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Abstract

It is often useful to represent a single example by a set of
the local features that comprise it. However, this repre-
sentation poses a challenge to many conventional learn-
ing techniques, since sets may vary in cardinality and
the elements are unordered. To compare sets of features,
researchers often resort to solving for the least-cost cor-
respondences, but this is computationally expensive and
becomes impractical for large set sizes. We have devel-
oped a general approximate matching technique called
the pyramid match that measures partial match simi-
larity in time linear in the number of feature vectors
per set. The matching forms a Mercer kernel, making
it valid for use in many existing kernel-based learning
methods. We have demonstrated the approach for var-
ious learning tasks in vision and text processing, and
find that it is accurate and significantly more efficient
than previous approaches.

Introduction

In a variety of domains, it is often natural and meaningful to
represent a data object with a collection of its parts or com-
ponent features. For instance, in computer vision, an image
may be described by local features extracted from patches
around salient points. Likewise, in natural language process-
ing, documents may be represented by bags of word mean-
ing descriptors; in computational biology, a disease may be
characterized by sets of gene-expression data from multiple
patients. In such cases, one set of feature vectors denotes
a single instance of a particular class of interest (an object,
document, disease). The number of features per example
varies, and within a single instance the component features
may have no inherent ordering.

Learning with these sets (or bags) of features is challeng-
ing. Many conventional similarity measures and machine
learning algorithms assume vector inputs, where each di-
mension corresponds to a particular global attribute for that
instance, but general-purpose distances and kernels defined
on ℜn inputs are not applicable in the space of vector sets.
Existing approaches designed for sets of features generally
require either solving for explicit correspondences between
features (which is computationally costly and prohibits the
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Figure 1: Left: A partial match between sets of features is useful

to compare objects in various domains, including computational

biology, language, and vision. Right: The pyramid match takes

two sets of feature vectors as input (for instance, sets of local im-

age patch descriptors as depicted here), maps the vectors to multi-

resolution histograms, and intersects them to efficiently approxi-

mate the optimal partial matching (correspondence) between the

original sets.

use of large inputs) or fitting parametric distributions to the
sets (which makes restrictive assumptions about the data and
can also be expensive).

In recent work we developed the pyramid match—a new
linear-time matching function over unordered feature sets—
and showed how it allows set inputs to be used effectively
and efficiently within the context of multiple learning prob-
lems (2005; 2007a; 2006; 2007b). The pyramid match ap-
proximates the similarity measured by the optimal partial
matching between feature sets of variable cardinalities. Be-
cause the matching is partial, some features may be ignored
without penalty to the overall set similarity. This toler-
ance makes the measure robust in situations where super-
fluous or “outlier” features may appear. The architecture
of our method is quite simple: each feature set is mapped
to a multi-resolution histogram (pyramid), and the pyramids
are then compared using a weighted histogram intersection
computation (see Figure 1).

We have shown that the pyramid match naturally forms
a Mercer kernel, which means that it is appropriate to use
with kernel-based learning methods that guarantee conver-



gence to a unique optimum only for positive-definite ker-
nels (e.g., the Support Vector Machine). This connection
to kernel methods is valuable, as it opens up a wealth of
existing learning techniques for the set representation, in-
cluding methods for discriminative classification, clustering,
dimensionality reduction, and regression. We also provide
approximation distortion bounds, which guarantee the pyra-
mid match’s expected accuracy relative to the optimal partial
matching (2006b).

We have demonstrated our algorithm for a variety of
tasks: supervised object recognition from sets of image
patch features (2005), unsupervised discovery of visual cat-
egories (2006), 3-D human pose inference from sets of lo-
cal contour features from monocular silhouettes, and doc-
uments’ time of publication estimation from bags of local
word features (2007b). In our results, approaches based on
the pyramid match consistently show accuracy that is com-
petitive with (or better than) the state-of-the-art while requir-
ing dramatically less computation time. This complexity ad-
vantage frees us to consider much richer representations than
were previously practical; for example, it removes the need
to artificially limit the number of local descriptions used per
image when learning visual categories.

In this paper we will overview the core algorithm, and
then very briefly summarize some results for supervised
learning of visual categories. Because our methods are gen-
erally applicable to efficient learning with unordered sets
of features (from images or otherwise), we hope that this
overview will prompt readers to consider places where the
techniques might be useful in their own research.

Related Work

Space permits only a short review of previous work; please
see our papers for more background and extensive discus-
sions (2007b; 2006b).

Several researchers have designed kernel functions that
can handle unordered sets as input (e.g., Kondor & Jebara
2003; Wallraven et al. 2003; Moreno et al. 2003). However,
previous approaches suffer from prohibitive computational
expense, make assumptions regarding the distribution of the
features, are not positive-definite, and (or) are limited to sets
of equal size.

Previous matching approximation methods have also con-
sidered a hierarchical decomposition of the feature space
to reduce matching complexity (Charikar 2002; Indyk &
Thaper 2003; Agarwal & Varadarajan 2004), and have in
part inspired this work. However, they assumed equally-
sized input sets, and could not compute partial matches. In
addition, while previous techniques suffer from distortion
factors that are linear in the feature dimension, we have
shown how to alleviate this decline in accuracy by tuning
the hierarchical decomposition according to the particular
structure of the data (2007a). Finally, our approximation is
unique in that it forms a valid Mercer kernel, and is useful
in the context of various learning applications.

The Pyramid Match Algorithm

We consider a feature space F of d-dimensional vectors.
The point sets we match will come from the input space S,
which contains sets of feature vectors drawn from F : S =
{X|X = {x1, . . . ,xm}}, where each feature xi ∈ F ⊆ ℜd,
and m = |X|. Note that the point dimension d is fixed for all
features in F , but the value of m may vary across instances
in S. The values of the vector elements have a maximal
range D.

Given point sets X, Y ∈ S, with |X| ≤ |Y|, the optimal
partial matching π∗ pairs each point in X to some unique
point in Y such that the total distance between matched
points is minimized: π∗ = argminπ

∑
xi∈X

||xi − yπi
||1,

where πi specifies which point yπi
is matched to xi. For

sets with m features, the Hungarian algorithm computes the
optimal match in O(m3) time (Kuhn 1955).

The pyramid match approximation uses a multi-
dimensional, multi-resolution histogram pyramid to parti-
tion the feature space into increasingly larger regions. At
the finest resolution level in the pyramid, the partitions (bins)
are very small; at successive levels they continue to grow in
size until a single partition encompasses the entire feature
space. At some level along this gradation in bin sizes, any
two particular points from two given point sets will begin to
share a bin in the pyramid, and when they do, they are con-
sidered matched. The pyramid allows us to extract a match-
ing score without computing distances between any of the
points in the input sets—the size of the bin that two points
share indicates the farthest distance they could be from one
another. We show that a weighted intersection of two pyra-
mids defines an implicit partial correspondence based on the
smallest histogram cell where a matched pair of points first
appears. The time to compute the pyramids as well as the
weighted intersection is only linear in the number of fea-
tures.

A histogram pyramid for input example X ∈ S is de-
fined as: Ψ(X) = [H0(X), . . . ,HL−1(X)], where L =
⌈log2 D⌉, and Hi(X) is a histogram vector formed over
points in X using d-dimensional bins of side length 2i. The
bins in the finest-level histogram H0 are small enough that
each unique point in F falls into its own bin, and then the
bin size increases until all points in F fall into a single bin at
level L − 1. Histograms are represented sparsely, meaning
the full bin structure is never explicitly formed.1

The pyramid match P∆ similarity between two input sets
Y and Z is defined as the weighted sum of the number of
feature matches found at each level of their pyramids:

P∆ (Ψ(Y),Ψ(Z)) =
L−1∑

i=0

wiNi, (1)

where Ni signifies the number of newly matched pairs at
level i, and wi is a weight for matches formed at level i (and
will be defined below). A “new” match is a pair of features
that were not in correspondence at any finer resolution level.

1To enable accurate pyramid matching even with high-
dimensional feature spaces, we have developed a variant where the
bin structure is tailored to the distribution of the data (2007a).
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Figure 2: An example pyramid match. Here, two 1-D feature sets
are used to form two histogram pyramids. Each row corresponds
to a pyramid level. In (a), set Y is on the left, and set Z is on the
right; points are distributed along the vertical axis. Light lines are
bin boundaries, bold dashed lines indicate a new pair matched at
this level, and bold solid lines indicate a match already formed at a
finer resolution level. In (b) multi-resolution histograms are shown;
(c) shows their intersections. P∆ uses these intersection counts
to measure how many new matches occurred at each level. Here,
Ii = I(Hi(Y), Hi(Z)) = 2, 4, 5 across levels, so the number of
new matches counted are Ni = 2, 2, 1. (I

−1 = 0 by definition.)
The sum over Ni, weighted by wi = 1, 1

2
, 1

4
, gives the pyramid

match similarity.

The matching approximation implicitly finds correspon-
dences between point sets, if we consider two points
matched once they fall into the same histogram bin, starting
at the finest resolution level. The matching is a hierarchical
process: vectors not found to correspond at a fine resolution
have the opportunity to be matched at coarser resolutions.
For example, in Figure 2, there are two points matched at
the finest scale, two new matches at the medium scale, and
one at the coarsest scale.

To calculate Ni, we use histogram intersection, which
measures the “overlap” between two histograms’ bin counts:

I (A,B) =
∑r

j=1 min(A(j),B(j)), where A and B are

histograms with r bins, and A(j) denotes the count of the
jth bin. The intersection value effectively counts the num-
ber of points in two sets that match at a given quantization
level, i.e., fall into the same bin. To calculate the number of
newly matched pairs Ni induced at level i, it is sufficient to
compute the difference between successive levels’ intersec-
tions:

Ni = I (Hi(Y),Hi(Z)) − I (Hi−1(Y),Hi−1(Z)) , (2)

where Hi refers to the ith component histogram generated
by Ψ. The measure does not explicitly search for similar
points, and it never computes distances between the vectors
in each set. Instead, it simply uses the change in intersection
values at each histogram level to count the matches as they
occur.

The number of new matches induced at level i is weighted
by wi = 1

d2i to reflect the (worst-case) similarity of points

matched at that level.2 This reflects a geometric bound on
the maximal distance between any two points that share a
particular bin. Intuitively, this means that similarity between
vectors (features in Y and Z) at a finer resolution—where
features are more distinct—is rewarded more heavily than
similarity between vectors at a coarser level.

From Eqns. 1 and 2, we define the (un-normalized) pyra-
mid match:

P∆ (Ψ(Y), Ψ(Z)) =

L−1
X

i=0

wi

“

I (Hi(Y), Hi(Z))−I(Hi−1(Y), Hi−1(Z))
”

.

We normalize this value by the product of each input’s self-
similarity to avoid favoring larger input sets. In order to
alleviate quantization effects from the discrete histogram
bins, we combine the values resulting from multiple matches
formed under pyramids with bins shifted by amounts chosen
uniformly at random from [0,D].

In fact, the random shifts and the bin weights defined
above are not solely based on intuition. Both components
allow us to show that the approximation error for the pyra-
mid match cost with uniformly shaped bins is bounded in the
expectation by a factor of C · d log D + d (2006b). We have
also proven that the pyramid match naturally forms a Mercer
kernel, meaning that it corresponds to a dot product in some
feature space and can be used as the basis for any kernel
method (2005). The pyramid match remains a Mercer ker-
nel for any choice of weights in which wi ≥ wi+1 (2006b).

The optimal partial matching requires O(m3) time for
sets with O(m) features, which severely limits the practical-
ity of large input sizes. Even a suboptimal greedy matching
requires O(m2 log m) time, since all pairwise distances be-
tween points in the two sets must be computed and sorted.
In contrast, our approach requires only O(m log D) time to
compute both the pyramids as well as a matching, for pyra-
mids with L = log D levels. In practice, this translates to
speedups of several orders of magnitude relative to the opti-
mal match for sets with m ≈ 1000 and L ≈ 10 (2006b).

Learning Visual Categories

Object recognition is a challenging problem due to the broad
variety in illumination, viewpoint, occlusions, clutter, and
intra-class appearance that images of the same object class
will exhibit. Much recent work shows that decomposing an
image into its component parts (or local features) grants re-
silience to common transformations and variations. The idea
is that strong similarity between multiple local portions of
related images may often be discovered even when globally
the images appear quite different. Typically, an interest op-
erator is used to identify numerous salient regions in an im-
age; then, for each region, a (vector) feature descriptor is
formed. Possible salient points include pixels marking high
contrast (edges), or points selected for a region’s repeatabil-
ity at multiple scales. Descriptors may be lists of pixel val-
ues within a patch, or histograms of oriented contrast within
the regions, for example. Whatever the local representation

2To instead use the matching as a cost function, wi = d2i.
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Figure 3: Object recognition with the PMK and other methods on the ETH-80 (top row) and Caltech-101 (bottom row) data sets.

choice, the result is one large set of local descriptor vectors
per image, often numbering on the order of m = 2000.

Given two sets of local image features, the pyramid match
kernel (PMK) value reflects how well the image parts match
under a one-to-one correspondence. Since the matching is
partial, not all parts must have a match for the similarity to
be strong. Given a collection of images with feature sets
X1, . . . ,XN , the N ×N kernel matrix K specifies all pair-
wise partial match similarities, with Kij = P∆(Xi,Xj).
This matrix specifies an embedding for the original images
that captures their relations according to the strength of their
partially matching features; we have shown how to use this
embedding to learn visual categories from labeled (2005) or
unlabeled (2006) images. Here we overview some results
using labeled images.

Given a collection of images labeled according to which
object categories they contain, we can use the pyramid
match to build a Support Vector Machine (SVM) (Vapnik
1998). An SVM is a discriminative classifier that uses the
mutual positions of the labeled training examples to iden-
tify the hyperplane that separates examples (in some feature
space) such that the margin between different categories is
maximal. The optimization is cast as a quadratic program-
ming problem involving the kernel matrix; we are guaran-
teed to find a unique optimal solution using the PMK be-
cause it is a Mercer kernel.

In experiments with the publicly available ETH-80 and

Caltech-101 databases, we have found that pyramid match
category learning offers very strong accuracy at a signifi-
cantly lower computational cost than other state-of-the-art
approaches. For our image experiments, we decompose im-
ages into local patches and describe each patch with the local
invariant descriptor called SIFT (Lowe 2004). More details
are in a recent journal paper (2007b).

Note that for both the Caltech-101 and ETH-80 databases,
there is a single object of interest in each image, and it ap-
pears prominently relative to the background. In this case
the PMK matching is computed between all features in the
two images that are being compared. For cases where novel
images may contain multiple objects of interest or widely
varying amounts of clutter, we expect it would be suitable to
compute the PMK matching within multi-scale image win-
dows; this is to be verified experimentally in future work.

A performance evaluation given by Eichhorn & Chapelle
compares the set kernels of Kondor & Jebara, Wolf &
Shashua, and Wallraven et al. using SVMs and images from
the ETH-80 database of eight object classes. Tested under
the same conditions, the PMK performs comparably to the
others at their best for this data set, but is much more effi-
cient. In fact, the ability of a kernel to handle large num-
bers of features can be critical to its success. Figure 3 (a)
compares the O(m)-time PMK with the O(m2)-time match
kernel of Wallraven et al., for increasingly larger feature set
sizes obtained by decreasing the saliency threshold of the



interest operator. For both methods, recognition accuracy
benefits from having more features per image with which to
judge similarity (left plot), but computing a kernel matrix for
the same data is significantly faster with the PMK (middle
plot). Allowing the same amount of training time for both
methods, the PMK produces much better recognition results
(right plot).

The well-known Caltech-101 database contains 101 di-
verse object categories, and is currently the largest bench-
mark data set available; it is challenging due to the large
number of categories as well as the significant amount of
intra-class appearance variation it contains. The lefthand
plot in Figure 3 (b) shows the multi-class category recog-
nition results using the PMK, for varying numbers of train-
ing examples. Note that chance performance would be just
1%. Experiments comparing the PMK recognition accuracy
to an optimal partial matching kernel have shown that negli-
gible loss in accuracy is traded for speedup factors of several
orders of magnitude (2006b).

The righthand plot in Figure 3 (b) shows all results on this
data set as a function of time since it was released, includ-
ing those published more recently by other authors. From
this comparison we can see that even with its extreme com-
putational efficiency (a matching requires just 0.0001 sec-
onds), the PMK achieves results that are very competitive
with the state-of-the-art. We obtain 50% accuracy on av-
erage (σ = 0.9% over 10 runs) when using the standard
15 training examples per category. In addition, Lazebnik et
al. (2006) have shown that using the PMK with sets of spa-
tial features also yields very good accuracy, 56.4%. These
results are among the very best reported to-date on the data
set—only a few percentage points away from the most accu-
rate result of 60%, which was obtained recently by Frome et
al. (2007) using discriminative distance functions that com-
pute matches between local geometric blur features.

In addition, our approach’s extreme efficiency gives it a
clear practical advantage. Classifying a novel example from
this data set with the PMK requires just a fraction of a
second, whereas methods that compute explicit correspon-
dences (Frome, Singer, & Malik 2007; Zhang et al. 2006)
require about one minute; in the time that these methods rec-
ognize a single object, the PMK recognizes several hundred
objects.

Conclusions

We have developed a new linear-time partial matching func-
tion that handles unordered, variably-sized sets of features;
in recent work we have shown its suitability for various
learning problems, including supervised learning of visual
categories as discussed here. In ongoing work we are de-
veloping an indexing method that performs partial-match
similarity search in sub-linear time, and exploring ways in
which discriminative correspondence distances may be di-
rectly learned.

We hope that this opportunity to present our work to
the AAAI community will allow us to connect with re-
searchers outside of computer vision who face similar
matching and learning problems. To facilitate the use

of our methods, we have made source code available at
http://people.csail.mit.edu/jjl/libpmk/.
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