To be presented at the 3rd Human Computation (HCOMP) Workshop, in conjunction with AAAI, August 2011.

Large-Scale Live Active Learning:
Training Object Detectors with Crawled Data and Crowds

Sudheendra Vijayanarasimhan and Kristen Grauman
University of Texas at Austin
{svnaras, grauman}@cs.utexas.edu

Abstract

Active learning and crowdsourcing are promising ways
to efficiently build up training sets for object recog-
nition, but thus far techniques are tested in artificially
controlled settings. Typically the vision researcher has
already determined the dataset’s scope, the labels “ac-
tively” obtained are in fact already known, and/or the
crowd-sourced collection process is iteratively fine-
tuned. We present an approach for live learning of ob-
ject detectors, in which the system autonomously re-
fines its models by actively requesting crowd-sourced
annotations on images crawled from the Web. To ad-
dress the technical issues such a large-scale system en-
tails, we introduce a novel part-based detector amenable
to linear classifiers, and show how to identify its most
uncertain instances in sub-linear time with a hashing-
based solution. We demonstrate the approach with ex-
periments of unprecedented scale and autonomy, and
show it successfully improves the state-of-the-art for the
most challenging objects in the PASCAL benchmark. In
addition, we show our detector competes well with pop-
ular nonlinear classifiers that are much more expensive
to train.

Introduction

Object detection is a fundamental vision problem: given an
image, which object categories are present, and where? On-
going research is devoted to developing novel representa-
tions and classification algorithms in support of this task,
and challenge datasets encourage further progress (1; 2; 3;
4; 5). Today’s best-performing detection methods employ
discriminative learning together with window-based search,
and assume that a large number of cleanly labeled training
examples are available. For example, thousands of bounding
box annotations per category is standard.

Given the substantial human effort required to gather
good training sets—as well as the expectation that more
data is almost always advantageous—researchers have be-
gun to explore novel ways to collect labeled data. Both
active learning and crowd-sourced labeling are promising
ways to efficiently build up training sets for object recog-
nition. Active learning work shows how to minimize hu-
man effort by focusing label requests on those that appear
most informative to the classifier (6; 7; 8; 9; 10), whereas
crowd-sourcing work explores how to package annotation

tasks such that they can be dispersed effectively online (11;
12; 13; 14; 15). The interesting questions raised in these
areas—such as dealing with noisy labels, measuring relia-
bility, mixing strong and weak annotations—make it clear
that data collection is no longer a mundane necessity, but a
thriving research area in itself.

However, while ostensibly intended to distance algorithm
developers from the data collection process, in practice ex-
isting techniques are tested in artificially controlled settings.
Specifically, we see four limiting factors:

1. Previous work uses “sandbox’ datasets, where the vision
researcher has already determined the dataset’s source and
scope, meaning there is a fixed (and possibly biased) set of
images that will even be considered for labeling. In fact,
to our knowledge, active learning methods have only been
tested on sandbox data where the true labels are really
known, and merely temporarily withheld from the selec-
tion algorithm. These common simulations likely inflate
the performance of both active and passive learners, since
anything chosen for labeling is relevant.

2. Nearly all work targets the active image classification

problem—not detection—and so images in the unlabeled
pool are artificially assumed to contain only one promi-
nent object.

3. Most crowd-sourced collection processes require iterative

fine-tuning by the algorithm designer (e.g., revising task
requirements, pruning responses, barring unreliable Me-
chanical Turkers) before the data is in usable form.

4. The computational complexity of the active selection pro-

cess is generally ignored, yet scalability is critical when
running a live system to avoid keeping the human annota-
tors idle.

Thus, it is unknown to what extent current approaches could
translate to real settings.

Our goal is to take crowd-sourced active annotation out of
the “sandbox”. We present an approach for live learning of
object detectors, in which the system directly interacts with
human annotators online and iteratively poses annotation re-
quests to refine its models. Rather than fill the data pool
with some canned dataset, the system itself gathers possibly
relevant images via keyword search (we use Flickr). It re-
peatedly surveys the data to identify unlabeled sub-windows

To be presented at the 3rd Human Computation (HCOMP) Workshop, in conjunction with AAAI, August 2011.

that are most uncertain according to the current model, and
generates tasks on MTurk to get the corresponding bound-
ing box annotations. After an annotation budget is spent, we
evaluate the resulting detectors both on benchmark data, as
well as a novel test set from Flickr. Notably, throughout the
procedure we do not intervene with what goes into the sys-
tem’s data pool, nor the annotation quality from the hun-
dreds of online annotators.

To make the above a reality requires handling some im-
portant technical issues. Active selection for window-based
detection is particularly challenging since the object extents
(bounding boxes) are unknown in the unlabeled examples;
naively one would need to evaluate all possible windows
within the image in order to choose the most uncertain. This
very quickly leads to a prohibitively large unlabeled pool
to evaluate exhaustively. Thus, we introduce a novel part-
based detector amenable to linear classifiers, and show how
to identify its most uncertain instances in sub-linear time
with a hashing-based solution we recently developed (16).

We show that our detector strikes a good balance between
speed and accuracy, with results competitive with and even
exceeding the state-of-the-art on the PASCAL VOC, which
is “the” challenging benchmark in object detection studied
by many vision researchers. Most importantly, we show suc-
cessful live learning in an uncontrolled setting. The system
learns accurate detectors with much less human effort than
strong l?aselines that rely on human-verified keyword search
results.

Related Work

We briefly review related work on object detection, active
learning for object recognition, and crowd-sourcing efforts
with image data.

Object detection has received various treatments in the lit-
erature; see (5) and references therein for an overview. Cur-
rently window-based approaches based on gradient features
and subwindow parts provide state-of-the-art results using
discriminative classifiers. A known limitation, however, is
their significant computational expense, due both to the need
to search exhaustively through all windows in the image, as
well as the classifiers’ complexity (e.g., SVMs with nonlin-
ear kernels or latent variables (3; 2)).

Various ways to reduce detection time have been ex-
plored, including cascades (3), branch-and-bound search (4),
or jumping windows (18). To reduce classifier training and
testing costs, simpler linear models are appealing. While lin-
ear models tend to underperform with common representa-
tions (e.g., see tests in (3; 19)), recent work in image clas-
sification shows very good results when also incorporating
sparse coding and feature pooling (20; 21; 19). We propose
a part-based object model that exploits a related representa-

"This work will appear in CVPR 2011 (17), and through
HCOMP we hope to share and discuss it with a broader commu-
nity. We abbreviate the details of the approach in order to include
new additional analysis of data annotation results that are relevant
to the HCOMP workshop. We refer a reader interested in the tech-
nical details of the vision components to our CVPR 2011 paper.

tion, and show it to be competitive with state-of-the-art de-
tection results.

Active learning has been shown to better focus annotation
effort for image recognition tasks (6; 9; 8) and region label-
ing (7; 10). However, no previous work uses active learning
to train a window-based detector. To do so introduces major
scalability issues, which we address with a new linear detec-
tor combined with a hashing algorithm (16) for sub-linear
time search of the unlabeled pool. Further, all previous work
in vision tests active selection only in a sandbox, where the
true labels are already known for the data.

Researchers have investigated issues in annotation
tools and large-scale database collection for recognition.
Keyword-based search is often used for dataset creation, and
several recent efforts integrate crowd-sourced labeling (11;
12; 15) or online and incremental learning (22). Even with
a human in the loop, annotation precision varies when us-
ing Web interfaces and crowds, and so some research ex-
plores ways to automatically provide quality assurance (13;
14) or even target tasks according to individuals’ reliabil-
ity (23). Other work attempts to directly learn object mod-
els from noisy keyword search (e.g., (24; 22; 25)); however,
such methods assume a single prominent object of interest
per image, whereas for detection we will have cluttered can-
didate images that require a bounding box to identify the
object.

Overall, previous active learning methods focus on image
classification, and/or demonstrate results under controlled
settings on prepared datasets of modest scale. Ours is the
first complete end-to-end approach for scalable, automatic
online learning of object detectors.

Approach

Our goal is to enable online active crowd-sourced object de-
tector training. Given the name of a class of interest, our
system produces a detector to localize novel instances us-
ing automatically obtained images and annotations. To make
this feasible, we first propose a part-based linear SVM de-
tector, and then show how to identify its uncertain examples
efficiently using a hashing scheme.

Object Representation and Linear Classifier

We first introduce our part-based object model. Our goal is
to design the representation such that a simple linear clas-
sifier will be adequate for robust detection. A linear model
has many complexity advantages important to our setting: i)
SVM training requires time linear in the number of training
examples, rather than cubic, ii) classification of novel in-
stances requires constant time rather than growing linearly
with the number of training examples, iii) exact incremen-
tal classifier updates are possible, which makes an iterative
active learning loop practical, and iv) hash functions enable
sub-linear time search to map a query hyperplane to its near-
est points according to a linear kernel (16).

Our object model consists of a root window 7, multiple
part windows {p1,...,pp} that overlap the root, and con-
text windows {c, ..., cc} surrounding it. See Figure 1. Let
O = [r,p1,...,pp,C1,-..,cc] denote a candidate object

To be presented at the 3rd Human Computation (HCOMP) Workshop, in conjunction with AAAI, August 2011.

Sparse Max Pooling

ontext

Parts Ci
P1) - ®(Pp) . B(Cy) .. B(cg)]

Root
[o)." o
Figure 1: Our part-based object representation.

configuration within an image, and let ¢(1W) denote the
sparse feature encoding for local image descriptors extracted
from a given subwindow W (to be defined below). The de-
tector scores a candidate configuration as a simple linear
sum:

F(0) = w"¢(0) M
P C
= 'l,UT(,ZS(T) + Z wp7¢(pz) + Z wci(rb(ci)a
i=1 =1

where w denotes the learned classifier weights, which we
obtain with SVM training.

Given a novel test image, we first extract local image
descriptors; we use a dense multi-scale sampling of SIFT.
Each window type (7, p;, or ¢;) uses these features to cre-
ate its encoding ¢(+). Specifically, each window is repre-
sented using a nonlinear feature encoding based on sparse
coding and max-pooling. This representation is related to
the well-known bag-of-features, and is directly inspired by
recent sparse coding work in image classification (20; 21;
19). Offline, we cluster a corpus of features to obtain a
dictionary of visual words. Then for any window (whether
root/part/context), we obtain the sparse codes of its set of
local features, and describe the window by the largest code
response of each visual word within it. (See (17) for details.)

In this way, the root window provides a global summary
of the object appearance, and is invariant to translations of
features. Similarly, each part window summarizes the local
features within it, discarding their mutual positions but cap-
turing their spatial layout relative to the root. The context
windows incorporate contextual cues surrounding the object,
such as the presence of “sky”, “ground”, or “road”, as shown
in Figure 1.

As we discuss in detail in (17), our object model inten-
tionally captures positive aspects of recent state-of-the-art
detection models (3; 2), but does so while maintaining a
much lower computational cost. In particular, training the
proposed model is significantly more scalable, as we will
see in the results.

Generating Candidate Root Windows

Rather than index an exhaustive list of all windows in all
unlabeled images coming from keyword search, we gener-
ate a set of candidate root windows per image using a vari-
ant of the jumping window search method (18; 26). The ap-
proach generates a Hough-like projection of the proposed

P(v=d g=4)
indicates
lower priority

P(v=rk;, g=1)

adid o indicates
Novel test image |_higher priority

Training images

Figure 2: Illustration of jumping window root candidates.
Grid cells serve to refine the priority given to each box (but
do not affect its placement). Here, location g = 1 has higher
priority than g = 4 for visual word v = * since it appears
more consistently in the training images (left two images).

object bounding box using individual visual word matches
between the new example and all training instances, and it
prioritizes these candidates according to a measure of how
discriminative a given word and coarse location is for the
object class (see Figure 2). We take the top K = 3,000
jumping windows per image based on their priority scores.

This allows us to focus on only the most viable candi-
dates for possible selection by the active learning procedure.
Similarly, at test time, we use jumping windows rather than
sliding windows to limit the search time.

Active Selection of Object Windows

We initialize our online active learning system with a linear
SVM trained with a small number of labeled examples for
the object. Then, it crawls for a pool of potentially relevant
unlabeled data using keyword search with the object name
(i.e., it downloads a set of images tagged ‘dog’” when learn-
ing to detect dogs). We want to efficiently determine which
images among those retrieved should be labeled next by the
human annotators. As an active learning criterion, we use the
“simple margin” selection method for SVMs (27), a widely
used criterion that seeks points that most reduce the version
space. Given an SVM with hyperplane normal w and an un-
labeled pool of data Up = {$(O1),...,(Oyn}), the point
that minimizes the distance to the current decision boundary
is selected for labeling: O* = argming, ¢, [w? ¢(0;)|.

A naive application of this criterion would entail comput-
ing the classifier response on all unlabeled data, and ranking
them by |w? ¢(O;)|. However, this is prohibitively expen-
sive, especially since we have live annotators awaiting the
next labeling jobs and massive unlabeled data pools.

Therefore, we adopt our hyperplane-hashing algo-
rithm (16) to identify the most promising candidate windows
in sub-linear time. The algorithm maps inputs to binary keys
using a randomized hash function that is locality-sensitive
for the angle between the hyperplane normal and a database
point. Given a “query hyperplane”, with our algorithm one
can hash directly to those points that are nearest to the hy-
perplane w, with high probability.

Formally, let U; denote the set of unlabeled images, and
Uo denote the pool of candidate object windows obtained
using the jumping window predictor on ;. Note that [Uop| =
K x |Ug]. The locality-sensitive hash family H generates

To be presented at the 3rd Human Computation (HCOMP) Workshop, in conjunction with AAAI, August 2011.

L_| There are more than
3 bicycles.

Submit results

Figure 3: Mechanical Turk interface to obtain bounding
boxes on actively selected examples.

randomized functions with two-bit outputs:

haw (0(0;), #(0;)), if z is a database vector,
hin(2) = Doy o (W, —W)

where the component function is defined as
hu.v(a, b) = [sign(u” a), sign(v"b)], @

sign(u”a) returns 1 if u’a > 0, and 0 otherwise, and u
and v are sampled from a standard multivariate Gaussian,
u, v ~ N(0,). These functions guarantee high probability
of collision for a query hyperplane and the points nearest to
its boundary. The two-bit hash limits the retrieved points’
deviation from the perpendicular by constraining the angle
with respect to both w and —w. See (16) for details.

We use these functions to hash the crawled data into the
table. Then, at each iteration of the active learning loop, we
hash the current classifier as a query, and directly retrieve
examples closest to its decision boundary. We search only
those examples, i.e., we compute |w? ¢(0;)| = |£(0;)] for
each one, and rank them in order of increasing value. Finally,
the system issues a label request for the top 7" images under
this ranking. Since we only need to evaluate the classifier for
examples that fall into a particular hash bucket—typically
less than 0.1% of the total number of unlabeled examples—
this strategy combined with our new detector makes online
selection from large datasets feasible.

Online Annotation Requests

To automatically obtain annotations on the actively selected
examples, our system posts jobs on Mechanical Turk, where
it can pay workers to provide labels. The system gathers
the images containing the most uncertain bounding boxes,
and the annotators are instructed to use a rectangle-drawing
tool to outline the object of interest with a bounding box
(or else to report that none is present). We ask annotators
to further subdivide instances into “normal”, “truncated”, or
“unusual”, consistent with the PASCAL challenge’s anno-
tation protocol, and to flag images containing more than 3
instances. Figure 3 shows the annotation interface.

While MTurk provides easy access to a large number of
annotators, the quality of their labels varies. Thus, we de-
sign a simple but effective approach to account for the vari-
ability. We issue each request to 10 unique annotators, and
then cluster their bounding boxes using mean shift to obtain
a consensus. We keep only those clusters with boxes from
more than half of the annotators. Finally, we obtain a sin-
gle representative box from each cluster by selecting the one
with the largest mean overlap with the rest.

if z is a query hyperplane,

e

pupe w2 et

Annotated data

e
“bicycle” Current -@_'1.??.0. am |
¥ hyperplane

1010 W

11|l E
. Actively
Jumping : lected
window |7 Hash table examples
prediction
Unlabeled Unlabeled
images windows

Figure 4: Summary of our live learning system.

| bird boat chair dog pottedplant sheep
Flickr-crawled|2936 3138 2764 1831 1566 1570
Flickr-test | 655 628 419 780 364 820

Table 1: Number of images in the Flickr data.

Note how each image consists of thousands of unlabeled
window instances, each of which serves as a candidate
query; once a single image annotation is obtained, however,
it tells us the labels for all windows within it.

Training the Detector

Training our detector entails learning the linear SVM
weights in Eqn. 1 to distinguish windows that contain the
object of interest from all others. To limit the number of
negative windows used to train, we mine for “hard” nega-
tives: at each iteration, we apply the updated classifier to the
newly labeled images, and add the 10 top-scoring windows
as negatives if they overlap the target class by < 20%.

Summary of the Approach

We can now actively train an object detector automatically
using minimal crowd-sourced human effort. To recap, the
main loop consists of using the current classifier to generate
candidate jumping windows, storing all candidates in a hash
table, querying the hash table using the hyperplane classifier,
giving the actively selected examples to online annotators,
taking their responses as new ground truth labeled data, and
updating the classifier. See Figure 4.

Results

The goal of our experiments is to deploy our complete live
learning system with crawled images, and compare to strong
baselines that request labels for the keyword search images
in a random sequence. We use two datasets: the PASCAL
VOC 2007, and a new Flickr dataset.

We deploy our complete live learning system, where new
training data is crawled on Flickr. We consider all PASCAL
object classes for which state-of-the-art AP is less than 25.0
(boat, dog, bird, pottedplant, sheep, chair) in order to pro-
vide the most challenging case study, and to seek improve-
ment through live learning where other methods have strug-

To be presented at the 3rd Human Computation (HCOMP) Workshop, in conjunction with AAAI, August 2011.

| bird boat dog potted plant sheep chair

Ours (live learning) [15.8* 18.9% 25.3* 11.6* 284* 9.1*
Proposed detector | 14.1 13.6 21.8 11.1 28.8 11.6
Previous best 153 168 21.5 14.6 239 179

Table 2: Live learning results on PASCAL test set, vs. the
best results we found in the literature. (*means extra Flickr
data automatically obtained by our system used to train.)

‘ — Live active (ours) = = = Keyword+image '='=* Keyword+window ‘

boat dog bird
0.54 0.3

0.52

0.25

0.2 -
0.15 048 oz

< 0.46 02

g o1 0.44 .

8 5000 5500 6000 5000 5500 6000 5000 5500 6000

o

o sheep chair

g 0.35

o - et

< 03 /uucs 03 ‘

o
>

LSBT Y

0.2[*=. - 01

5000 5500 6000 5000 5500 6000 5000 5500 6000
Annotations added, out of 3 million examples

Figure 5: Live learning results on Flickr test set.

gled most. To form the Flickr test set, we download im-
ages tagged with the class names dated in 2010; when run-
ning live training, our system is restricted to images dated in
2009. See Table 1 for the data stats.

Live Learning Applied to PASCAL Test Set Table 2
compares the final AP obtained by our live learning process,
our initial detector trained on PASCAL only, and the cur-
rent state-of-the-art (best of (2; 3)). Our results exceed the
state-of-the-art on three categories. This is an exciting result,
given the size of the unlabeled pools (~3 million examples),
and the fact that the system refined its models completely
automatically.

However, for two classes (chair, sheep), live learning
decreases our detector’s accuracy (see first two rows). Of
course, more data cannot guarantee improved performance
on a fixed test set. We suspect the decline is due to stark dif-
ferences in the distribution of PASCAL and Flickr images,
since the PASCAL dataset creators do some manual prepara-
tion and pruning of all PASCAL data. Our next result seems
to confirm this.

Live Learning Applied to Flickr Test Set Figure 5 shows
the learning curves on the new Flickr test set, where we
apply the same live-learned models from above. We com-
pare to (1) a Keyword+image baseline that uses the same
crawled image pool, but randomly selects images to get an-
notated on MTurk, and (2) a Keyword+window baseline
that randomly picks jumping windows to get labeled. These
are strong baselines since most of the images will contain the
relevant object. In fact, they exactly represent the status quo
approach in computer vision, where one creates a dataset by
manually pruning keyword search results. We initialize all
methods with the PASCAL-trained models (5000 training
images), and run for 10 iterations.

While this test set appears more challenging than
PASCAL, the improvements made by our approach are
dramatic—both in terms of its absolute climb, as well as its

Figure 6: Selections by our live approach (top) and Key-
word+image (bottom) when learning “boat”.

bird

boat

b \1‘

t Il

chair

Figure 7: Representative examples of our annotation collec-
tion. In each pair, the left image shows bounding boxes from
10 annotators, and the right shows the consensus computed
by our method. Best viewed in pdf with zoom.

margin over the baselines. Figure 6 shows selections made
by our method and the keyword baseline when learning
“boat”, illustrating how ours better focuses human attention
among the crawled tagged images. In all, the results indicate
that our large-scale live learning approach can autonomously
build models appropriate for detection tasks with realistic
and unbiased data.

Annotation Collection Figure 7 shows some example an-
notations obtained from multiple annotators on Mechanical
Turk and the consensus automatically obtained by our mean
shift approach. The bounding boxes obtained from the an-
notators have a fairly large variability in their location and
their tightness with respect to the object of interest. Yet, in
order to train accurate detectors it is critical to obtain bound-
ing boxes that fit tightly around all the objects of interest in
the image. We find that our consensus approach provides
such bounding boxes in the majority of the cases. The last
columns for ‘boat’ and ‘chair’ show the most common fail-
ure cases, where a majority of annotators provide a single
bounding box surrounding all objects in the image.

Having obtained consensus on all images, we can go back
and evaluate every annotator’s performance based on how
much they agree. We score a detection as correct if the
bounding box provided by an annotator has an intersection
score of at least 80% with the consensus. Figure 8(a) shows
the precision and recall of all the annotators computed on all
categories for “normal” instances of the object.

We see that most annotators have a precision of at least
50%, which suggests there were very few spammers and
most are competent for this task. However, the recall values
are fairly low, even among frequent annotators (those pro-
viding at least 25 bounding boxes). This could be because
the PASCAL division of the object of interest into {normal,
truncated, unusual} categories is subjective. However, de-
spite the low recall of most annotators, by using 10 anno-
tators per instance we are able to detect all the objects in

To be presented at the 3rd Human Computation (HCOMP) Workshop, in conjunction with AAAI, August 2011.

Active selection| Training | Detection per image
Ours + active 10 mins 5 mins 150 secs
Ours + passive 0 mins 5 mins 150 secs
LSVM (2) 3 hours 4 hours 2 secs
SP+MKL(3) 93 hours > 2 days 67 secs

5 08 ofn o g, WG - R
oony B a
oo o' Mm gt [o 7000|
o oae MR
0.8] m O Ha -8]
0 n o o & 6000
c . a0 % o o i
.0 0.6 o o 'S 5000
@ o a a o £
3 < 4000
= 0.4 ks]
o o o © 3000
5
0.2 3 2000
o Al 1000
ol E® = >25 bboxes,
0 02 04 06 08 1 h) 00 50 200
Recall Annotator Index (sorted)

(a) Annotator performance (b) Annotation statistics

Figure 8: Analysis of annotations collected. (a): precision-
recall of all annotators computed using the obtained consen-
sus. Points in blue highlight results of frequent annotators.
(b): number of annotations per annotator, in sorted order.

most images. Interestingly, there are clusters of annotators
near the precision values of both 0 and 1. Perhaps these cor-
respond to annotators who were tasting the task and found it
too easy or hard to try more.

Figure 8(b) summarizes the number of jobs completed per
annotator who contributed to the live learning process. There
were in total 7182 annotations (bounding boxes) collected
from all six categories, and 182 annotators provided them.
We see the graph follows an exponential shape, where a
few annotators provided large portions of annotations while
the rest worked on very few (< 25) annotations. In fact,
about one-sixth of the annotators provided more than 90% of
the annotations. This suggests that one could target a small
group of annotators and further optimize the collection pro-
cess based on their expertise.

Computation Time An important part of our contribu-
tion is to make live learning for detectors feasible computa-
tionally. Table 3 shows the time complexity of each stage,
and illustrates our major advantages for selection and re-
training compared to existing strong detectors. Our times
are based on a dual-core 2.8 GHz CPU, comparable to (2;
3). Our jumping window+hashing scheme requires on aver-
age 2-3 seconds to retrieve 2,000 examples nearest the cur-
rent hyperplane, and an additional 250 seconds to rank and
select 100 images to query. In contrast, a linear scan over the
entire unlabeled pool would require about 60 hours.

The entire online learning process requires 45-75 minutes
per iteration: 5-10 min. to retrain, 5 min. for selection, and
~1 hour to wait for the MTurk annotations to come back
(typically 50 unique workers gave labels per task). Thus,
waiting on MTurk responses takes the majority of the time,
and could likely be reduced with better payment. In compar-
ison, the same selection with a direct application of existing
detectors (2; 3) would require about 8 hours to 1 week, re-
spectively.

Conclusions

Our contributions are i) a novel efficient part-based linear
detector that provides excellent performance, ii) a jumping
window and hashing scheme suitable for the proposed detec-
tor that retrieves relevant instances among millions of can-
didates, and iii) the first active learning results for which

Table 3: Run-time comparisons. Our detection time is
mostly spent pooling the sparse codes. Active times are esti-
mated for (2; 3) models based on linear scan. Our approach’s
efficiency makes live learning practical.

both data and annotations are automatically obtained, with
minimal involvement from vision experts. Tying it all to-
gether, we demonstrated an effective end-to-end system on
two challenging datasets.

This work stresses the importance of scalability and live
gathering of data, in order to study active learning’s im-
pact in a realistic setting. While other researchers have cer-
tainly examined active learning with challenging and real-
istic datasets, we are not aware of any comparable quan-
titative anaylsis of a live deployed system in the vision or
learning literature. However, there is an array of other in-
teresting challenges we do notr address in this work that
may also hinder active learning in real problems—such as
how to choose the best learner or selection criteria, the cold
start problem, and skewed data—as summarized very well
in (28), and tackled for biomedical citation screening appli-
cations in (29).

In future work we are interested in expanding the prob-
lem domain for live learning beyond object detection, and
exploring effective ways to target the requests online to the
appropriate annotator.

References

[1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for
Human Detection. In CVPR, 2005.

[2] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object Detection with Discriminatively Trained Part
Based Models. TPAMI, 99(1), 2009.

[3] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multi-
ple Kernels for Object Detection. In ICCV, 2009.

[4] C. Lampert, M. Blaschko, and T. Hofmann. Beyond Slid-
ing Windows: Object Localization by Efficient Subwindow
Search. In CVPR, 2008.

[5] M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. The Pascal Visual Object Classes Challenge.
IJCV, 88(2):303-338, June 2010.

[6] G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang. Two-
Dimensional Active Learning for Image Classification. In
CVPR, 2008.

[71 S. Vijayanarasimhan and K. Grauman. Multi-Level Active
Prediction of Useful Image Annotations for Recognition. In
NIPS, 2008.

[8] A. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-Class
Active Learning for Image Classification. In CVPR, 2009.

[9] P.Jain and A. Kapoor. Active Learning for Large Multi-class
Problems. In CVPR, 2009.

[10] B. Siddiquie and A. Gupta. Beyond Active Noun Tagging:
Modeling Context for Multi-Class Active Learning. In CVPR,
2010.

[11] L. von Ahn and L. Dabbish. Labeling Images with a Com-
puter Game. In CHI, 2004.

To be presented at the 3rd Human Computation (HCOMP) Workshop, in conjunction with AAAI, August 2011.

[12] B. Russell, A. Torralba, K. Murphy, and W. Freeman. La-
belme: a Database and Web-Based Tool for Image Annota-
tion. IJCV, 2007.

[13] A. Sorokin and D. Forsyth. Utility Data Annotation with
Amazon Mechanical Turk. In Internet Vision, 2008.

[14] P. Welinder and P. Perona. Online Crowdsourcing: Rating
Annotators and Obtaining Cost-Effective Labels. In ACVHL,
2010.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A Large-Scale Hierarchical Image Database. In
CVPR, 2009.

[16] P. Jain, S. Vijayanarasimhan, and K. Grauman. Hashing Hy-
perplane Queries to Near Points with Applications to Large-
Scale Active Learning. In NIPS, 2010.

[17] S. Vijayanarasimhan and K. Grauman. Large-Scale Live Ac-
tive Learning: Training Object Detectors with Crawled Data
and Crowds. In CVPR, 2011.

[18] O. Chum and A. Zisserman. An Exemplar Model for Learn-
ing Object Classes. In CVPR, 2007.

[19] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning
Mid-level Features for Recognition. In CVPR, 2010.

[20] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyra-
mid Matching Sparse Coding for Image Classification. In
CVPR, 2009.

[21] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-Constrained Linear Coding for Image Classification.
In CVPR, 2010.

[22] L. Li, G. Wang, and L. Fei-Fei. Optimol: Automatic On-
line Picture Collection via Incremental Model Learning. In
CVPR, 2007.

[23] P. Donmez and J. Carbonell. Proactive Learning: Cost-
Sensitive Active Learning with Multiple Imperfect Oracles.
In CIKM, 2008.

[24] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning
Object Categories from Google’s Image Search. In ICCV,
2005.

[25] S. Vijayanarasimhan and K. Grauman. Keywords to Visual
Categories: Multiple-Instance Learning for Weakly Super-
vised Object Categorization. In CVPR, 2008.

[26] S. Vijayanarasimhan and A. Kapoor. Visual Recognition
and Detection Under Bounded Computational Resources. In
CVPR, 2010.

[27] S. Tong and D. Koller. Support Vector Machine Active Learn-
ing with Applications to Text Classification. In /CML, 2000.

[28] J. Attenberg and F. Provost. Inactive Learning? Difficulties
Employing Active Learning in Practice. SIGKDD Explo-
rations Newsletter, 12(2), December 2010.

[29] B. Wallace, K. Small, C. Brodley, and T. Trikalinos. Active
Learning for Biomedical Citation Screening. In KDD, 2010.

