
Solution:
Pacman: stop, down, right, up, right. Ghost would go: up, up, stop, down.


