Fine-Grained Comparisons with Attributes

Aron Yu and Kristen Grauman

Abstract Given two images, we want to predict which exhibits a patéicuisual at-
tribute more than the other—even when the two images are gitilar. For exam-
ple, given two beach scenes, which looksre caln? Given two high-heeled shoes,
which is more ornat@ Existing relative attribute methods rely on global raigkin
functions. However, rarely will the visual cues relevantat@omparison be con-
stant for all data, nor will humans’ perception of the atitdonecessarily permit a
global ordering. At the same time, not every image pair imerelerable for a given
attribute. Attempting to map relative attribute ranks tquality” predictions is non-
trivial, particularly since the span of indistinguishapkrs in attribute space may
vary in different parts of the feature space. To addresstisssies, we introduce
local learningapproaches for fine-grained visual comparisons, where diqbire
model is trained on the fly using only the data most relevattéonovel input. In
particular, given a novel pair of images, we develop locaiténg methods to (1)
infer their relative attribute ordering with a ranking fuion trained using only anal-
ogous labeled image pairs, (2) infer the optimal “neighbody, i.e., the subset of
the training instances most relevant for training a givaralonodel, and (3) infer
whether the pair is even distinguishable, based on a locdkffor just noticeable
differencesn attributes. Our methods outperform state-of-the-arthoes for rel-
ative attribute prediction on challenging datasets, idiclg a large newly curated
shoe dataset for fine-grained comparisons. We find that ferdmined compar-
isons,morelabeled data is not necessarily preferable to isolatingitfre data.
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Fig. 1: A global ranking function may be suitable favarseranking tasks, buftne-grainedranking
tasks require attention to subtle details—and which deta@ important may vary in different parts
of the feature space. We propose a local learning approacaimccomparative attributes based on
fine-grained analogous pairs.

1 Introduction

Attributes are visual properties describable in wordstwapg anything from mate-
rial propertiesifetallic, furry), shapesf{at, boxy), expressionssiniling, surprised,
to functions éittable drinkablé). Since their introduction to the recognition commu-
nity [19, 35, 37], attributes have inspired a number of ulsafylications in image
search [32, 34, 35, 50], biometrics [11, 45], and languaaget supervision for
recognition [6, 37, 43, 49].

Existing attribute models come in one of two forms: categgdror relative.
Whereas categorical attributes are suited only for cleapredicates, such asale
or wooden relative attributes can represent “real-valued” prapstrthat inherently
exhibit a spectrum of strengths, suchsesiousor sporty These spectra allow a
computer vision system to go beyond recognition into comspar For example,
with a model for the relative attributerightnessa system could judge which of two
images isbrighter than the other, as opposed to simply labeling them as bright/
bright.

Attribute comparisons open up a humber of interesting pdg&s. In bio-
metrics, the system could interpret descriptions likeg“Buspect idaller than
him” [45]. In image search, the user could supply semangdlfeack to pinpoint his
desired content: “the shoes | want to buy are like thesertmre masculing34], as
discussed in Chapter XXXXX of this book. For object recommf human supervi-
sors could teach the system by relating new objects to pusiyidearned ones, e.g.,
“a mule has a tailonger thana donkey’s” [6, 43, 49]. For subjective visual tasks,
users could teach the system their personal perception,adgut which human
faces aremore attractivethan others [1].

One typically learns a relative attribute in a learning-4ok setting; training data
is ordered (e.g., we are told image A has it more than B), arehkimg function is
optimized to preserve those orderings. Given a new imagefuhction returns a
score conveying how strongly the attribute is present [1,14) 18, 34, 38, 41,
43, 46, 47]. While a promising direction, the standard ragkapproach tends to
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fail when faced withfine-grained visual comparisongn particular, the standard
approach falls short on two fronts: (1) it cannot reliablggict comparisons when
the novel pair of images exhibits subtle visual attribuféedénces, and (2) it does
not permit equality predictions, meaning it is unable teedetvhen a novel pair of
images are so similar that their difference is indistinpatsle.

Why do existing global ranking functions experience diffi@s making fine-
grained attribute comparisons? The problem is that whilegleslearned function
tends to accommodate the gross visual differences thatigdve attribute’s spec-
trum, it cannot simultaneously account for the many finergrddifferences among
closely related examples, each of which may be due to a distét of visual cues.
For example, what makes a slipper appeare comfortabléhan a high heel is dif-
ferent than what makes one high heel appear more comfoitadrleanother; what
makes a mountain scene appeare naturalthan a highway is different than what
makes a suburb more natural than a downtown skyscraperl(fig.

Furthermore, at some point, fine-grained differences becsmsubtle that they
become indistinguishable. However, existing attributedeis assume that all im-
ages are orderable. In particular, they assumeahtdst time the system can and
should always distinguish which image in a pair exhibitsdtigbute more. Imagine
you are given a pile of images of Barack Obama, and you musttssm according
to where he looks most to leastrious Can you do it? Surely there will be some ob-
vious ones where he is more serious or less serious. Thdrewsit be image pairs
where the distinction is quite subtle, yet still perceilthus fine-grained. How-
ever, you are likely to conclude that forcingatal order is meaningless: while the
images exhibit different degrees of the attribute serieaspat some point the differ-
ences become indistinguishable. It is not that the pixekpas in indistinguishable
image pairs are literally the same—they just cannot be cheriaed consistently as
anything other than “equally serious” (Fig. 2).

We contend that such fine-grained comparisons are criticglet right, since
this is where modeling relative attributes ought to havegpewer. Otherwise, we
could just learn coarse categories of appearance (“bricgries”, “dark scenes”)
and manually define their ordering. In particular, fine-geal visual comparisons
are valuable for sophisticated image search and browsiplicagions, such as dis-
tinguishing subtle properties between products in an erdatalog, as well as anal-
ysis tasks involving nuanced perception, such as detesliglat shades of human
facial expressions or distinguishing the identifyingtisdietween otherwise similar-
looking people.

In light of these challenges, we introduk®al learning algorithms for fine-
grained visual comparisons. Local learning is an instafi¢kpy learning”, where
one defers processing of the training data until test tineh& than estimate a
single global model from all training data, local learningthmods instead focus on
a subset of the data most relevant to the particular tesdrinst This helps learn
fine-grained models tailored to the new input, and makessiside to adjust the ca-
pacity of the learning algorithm to the local propertiestf tlata [7]. Local methods
include classic nearest neighbor classification as welagasws novel formulations
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Fig. 2: At what point is the strength of an attribute indigtirshable between two images? While
existing relative attribute methods are restricted toririg a total order, in reality there are images
that look different but where the attribute is nonethelessgived as “equally strong”. For exam-
ple, in the fourth and fifth images of Obama, is the differeimcseriousnessoticeable enough to
warrant a relative comparison?

that use only nearby points to either train a model [2, 3, 7524 or learn a feature
transformation [16, 17, 25, 51] that caters to the novel inpu

The local learning methods we develop in this chapter addiesquestions of
(1) how to compare an attribute in highly similar images adl we (2) how to
determine when such a comparison is not possible. To leagrgfiained ranking
functions for attributes, given a novel test pair of images,first identify analo-
goustraining pairs using a learned attribute-specific metrfeeMwe train a ranking
function on the fly using only those pairs [54]. Building omstframework, we fur-
ther explore how to predict the loca¢ighborhoodtself—essentially answering the
“how local” question. Whereas existing local learning wadsumes a fixed number
of proximal training instances are most relevant, our agphanfers the relevant set
as a whole, both in terms of its size and composition [55]afynto decide when a
novel pair is indistinguishable in terms of a given attriguve develop a Bayesian
approach that relies on local statistics of orderabilitiern a model ofust notice-
able differenc¢JND) [56].

Roadmap The rest of the chapter proceeds as follows. In Section 2 isoeiss re-
lated work in the areas of relative attributes, local leagniand fine-grained visual
learning. In Section 3, we provide a brief overview of theatigke attributes rank-
ing framework. In Sections 4 and 5, we discuss in detail ooppsed approaches
for fine-grained visual comparisons and equality predictising JND. Finally, we
conclude in Sections 6 and 7 with further discussion andréutuork. The work
described in this chapter originally was presented in oevipus conference pa-
pers [54, 55, 56].

2 Related Work

Attribute Comparison Attribute comparison has gained attention in the last sev-
eral years. The original “relative attributes” approadries a global linear ranking
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function for each attribute [43]. Pairwise supervision &ed for training: a set of
pairs ordered according to their perceived attribute gtiteiis obtained from hu-
man annotators, and a ranking function that preserves thaings is learned.
Given a novel pair of images, the ranker indicates which ienbags the attribute
more. It is extended to non-linear ranking functions in [Bg]training a hierarchy
of rankers with different subsets of data, then normalizinedictions at the leaf
nodes. In [14], rankers trained for each feature descr{tor, shape, texture) are
combined to produce a single global ranking function. I [#$@rt-based represen-
tations weighted specifically for each attribute are ussteed of global features.

Aside from learning to rank formulations, researchers lzg@ied the Elo rating
system for biometrics [45], and regression over “cumuéatittributes” for age and
crowd density estimation [11].

All the prior methods produce a single global function focteattribute, whereas
we propose to learn local functions tailored to the comparat hand. While some
implementations (including [43]) augment the training pedh “equal” pairs to
facilitate learning, notably no existing work attempts tecgrn distinguishable from
indistinguishable pairs at test time. As we will see belosingd so is non-trivial.

Fine-Grained Visual Tasks Work on fine-grained visuatategorizationaims to
recognize objects in a single domain, e.g., bird specie2(®, While such prob-
lems also require making distinctions among visually cioséances, our goal is to
compare attributes, not categorize objects.

In the facial attractiveness ranking method of [10], thehatd train a hierarchy
of SVM classifiers to recursively push a image into bucketsofe/less attractive
faces. The leaf nodes contain images “unrankable” by theamusubject, which
can be seen as indistinguishability for the specific attebaf human attractive-
ness. Nonetheless, the proposed method is not applicable feroblem. It learns
a ranking model specific to a single human subject, wherealeara a subject-
independent model. Furthermore, the training proced@gfas limited scalability,
since the subject must raall training images into a partial order; the results focus
on training sets of 24 images for this reason. In our domdimgerest, where thou-
sands or more training instances are standard, gettingadleelobal partial order
on all images remains an open challenge.

Variability in Visual Perception The fact that humans exhibit inconsistencies
in their comparisons is well known in social choice theory gmeference learn-
ing [8]. In existing global models [1, 10, 14, 18, 34, 38, 438, 47], intransitive
constraints would be unaccounted for and treated as noibée \fie HodgeRank
algorithm [28] also takes a global ranking approach, ieates how much it suffers
from cyclic inconsistencies, which is valuable to know howan to trust the final
ranking function. However, that approach does not addrestatt that the features
relevant to a comparison are not uniform across a datasethwie find is critical
for fine-grained comparisons.

We are interested in modeling attributes where thereonsensus about com-
parisons, only they are subtle. Rather than personalize dehtowards an ob-
server [1, 10, 31], we want to discover the (implicit) map dfese the consensus for
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JND boundaries in attributes exists. The attribute cafibnamethod of [48] post-
processes attribute classifier outputs so they can be fasealti-attribute search.
Our method is also conscious that differences in attributgpuds taken at “face
value” can be misleading, but our goal and approach aresgndifferent.

Local Learning In terms of learning algorithms, lazy local learning methade
relevant to our work. Existing methods primarily vary in hdwey exploit the la-
beled instances nearest to a test point. One strategy i®tdifig a fixed number
of neighbors most similar to the test point, then train a nhedt only those ex-
amples (e.g., a neural network [7], SVM [57], ranking fupati[3, 24], or linear
regression [2]). Alternatively, the nearest training geitan be used to learn a trans-
formation of the feature space (e.g., Linear Discriminan&kxsis); after projecting
the data into the new space, the model is better tailorecetqulery’s neighborhood
properties [16, 17, 25, 51]. llocal selectiormethods, strictly the subset of nearby
data is used, whereas liocally weightedmethods, all training points are used but
weighted according to their distance [2]. For all these mpmethods, a test case is
a new data point, and its neighboring examples are identifjedearest neighbor
search (e.g., with Euclidean distance). In contrast, wpgse to learn local ranking
functions for comparisons, which requires identifying lagaus neighbopairs in
the training data. Furthermore, we also explore howraaictthe variable-size set
of training instances that will produce an effective digtriative model for a given
test instance.

In information retrieval, local learning methods have bdeweloped to sort doc-
uments by their relevance to query keywords [3, 17, 24, 3BgyTtake strategies
quite similar to the above, e.qg., building a local model fackecluster in the training
data [39], projecting training data onto a subspace detathby the test data dis-
tribution [17], or building a model with only the query’s géibors [3, 24]. Though
a form of ranking, the problem setting in all these methodsuiige different from
ours. There, the training examples consist of queries aeid thspective sets of
ground truth “relevant” and “irrelevant” documents, and goal is to learn a func-
tion to rank a keyword query’s relevant documents highen fkairrelevant ones.
In contrast, we have training data comprised of paired coisgas, and the goal is
to learn a function to compare a novel query pair.

Metric Learning The question “what is relevant to a test point?” also brirgs t
mind the metric learning problem. Metric learning methogtraize the parameters
of a distance function so as to best satisfy known (dis)sirtyl constraints between
training data [4]. Most relevant to our work are those thatmdocal metrics; rather
than learn a single global parameterization, the metriesgan different regions of
the feature space. For example, to improve nearest neighdgsification, in [22] a
set of feature weights is learned for each individual tragréxample, while in [52,
53] separate metrics are trained for clusters discoverddartraining data. Such
methods are valuable when the data is multi-modal and thssited by a single
global metric. In contrast to our approach, however, thayriédocal models offline
on the basis of the fixed training set, whereas our approaymesnically train new
models as a function of the novel queries.
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Fig. 3: lllustration of a learned linear ranking functiomitred from ordered pairs. The goal is to
learn a ranking functioR 4 (X) that satisfies both the ordered and unordered pairwiseredmtst
Given a novel test pair, the real-valued ranking scores @fifieges are compared to determine
their relative ordering.

3 Ranking Functions for Relative Attributes

First we describe how attribute comparisons can be addfestea learning to rank
approach, as originally proposed by Parikh and Grauman R&hking functions
will also play a role in our solution, and the specific modelinmteoduce next will
further serve as the representative traditional “globpfSraach in our experiments.

Our approach addresses the relative comparison problenpen atribute ba-
sis! As training data for the attribute of interedt(e.g.,comfortabl®, we are given
a pool of ground truth comparisons on pairs of images. Thienga novel pair
of images, our method predicts which exhibits the attributee, that is, which of
the two images appearsore comfortableor if the images are equal, or in other
words, totally indistinguishableWe first present a brief overview of Relative At-
tributes [43] as it sets the foundation as a baseline glarding approach.

The Relative Attributes approach treats the attribute ammpn task as a learning-
to-rank problem. The idea is to use ordered pairs (and ogitiptequal” pairs) of
training images to train a ranking function that will gere@to new images. Com-
pared to learning a regression function, the ranking fraonkwas the advantage
that training instances are themselves expressed corivedyahs opposed to re-
quiring a rating of the absolute strength of the attributetpgning image.

For each attributel to be learned, we take as input two sets of annotated training
image pairs. The first set consists of ordered padtgs+ {(i, j)}, for which humans
perceive imageéto have the attribute more than imagéhat is, each pair if?, has
a “noticeable difference”. The second set consists of ugred or “equal” pairs,

1 See Chapter XXXXX for discussion on methods for jointly miag multiple attributes.
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Pe = {(m,n)}, for which humans cannot perceive a difference in attrilstrtength.
See Section 4.3 for discussion on how such human-annotatacdn be reliably
collected.

Let x; € RY denote thed-dimensional image descriptor for imagesuch as a
GIST descriptor or a color histogram, andRet be a linear ranking function:

Ra(X) = WX (1)

Using a large-margin approach based on the SVM-Rank framef28], the goal
for a global relative attribute is to learn the parametesse RY that optimize the
rank function parameters to preserve the ordering&irmaintaining a margin be-
tween them in the 1D output space, while also minimizing #ygasation between
the unordered pairs ie. By itself, the problem is NP-hard, but [29] introduces
slack variables and a large-margin regularizer to appratefy solve it. The learn-
ing objective is:

minimize (%||WA||§+C(ZEiJZ+ZVr2n,n)) (2)
st wh(x—Xxj)>1-&;V(,]) € Po
Wi (Xm—%n)| < Ypg V(M. n) € Pe
¢ij > 0;ymn > 0,

where the constar@ balances the regularizer and ordering constraints ygnand
&ij denote slack variables. By projecting images onto the tieguhyperplanav 4,
we obtain a 1D global ranking for that attribute, e.g., fr@adt to mostomfortable

Given a test paifx;,Xs), if Ra(X) > Ra(xs), then image exhibits the attribute
more than imags, and vice versa. While [43] uses this linear formulatiois &lso
kernelizable and so can produce non-linear ranking funstio

Our local approach defined next draws on this particularirgnformulation,
which is also used in both [43] and in the hierarchy of [38] toquce state-of-
the-art results. Note however that our local learning ideald apply similarly to
alternative ranking methods.

4 Fine-Grained Visual Comparisons

Existing methods train a global ranking function using &hitable constraint®,
(and sometime®,), with the implicit assumption that more training data sklou
only help better learn the target concept. While such anaggbr tends to capture
the coarse visual comparisons, it can be difficult to derigagle set of model pa-
rameters that adequately represents both these big-@mtatrastandmore subtle
fine-grained comparisons (recall Fig. 1). For example, fdatset of shoes, it will
map all the sneakers on one end offimenal spectrum, and all the high heels on the
other, but the ordering among closely related high heelsneil show a clear pat-
tern. This suggests there is an interplay between the mageloity and the density
of available training examples, prompting us to exploraldearning solutions.
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Fig. 4: Given a novel test pair (blug) in a learned metric space, our local approach (a) selects
only the most relevant neighbors (greehfor training, which leads to ranking test image 2 over 1
in terms ofsporty. In contrast, the standard global approach defined in S€b). &es all training
data (greenD & red x) for training; the unrelated training pairs dilute the miag data. As a
result, the global model accounts largely for the coarséngd differences, and incorrectly ranks
test image 1 over 2. The end of each arrow points to the imatiemareof the attribute (sporty).
Note that the rank of each point is determined bypitgectionontow.

In the following, we nextintroduce our local ranking apprbéSect. 4.1) and the
mechanism to selecting fine-grained neighboring pairs atitfibute-specific metric
learning (Sect. 4.2). On three challenging datasets fratindt domains, including
a newly curated large dataset of 50,000 Zappos shoe imagefotuses on fine-
grained attribute comparisons (Sect. 4.3), we show ourcgmbrimproves the state-
of-the-art in relative attribute predictions (Sect. 4 Ajter the results, we briefly
overview an extension of the local attribute learning idest tearns theeighbor-
hood of relevant training data that ought to be used to train a hodehe fly
(Sect. 4.5).

4.1 Local Learning for Visual Comparisons

The solution to overcoming the shortcomings of existinghuds discussed above
is not simply a matter of using a higher capacity learningpatgm. While a low
capacity model can perform poorly in well-sampled areagbilento sufficiently
exploit the dense training data, a high capacity model cadyme unreliable (yet
highly confident) decisions in poorly sampled areas of tladuie space [7]. Dif-
ferent properties are required in different areas of théufeaspace. Furthermore,
in our visual ranking domain, we can expect that as the amofuatailable train-
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ing data increases, more human subjectiveness and ordedogsistencies will
emerge, further straining the validity of a single globaidtion.

Our idea is to explore a local learning approach for attelnainking. The idea
is to train a ranking function tailored to each novel pair wiagesXy = (Xr,Xs)
that we wish to compare. We train the custom function using arsubset of all
labeled training pairs, exploiting the data statisticshie heighborhood of the test
pair. In particular, we sort all training paif34 by their similarity to(x,xs), then
compose a local training s&, consisting of the tofK neighboring pairspP’, =
{(xkhxkz)}ﬁzl. We explain in the next section how we define similarity betwe
pairs. Then, we train a ranking function using Equation 2hanfty, and apply it to
compare the test images.

While simple, our framework directly addresses the flaw$ Hiader existing
methods. By restricting training pairs to those visuallyitr to the test pair, the
learner can zero in on features most important for that kincbmparison. Such a
fine-grained approach helps to eliminate ordering conggdhat are irrelevant to
the test pair. For instance, when evaluating whether a tugped athletic shoe is
more or lessportythan a similar looking low-topped one, our method will explo
pairs with similar visual differences, as opposed to trjimgccommodate in a sin-
gle global function the contrasting sportiness of sneakegh heels, and sandals

(Fig. 4).

4.2 Selecting Fine-Grained Neighboring Pairs

A key factor to the success of the local rank learning apgrasadow we judge
similarity between pairs. Intuitively, we would like to ¢t training pairs that are
somehowanalogoudo the test pair, so that the ranker focuses on the fine-gtaine
visual differences that dictate their comparison. This mseihat not only should
individual members of the pairs have visual similarity, blgo the visual contrasts
between the two test pair images should mimic the visualrastd between the
two training pair images. In addition, we must account fa fact that we seek
comparisons along a particular attribute, which means oaiyain aspects of the
image appearance are relevant; in other words, Euclidestartie between their
global image descriptors is likely inadequate.

To fulfill these desiderata, we define a paired distance fon¢hat incorporates
attribute-specific metric learning. L& = (X, xs) be the test pair, and let =
(xu,%v) be a labeled training pair for whidlu, v) € P 4. We define their distance as:

D (Xg, %) = min (Dy (%, %s), (%, %)), Dla (% %s), (6 %)) ), (3)
whereD/, is the product of the two items’ distances:

D4 (%, %s), (Xus X)) = da (X, Xu) X da(Xs, Xv). 4)

The product reflects that we are looking for pairs where eawdge is visu-
ally similar to one of those in the novel pair. It also ensuilest the constraint
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pairs are evaluated for distance as a pair instead of asidugivimages. If both
query-training couplings are similar, the distance is ltweome image coupling

is highly dissimilar, the distance is greatly increasede Tifinimum in Equation 3
and the swapping ofxy,X,) — (Xv,Xy) in the second term ensure that we account
for the unknown ordering of the test pair; while all trainipgirs are ordered with
Ra(xu) > Ra(xv), the first or second argumentX§ may exhibit the attribute more.
When learning a local ranking function for attribute we sort neighbor pairs for
Xq according taD 4, then take the tof to form P/,

When identifying neighbor pairs, rather than judge imagsadiced 4 by the
usual Euclidean distance on global descriptors, we warpégialize the function
to the particular attribute at hand. That's because ofters@al attribute does not
rely equally on each dimension of the feature space, wheleto the features’ lo-
cations or modality. For example, if judging image distafwehe attributesmiling,
the localized region by the mouth is likely most importahjudging distance for
comfortthe features describing color may be irrelevant. In shbig,not enough to
find images that are globally visually similar. For fine-gwed comparisons we need
to focus on those that are similar in terms of the propertyteriest.

To this end, we learn a Mahalanobis metric:

da (X, %)) = (% = X)) TM 4 (% —X;), (5)

parameterized by thetx d positive definite matri 4. We employ the information-
theoretic metric learning (ITML) algorithm [15], due to @fficiency and kerneliz-
ability. Given an initiald x d matrixM 4, specifying any prior knowledge about how
the data should be compared, ITML produceslthg that minimizes the LogDet
divergencé) 4 from that initial matrix, subject to constraints that sianitlata points
be close and dissimilar points be far:

MTEIQO Ded(M 4, M 4,) (6)

st.  da(xi,xj) <c (i,j)€Sa
da(xi,xj)>¢ (i,j) € Da.

The setsS 4 andD 4 consist of pairs of points constrained to be similar and dis-
similar, and? andc are large and small values, respectively, determined bylithe
tribution of original distances. We sét 4, = Z~1, the inverse covariance matrix
for the training images. To compo&g andD 4, we use image pairs for which hu-
man annotators found the images similar (or dissimiéaqording to the attribute
A. While metric learning is usually used to enhance neareghber classification
(e.g., [23, 27]), we employ it to gauge perceived similaaityng an attribute.

2 A more strict definition of “analogous pair” would furtherrirain that there be low distortion
between the vectors connecting the query pair and trainang r@spectively, i.e., forming a par-
allelogram in the metric space. This is similarly efficientilnplement. However, in practice, we
found the stricter definition is slightly less effective thine product distance. This indicates that
some variation in the intra-pair visual differences ardulge the learner.



12 Aron Yu and Kristen Grauman

UT-Zap50K (pointy) OSR (open) PubFig (smiling)

-2 A8 EF

FG-LocalPair LocalPair FG-LocalPair LocalPair FG-LocalPair LocalPair

Sy o oBh !HE@? iy
YREE & Bl S
o des T w8

Fig. 5: Example fine-grained neighbor pairs for three tessgtop row) from the datasets tested in
this chapter. We display the top 3 pairs per query. FG-Laialhd LocalPair denote results with
and without metric learning (ML), respectiveldT-Zap50K pointy: ML puts the comparison
focus on the tip of the shoe, caring less about the look of tloe @s a wholeOSR open ML
has less impact, as openness in these scenes relates tolibkrtexture PubFig smiling: ML
learns to focus on the mouth/lip region instead of the effdice. For example, while the LocalPair
(non-learned) metric retrieves face pairs that more oftertain the same people as the top pair,
those instances are nonetheless less relevant for therfimeed smiling distinction it requires. In
contrast, our FG-LocalPair learned metric retrieves nepdirs that may contain different people,
yet are instances where the degree of smiling is most usefaltmsis for predicting the relative
smiling level in the novel query pair.

Figure 5 shows example neighbor pairs. They illustrate hawnoethod finds
training pairs analogous to the test pair, so the local kxazan isolate the informa-
tive visual features for that comparison. Note how holétic the neighbors found
with metric learning (FG-LocalPair) may actually look lessiilar than those found
without (LocalPair). However, in terms of the specific diiite, they better isolate
the features that are relevant. For example, images of the sgact person need not
be most useful to predict the degreesafiling, if others better matched to the test
pair's expressions are available (last example). In practhe local rankers trained
with learned neighbors are substantially more accurate.

4.3 Fine-Grained Attribute Zappos Dataset

Having explained the basic approach, we now describe a neageteamenable to
fine-grained attributes. We collected a new UT Zappos50KsidtUT-Zap50K 3)
specifically targeting the fine-grained attribute comparitask. The dataset is fine-
grained due to two factors: 1) it focuses on a narrow domanoafent, and 2) we
develop a two-stage annotation procedure to isolate thms@arisons that humans
find perceptually very close.

8 UT-Zap50K dataset and all related data are publicly avalafor download at
Vi si on. cs. ut exas. edu/ proj ect s/ fi negrai ned
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Fig. 6: Sample images from each of the high-level shoe catgyof UT-Zap50K.

The image collection is created in the context of an onlingpging task, with
50,000 catalog shoe images from Zappos.com. For onlingoéhgpusers care about
precise visual differences between items. For instanceniore likely that a shop-
per is deciding between two pairs of similar men’s runningeshinstead of between
a woman’s high heel and a man’s slipper. The images are rpdgidix 100 pixels
and shoes are pictured in the same orientation for conveanatysis. For each im-
age, we also collect its meta-data (shoe type, materialsufaeturer, gender, etc.)
that are used to filter the shoes on Zappos.com.

Using Mechanical Turk (mTurk), we collect ground truth caaripons for 4 rel-
ative attributesopen pointy at the togsporty, andcomfortable The attributes are
selected for their potential to exhibit fine-grained diffieces. A worker is shown
two images and an attribute name, and must make a relativeiae¢more, less,
equal) and report the confidence of his decision (high, nod).| We repeat the
same comparison for 5 workers in order to vote on the final madwth. We col-
lect 12,000 total pairs, 3,000 per attribute. After remgvihe low confidence or
agreement pairs, and “equal” pairs, each attribute hasdset,500 to 1,800 total
ordered pairs.

Of all the possible 5M0C? pairs we could get annotated, we want to priori-
tize the fine-grained pairs. To this end, first, we sampledspaith a strong bias
(80%) towards intra-category and -gender images (baseueométa-data). We call
this collectionUT-Zap50K-1. We found~40% of the pairs came back labeled as
“equal” for each attribute. While the “equal” label can icdie that there’s no per-
ceivable difference in the attribute, we also suspectetitiveas an easy fallback
response for cases that required a little more thought—igh#ttose showing fine-
grained differences. Thus, we next posted the pairs ratéetasl” (4,612 of them)
back onto mTurk as new tasks, withoutthe “equal” option. We asked the work-
ers to look closely, pick one image over the other, and giveeasentence rationale
for their decisions. We call this sefT-Zap50K-2.

Interestingly, the workers are quite consistent on thegs,pagespite their diffi-
culty. Out of all 4,612 pairs, only 278 pairs had low confideloc agreement (and
so were pruned). Overall, 63% of the fine-grained pairs (a6 6f the coarser
pairs) had at least 4 out of 5 workers agree on the same anstheslvove average
confidence. This consistency ensures we have a datases tinathi fine-grained as
well as reliably ground truthed.

Compared to an existing Shoes attribute dataset [5] wititivel attributes [34],
UT-Zap50K is about 3.5 larger, offers meta-data and $Omore comparative la-
bels, and most importantly, specifically targets fine-geditasks. Compared to ex-



14 Aron Yu and Kristen Grauman

isting popular relative attribute datasets like PubFig @&d Outdoor Scenes [42],
which contain only category-level comparisons (e.g., dgmilesless than Mi-
ley”) that are propagated down uniformly to all image insts UT-Zap50K is
distinct in that annotators have madeage-levetomparisons (e.g., “this particular
shoe image isnore pointythan that particular shoe”). The latter is more costly to
obtain but essential for testing fine-grained attributesahghly.

In the next section we use UT-Zap50K as well as other existatgsets to test
our approach. Later in Section 5 we will discuss extensiorthé UT-Zap50K an-
notations that make it suitable for the just noticeablesdéhce task as well.

4.4 Experiments and Results

To validate our method, we compare it to two state-of-thevathods as well as
informative baselines.

4.4.1 Experimental Setup

Datasets We evaluate on three dataset$T-Zap50K, as defined above, with
concatenated GIST and color histogram features; the OutSoene Recognition
dataset [42] OSR); and a subset of the Public Figures faces dataset RR&)Kig).
OSR contains 2,688 images (GIST features) with 6 attripwtdie PubFig con-
tains 772 images (GIST + Color features) with 11 attribuiés.use the exact same
attributes, features, and train/test splits as [38, 43}. cDwice of features is based
on the intent to capture spatially localized textures (G183 well as global color
distributions, though of course alternative feature tygmdd easily be employed in
our framework.

Setup We run for 10 random train/test splits, setting aside 30Qgdatruth pairs
for testing and the rest for training. We cross-validatéor all experiments, and
adopt the sam€ selected by the global baseline for our approach. We use no
“equal” pairs for training or testing rankers. We report @aecy in terms of the
percentage of correctly ordered pairs, following [38]. Wegent results using the
same labeled data for all methods.

For learning to rank, outotal training pairsP 4 consist of only ordered pairs
Po. For ITML, we use the ordered paif3, for rank training to compose the set of
dissimilar pairsD 4, and the set of “equal” pairs to compose the similar p&igs
We use the default settings forand ¢ in the authors’ code [15]. The setting Kf
determines “how local” the learner is; its optimal settirgpdnds on the training
data and query. As in prior work [7, 57], we simply fix it for gjlieries aK = 100
(though see Sect. 4.5 for a proposed generalization thaidélae neighborhood size
as well). Values oK = 50 to 200 give similar results.

Baselines We compare the following methods:
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Table 1: Results for the UT-Zap50K dataset.

Open Pointy Sporty Comfort Open Pointy Sporty Comfort
Global [43]|[87.77 89.37 91.20 89.93 Global [43]||60.18 59.56 62.70 64.04
RandPaif(82.53 83.70 86.30 84.77 RandPaif|61.00 53.41 58.26 59.24
LocalPair|88.53 88.87 92.20 90.9( LocalPair|71.64 59.56 61.22 59.7§
FG-LocalPaif[90.67 90.83 92.67 92.37 FG-LocalPaif| 74.91 63.74 64.54 62.51
(a) UT-Zap50K-1 withcoarserpairs. (b) UT-Zap50K-2 withfine-grainedpairs.
"Open" "Pointy"

"Sporty" ~\ "Comfortable”

Lo jobal [43]
eof 22 * =+ =RandPair
i = = LocalPair
==FG-LocalPai
Hardest Test Pairs Hardest Test Pairs Hardest Test Pairs Hardest Test Pairs

Fig. 7: Accuracy for the 30 hardest test pairs on UT-Zap50K-1

Cumulative Accuracy (%)

Cumulative Accuracy (%)
Cumulative Accuracy (%)
Cumulative Accuracy (%)

e FG-LocalPair: the proposed fine-grained approach.

e LocalPair: our approach without the learned metric (iMd.4 = II). This baseline
isolates the impact of tailoring the search for neighbogas to the attribute.

e RandPair: a local approach that selects its neighbors randomly. Baseline
demonstrates the importance of selecting relevant neighbo

e Global: a global ranker trained with all available labeled paisshg Equation 2.
This is the Relative Attributes method [43]. We use the arghaublic code.

e RelTree: the non-linear relative attributes approach of [38], whiearns a hi-
erarchy of functions, each trained with successively ssnallibsets of the data.
Code is not available, so we rely on the authors’ reportedbars(available for
OSR and PubFig).

4.4.2 Zappos Results

Table 1a shows the accuracy on UT-Zap50K-1. Our method dotpes all base-
lines for all attributes. To isolate the more difficult painsUT-Zap50K-1, we sort
the test pairs by their intra-pair distance using the ledimetric; those that are close
will be visually similar for the attribute, and hence morattbnging. Figure 7 shows
the results, plotting cumulative accuracy for the 30 hartkest pairs per split. We
see that our method has substantial gains over the baséiibest 20%), demon-
strating its strong advantage for detecting subtle diffees. Figure 8 shows some
qualitative results.

We proceed to test on even more difficult pairs. Whereas Eiguiocuses on
pairs difficult according to the learned metric, next we foom pairs difficult ac-
cording to our human annotators. Table 1b shows the resultdT-Zap50K-2. We
use the original ordered pairs for training and all 4,612-fin@ined pairs for testing
(Sect. 4.3). We outperform all methods for 3 of the 4 atteisufor the two more
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Fig. 8: Example pairs contrasting our predictions to theb@ldaseline’s. In each pair, the top item
is more sportythan the bottom item according to ground truth from humarotators. (1) We pre-
dict correctly, Global is wrong. We detect subtle changdsleaGlobal relies only on overall shape
and color. (2) We predict incorrectly, Global is right. Tee®arser differences are sufficiently cap-
tured by a global model. (3) Both methods predict incorge&lich pairs are so fine-grained, they
are difficult even for humans to make a firm decision.
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objective attributesppenandpointy, our gains are sizeable—14% over Global for
open We attribute this to their localized nature, which is a&ately captured by our
learned metrics. No matter how fine-grained the differegaci¢ usually comes down
to the top of the shoeoper) or the tip of the shoeppinty). On the other hand, the
subjective attributes are much less localized. The modtertgang one iscomfort
where our method performs slightly worse than Global, inespf being better on
the coarser pairs (Table 1a). We think this is because ttaitots of the subtleties
vary greatly per pair.

4.4.3 Scenes and PubFig Results

We now shift our attention to OSR and PubFig, two commonlydusatasets for
relative attributes [34, 38, 43]. The paired supervisiontfese datasets originates
from category-wise comparisons [43], and as such there arg/mrmore training
pairs—on average over 20,000 per attribute.

Tables 2 and 3 show the accuracy for PubFig and OSR, reselgctee [54] for
attribute-specific precision recall curves. On both dasaseir method outperforms
all the baselines. Most notably, it outperforms RelTreq,[@®ich to our knowledge
is the very best accuracy reported to date on these datasessparticular result
is compelling not only because we improve the state-ofattigbut also because
RelTree is a non-linear ranking function. Hence, we see It learning with
linear models is performing better than global learninghvatnon-linear model.
With a lower capacity model, but the “right” training exarap) the comparison is
better learned. Our advantage over the global Relativébiites linear model [43]
is even greater.

On OSR, RandPair comes close to Global. One possible catise vgeak su-
pervision from the category-wise constraints. While theme20,000 pairs, they are
less diverse. Therefore, a random sampling of 100 neigldsams to reasonably
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Table 2: Accuracy comparison for the OSR dataset. FG-Ladatfenotes the proposed approach.

Natural Open Perspective LargeSize Diagonal CloseDepth
RelTree [38]| 95.24 92.39  87.58 88.34 89.34 89.54
Global [43]|| 95.03 90.77  86.73 86.23 86.50 87.53
RandPaif| 92.97 89.40  84.80 84.67 84.27 85.47
LocalPaif| 94.63 93.27  88.33 89.40 90.70 89.53
FG-LocalPaif| 95.70 94.10  90.43 91.10 92.43 90.47]

Table 3: Accuracy comparison for the PubFig dataset.

Male White Young Smiling Chubby Forehead Eyebrow Eye Nose lp Face
RelTree [38][85.33 82.59 84.41 8336 7897 88.83 81.84 83.15 80.43 816831
Global [43][|81.80 76.97 83.20 79.90 76.27 87.60 79.87 81.67 77.40 7133
RandPaif|74.43 65.17 74.93 73.57 69.00 84.00 70.90 73.70 66.13 713720
LocalPaif|81.53 77.13 83.53 82.60 78.70  89.40 80.63 82.40 78.17 7R7IB3
FG-LocalPaif[91.77 87.43 91.87 87.00 87.37 94.00 89.83 91.40 89.07 90648

00 00 N O

mimic the performance when using all pairs. In contrast,;oethod is consistently
stronger, showing the value of our learned neighborhoad pai

While metric learning (ML) is valuable across the board (E&alPair> Lo-
calPair), it has more impact on PubFig than OSR. We attrithiteto PubFig's
more localized attributes. Subtle differences are whatesdine-grained compar-
ison tasks hard. ML discovers the features behind thosdesialstwith respect to
each attribute Those features could be spatially localized regions aiquaar im-
age cues (GIST vs. color). Indeed, our biggest gains cordpareocalPair (9% or
more) are owhite, where we learn to emphasize color binsegénose where we
learn to emphasize the GIST cells for the part regions. Irrest) the LocalPair
method compares the face images as a whole, and is liabledtanfimges of the
same person as more relevant, regardless of their propartieat image (Fig. 5).

4.4.4 Runtime Evaluation

Learning local models on the fly, though more accurate fordireened attributes,
does come at a computational cost. The main online costs radimdi the near-
est neighbor pairs and training the local ranking functieor. our datasets, with
K =100 and 20,000 total labeled pairs, this amounts to about@sis. There are
straightforward ways to improve the run-time. The neightieding can be done
rapidly using well known hashing techniques, which are igpple to learned met-
rics [27]. Furthermore, we could pre-compute a set of raprigive local models.
For example, we could cluster the training pairs, build aleoodel for each clus-
ter, and invoke the suitable model based on a test pair'dagityito the cluster
representatives. We leave such implementation extena®hgure work.
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Fig. 9: Overview of our compressed sensing based approgcland yg represent theM-
dimensional neighborhood indicator vectors for a trainamgl testing instance, respectively.

is aD x M random matrix wher® denotes the compressed indicators’ dimensionalitig the
learned regression function used to map the original imegeife space to the compressed label
space. By reconstructing back to the full label space, weagegstimate of,"indicating which
labeled training instances together will form a good neayhbod for the test instancg.

4.5 Predicting Useful Neighborhoods

This section expands on the neighbor selection approadtided in Section 4.2,
briefly summarizing our NIPS 2014 paper [55]. Please seepidyaer for more de-
tails and results.

As we have seen above, the goal of local learning is to tailermbodel to the
properties of the data surrounding the test instance. Hexysw far, like other prior
work in local learning we have made an important core assiompthat the in-
stances moaisefulfor building a local model are those that arearestto the test
example. This assumption is well-motivated by the factissussed above, in terms
of data density and intra-class variation. Furthermorey@saw above, identifying
training examples solely based on proximity has the appiepéonitting special-
ized similarity functions (whether learned or engineemdtiie problem domain),
which can be valuable for good results, especially in stmact input spaces.

On the other hand, there is a problem with this core assumBip treating the
individual nearness of training points as a metric of théiity for local training,
existing methods fail to model how those training pointd adttually be employed.
Namely, the relative success of a locally trained model igrection of the entire
setor distribution of the selected data points—not simply the individual peisé
nearness of each one against the query. In other words,ehetatrget subset con-
sists of a set of instances that together yield a good preeiotodel for the test
instance. Thus, local neighborhood selection ought to Insidered jointly among
training points.

Based on this observation, we have explored wayledon the properties of a
“good neighborhood”. We cast the problem in terms of larg@lesmulti-label clas-
sification, where we learn a mapping from an individual ins&to an indicator
vector over the entire training set that specifies whichaimsés are jointly useful to
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the query. The approach maintains an inherent bias towaighlmorhoods that are
local, yet makes it possible to discover subsets that (ijede¥rom a strict nearest-
neighbor ranking and (ii) vary in size. We stress that leagnvhat a goodheighbor
looks like (metric learning’s goal) is distinct from leangi what a goodheighbor-
hoodlooks like (our goal). Whereas a metric can be trained withyagse constraints
indicating what should be near or far, jointly predicting thstances that ought to
compose a neighborhood requires a distinct form of learning

The overall pipeline includes three main phases, showngurgi9. (1) First,
we devise an empirical approach to generate ground truithirtganeighborhoods
(Xn,¥n) that consist of an individual instancg paired with a set of training in-
stance indices capturing its target “neighbors”, the tafteing represented as a
M-dimensional indicator vector,, whereM is the number of labeled training in-
stances. (2) Next, using the Bayesian compressed senspigaap of [30], we
projecty, to a lower-dimensional compressed label spgagsing a random matrix
@. Then, we learn regression functiofi$x), ..., fo (X») to map the original features
Xn to the compressed label space. (3) Finally, given a testrigsi,, we predicts
its neighborhood indicator vectgg Usingg and the learned regression functidns
We use this neighborhood of points to train a classifier orfl{hevhich in turn is
used to categorize,.*

In [55] we show substantial advantages over existing logairling strategies,
particularly when attributes are multi-modal and/or itaigar instances are difficult
to match based on global feature distances alone. Our selugttrate the value in
estimating the size and composition of discriminative hbimrhoods, rather than
relying on proximity alone. See our paper for the full det§l5].

5 Just Noticeable Differences

Having established the strength of local learning for fingkged attribute compar-
isons, we now turn to task of predicting when a comparisorv&neossible. In
other words, given a pair of images, the output may be one afré&) “less”, or
“equal’”.

While some pairs of images have a clear ordering for an at&ifrecall Fig. 2),
for others the difference may be indistinguishable to huwiaservers. Attempting
to map relative attribute ranks to equality predictionsasAtrivial, particularly since
the span of indistinguishable pairs in an attribute spacevagy in different parts of
the feature space. In fact, as discussed above, despitedhsional use of unordered
pairs for training, it is assumed in prior work that all test images will be ogdde.
However, the real-valued output of a ranking function agéa in Section 3 will
virtually never be equal for two distinct inputs. Therefoesen though existing

4 Note that the neighborhood learning idea has been testsdfahwnly for classification tasks,
though in principle applies similarly to ranking tasks.

5 Empirically, we found the inclusion of unordered pairs dartraining in [43] to have negligible
impact at test time.
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Fig. 10: Analogous to the MacAdam ellipses in the CIE X,y cdpace (right) [21], relative at-
tribute space is likely not uniform (left). That is, the regs within which attribute differences
are indistinguishable may vary in size and orientation s&tthe high-dimensional visual feature
space. Here we see the faces within each “equatiyling’ cluster exhibit varying qualities for
differentiating smiles—such as age, gender, and visyhilithe teeth—but are still difficult or im-
possible to order in terms afmiling-nessAs a result, simple metrics and thresholds on attribute
differences are insufficient to detect just noticeablecgéhces.

methods may learn to produce similar rank scores for equed, pgis unclear how
to determine when a novel pair is “close enough” to be comsitlan-orderable.

We argue that this situation calls for a mode|wust noticeable differencemong
attributes. Just noticeable difference (JND) is a concephfpsychophysics. It
refers to the amount a stimulus has to be changed in ordet forhie detectable
by human observers at least half the time. For example, JINDirgerest in color
perception (which light sources are perceived as the satogy@nd image quality
assessment (up to what level of compression do the imagk®k®). INDs are de-
termined empirically through tests of human perceptiom.example, JND in color
can be determined by gradually altering the light sourceyasl the human subject
detects that the color has changed [21].

Why is it challenging to develop a computational model of Jidbrelative at-
tributes? At a glance, one might think it amounts to learrangptimal threshold
on the difference of predicted attribute strengths. Howetbés begs the question
of how one might properly and densely sample real images ohgptex attribute
(like seriousnegsto gradually walk along the spectrum, so as to discoveritjte r
threshold with human input. More importantly, an attribspace need not bani-
form. That is, depending on where we look in the feature spacendmmitude of at-
tribute difference required to register a perceptible ¢feamay vary. Therefore, the
simplistic “global threshold” idea falls short. Analogoissues also arise in color
spaces, e.g., the famous MacAdam ellipses spanning inglisshable colors in the
CIE x,y color space vary markedly in their size and orientatiepending on where
in the feature space one looks (leading to the crafting afrcgppaces like CIE Lab
that are more uniform). See Figure 10.

We next introduce a solution to infer when two images aresitimjuishable for a
given attribute. Continuing with the theme of local leam)iwe develop a Bayesian
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approach that relies dncal statistics of orderability. Our approach leverages both
a low-level visual descriptor space, within which imager gaoximity is learned,

as well as a mid-level visual attribute space, within whitfilaute distinguisha-
bility is represented (Fig. 11). Whereas past ranking netale attempted to in-
tegrate equality intdraining, none attempt to distinguish between orderable and
un-orderable pairs at test time.

Our method works as follows. First, we construct a predietttédbute space us-
ing the standard relative attribute framework (Sect. 3erTlon top of that model,
we combine a likelihood computed in the predicted attrilspce (Sect. 5.1.1) with
a local prior computed in the original image feature spaee($.1.2). We show
our approach’s superior performance compared to variosslinas for detecting
noticeable differences, as well as demonstrate how atitriliND has potential ben-
efits for an image search application (Sect. 5.2).

5.1 Local Bayesian Model of Distinguishability

The most straightforward approach to infer whether a nawelge pair is distin-
guishable would be to impose a threshold on their rank diffees, i.e., to predict
“indistinguishable” if R4 (%) — R4(Xs)| < €. The problem is that unless the rank
space is uniform, a global threshatds inadequate. In other words, the rank mar-
gin for indistinguishable pairs need not be constant adiesentire feature space.
By testing multiple variants of this basic idea, our emgitiesults confirm this is
indeed an issue, as we will see in Section 5.2.

Our key insight is to formulate distinguishability preddet in a probabilistic,
local learning manner. Mindful of the non-uniformity of a¢ive attribute space,
our approach uses distributions tailored to the data in tbgimity of a novel test
pair. Furthermore, we treat the relative attribute ranksirmsmperfect mid-level
representation on top of which we can learn to target theah¢tparse) human
judgments about distinguishability.

LetD € {0,1} be a binary random variable representing the distinguityads
an image pair. For a distinguishable p&ir= 1. Given a novel test paix,Xs), we
are interested in the posterior:

P(D[xr,xs) 0 P(x,xs|D)P(D), (7)
to estimate how likely two images are distinguishable. T&er@hard decision we
take the maximum a posteriori estimate over the two classes:

d* = argmaxP(D = d|x, Xs)- (8)
d

At test time, our method performs a two-stage cascade. Iftése pair ap-
pears distinguishable, we return the response “more” @s"laccording to whether
Ra(X) < Ra(xs) (WhereRis trained in either a global or local manner). Otherwise,
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Fig. 11: Overview of our Bayesian approach. (1) Learn a magkinctionR 4 using all annotated
training pairs (Sect. 3), as depicted in Figure 3. (2) Edtirtize likelihood densities of the equal and
ordered pairs, respectively, using the pairwise distanteslative attribute space. (3) Determine
the local prior by counting the labels of the analogous pairthe image descriptor space. (4)
Combine the results to predict whether the novel pair isrdisishable (not depicted). Best viewed
in color.

we say the test pair is indistinguishable. In this way weyrefative attributes with
JND, generating partially ordered predictions in spiteheftanker’s inherent totally
ordered outputs.

Next, we derive models for the likelihood and prior in Eqoatv, accounting for
the challenges described above.

5.1.1 Likelihood Model

We use a kernel density estimator (KDE) to represent théndisishability likeli-
hood over image pairs. The likelihood captures the link leetwthe observed rank
differences and the human-judged just noticeable difieren

Let A, s denote the difference in attribute ranks for imagesds:

Ars = |Ra(X) — Ra(xs)|- 9)

Recall thatP, and P, refer to the sets of ordered and equal training image pairs,
respectively. We compute the rank differences for all iregrpairs inP, and Pe,
and fit a non-parametric Parzen density:

P(x,%s|D) = == > Kn(Aij—Ars), (10)

|P| i,JEP
for each set in turn. Her® refers to the ordered paif&, when representing distin-
guishability O = 1), and the equal paifB: when representing indistinguishability
(D = 0). The Parzen density estimator [44] superimposes a kéunetion Ky, at
each data pair. In our implementation, we use Gaussian lkethetegrates local
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estimates of the distribution and resists overfitting. THeEhas a smoothing pa-
rameterh that controls the model complexity. To ensure that all dgrisicontained
within the positive absolute margins, we apply a positivepsut to the estimator.
Namely, we transfornd); ; using a log function, estimate the density of the trans-
formed values, and then transform back to the original s&de (a) in Figure 11.

The likelihood reflects how well the equal and ordered pakrssaparated in the
attribute space. However, criticall?(x,,xs|D = 1) need not decrease monotoni-
cally as a function of rank differences. In other words, treded permits returning
a higher likelihood for certain pairs separated by smallargims. This is a direct
consequence of our choice of the non-parametric KDE, whiebgrves local mod-
els of the original training data. This is valuable for ouolplem setting because
in principle it means our method can correct imperfectionthe original learned
ranks and account for the non-uniformity of the space.

5.1.2 Prior Model

Finally, we need to represent the prior over distinguislitgbi he prior could sim-

ply count the training pairs, i.e., [€(D = 1) be the fraction of all training pairs
that were distinguishable. However, we again aim to accfmthe non-uniformity

of the visual feature space. Thus, we estimate the priordbasly on a subset of
data near the input images. Intuitively, this achieves goknprior for the label

distribution in multiple pockets of the feature space:

P(D=1)= 2[4, (1)

whereP} C P, denotes the set ¢&f neighboring ordered training paif3(D = 0) is
defined similarly for the indistinguishable paiPs. Note that while the likelihood
is computed over the pair’s rank difference, the localityre prior is with respect
to the image descriptor space. See (b) in Figure 11.

To localize the relevant pocket of the image space, we atieptietric learning
strategy detailed in Section 4.2. Using the learned mebad;s analogous to the
novel input(x,, xs) are retrieved based on a product of their individual Mahatiés
distances, so as to find pairs whose members both align.

5.2 Experiments and Results

We present results on the core JND detection task (Sec2)®&.two challenging
datasets and demonstrate its impact for an image seardoatpi (Sect. 5.2.3).
5.2.1 Experimental Setup

Datasets and Ground Truth Our task requires attribute datasets that (1) have
instance-level relative supervision, meaning annotaters asked to judge attribute
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comparisons on individual pairs of images, not object aateg as a whole and (2)
have pairs labeled as “equal” and “more/less”. To our kndgée our UT-Zap50K
and LFW-10 [47] are the only existing datasets satisfyiragéconditions.

To train and evaluate just noticeable differences, we mangt Annotations of ut-
most precision. Therefore, we take extra care in estahlisthie (in)distinguishable
ground truth for both datasets. We perform pre-processeysso discard unreli-
able pairs, as we explain next. This decreases the totainebf available data, but
it is essential to have trustworthy results.

TheUT-Zap50K dataset is detailed in Section 4.3. As ordered pBiswe use
all coarse and fine-grained pairs for which all 5 workers adr@nd had high confi-
dence. Even though the fine-grained pairs might be visualjta, if all 5 workers
could come to agreement with high confidence, then the imaigasiost likely dis-
tinguishable. As equal paifd, we use all fine-grained pairs with 3 or 4 workers in
agreement and only medium confidence. Since the fine-graiaiesl have already
been presented to the workers twice, if the workers arewstilble to come to an
consensus with high confidence, then the images are most iitdistinguishable.
The resulting dataset has 4,778 total annotated pairsistimgsof on average 800
ordered and 350 indistinguishable (equal) pairs per atgib

TheLFW-10 dataset [47] consists of 2,000 face images, taken from theled
Faces in the Wild [26] datasétlt contains 10 relative attributes, likamiling, big
eyes etc., with 1,000 labeled pairs each. Each pair was labejedl people. As
ordered pairsP,, we use all pairs labeled “more” or “less” by at least 4 wosker
As equal pairsPe, we use pairs where at least 4 workers said “equal”, as well as
pairs with the same number of “more” and “less” votes. Theetateflects that a
split in decision signals indistinguishability. Due to temaller scale of LFW-10,
we could not perform as strict of a pre-processing step asTiz&p50K; requir-
ing full agreement on ordered pairs would eliminate mosheflabeled data. The
resulting dataset has 5,543 total annotated pairs, on g¥&30 ordered and 320
indistinguishable pairs per attribute.

Baselines We are the first to address the attribute JND task. No priohats infer
indistinguishability at test time [32, 38, 43, 46, 47]. Téfre, we develop multiple
baselines to compare to our approach:

e Rank Margin: Use the magnitude a4, s as a confidence measure that the pair
r,sis distinguishable. This baseline assumes the learnedfuaickion produces
a uniform feature space, such thaglabal thresholdon rank margins would be
sufficient to identify indistinguishable pairs. To compathard decision for this
method (for F1-scores), we threshold the Parzen windowiliked estimated
from the training pairs by, the mid-point of the likelihood means.

e Logistic Classifier[32]: Train a logistic regression classifier to distingutistin-
ing pairs inP, from those inPe, Where the pairs are represented by their rank
differences; j. To compute a hard decision, we threshold the posteriorsat O.
This is the method used in [32] to obtain a probabilistic nieaof attribute

chit.iiit.ac.in/projects/relativeParts
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Fig. 12: Just noticeable difference detection accuracyafoattributes. We show the precision-
recall (top row) and ROC curves (bottom row) for the shoel)(dnd faces (right) datasets. Leg-
ends show AUC values for ROC curves. Note that the Mean Shs#félne does not appear here,
since it does not produce confidence values.

equality. It is the closest attempt we can find in the literato represent equal-
ity predictions, though the authors do not evaluate its mayu This baseline also
maintains a global view of attribute space.

e SVM Classifier: Train a nonlinear SVM classifier with a RBF kernel to distin-
guish ordered and equal pairs. We encode pairs of imagesgle gioints by
concatenating their image descriptors. To ensure sympmegrynclude training
instances with the two images in either order.

e Mean Shift: Perform mean shift clustering on the predicted attributerass
Ra(x) for all training images. Images falling in the same cluster deemed
indistinguishable. Since mean shift clusters can varyie,shis baseline does
notassume a uniform space. Though unlike our method, it failswerage dis-
tinguishability supervision as it processes the rankepwtst

Implementation Details For UT-Zap50K, we use 960-dim GIST and 30-bin Lab
color histograms as image descriptors. For LFW-10, they3g&@0-dim part-based
features learned on top of dense SIFT bag of words featuresi@ed by the au-
thors). We reduce their dimensionality to 100 with PCA toverg overfitting. The
part-based features [47] isolate localized regions of #ue fle.g., exposing cues
specific to the eyes vs. hair). We experimented with bothalirend RBF kernels
for R4. Since initial results were similar, we use linear kerneisdfficiency. We
use Gaussian kernels for the Parzen windows. We set all pgpametersh(for the
KDE, bandwidth for Mean Shiftk for the prior) on held-out validation data. To
maximize the use of training data, in all results below, we lesve-one-out evalu-
ation and report results over 4 folds of random trainingelalon splits.
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Table 4: IND detection on UT-Zap50K (F1 scores).
Open Pointy Sporty ComfaéAll Attributes

Margin||48.95 67.48 66.93 57.09 60.11+ 1.89
Logistic||10.49 62.95 63.04 45.7¢ 45.56+ 4.13
SVM||48.82 50.97 47.60 40.12 46.88+ 5.73
M. Shift||54.14 58.23 60.7661.60(| 58.68+ 8.01
Ours||62.02 69.45 68.8954.63|| 63.75+ 3.02

Table 5: IND detection on LFW-10 (F1 scores). NaN occurs wheall=0 and precision=inf.

Bald DarkHair BigEyes GdLook Masc. Mouth Smile Teeth Forehed Young||All Attributes
Margin[[71.10  55.81 7416 61.36 82.38 62.89 60.56 65.26 67.4%4.20[[ 63.52+ 2.67
Logistic||{75.77 53.26 86.71 64.27 87.29 63.41 59.66 64.83 75.00 abB.02+ 1.84
SVM|([79.06 32.43 89.70 70.98 87.35 70.27 55.01 39.09 79.74 aBD.36+ 9.81
M. Shift[|66.37 56.69 5450 51.29 69.73 68.38 61.34 65.73 73.99 5912+ 10.51
Ourg[[81.75 69.03 89.59 75.79 89.86 72.69 73.30 74.80 80.482.89][| 74.02+ 1.66

[N

5.2.2 Just Noticeable Difference Detection

We evaluate just noticeable difference detection accufacgll methods on both
datasets. Figure 12 shows the precision-recall curves & &urves, where we
pool the results from all 4 and 10 attributes in UT-Zap50K &RkdV-10, respec-
tively. Tables 4 and 5 report the summary Fl-scores and atdrdkviations for
each individual attribute. The F1-score is a useful sumrstatystic for our data due
to the unbalanced nature of the test set: 25% of the shoegrair80% of the face
pairs are indistinguishable for some attribute.

Overall, our method outperforms all baselines. We obtaieadile gains—roughly
4-18% on UT-Zap50K and 10-15% on LFW-10. This clearly deni@nss the ad-
vantages of our local learning approach, which accountthfnon-uniformity of
attribute space. The “global approaches”, Rank Margin amgidtic Classifier, re-
veal that a uniform mapping of the relative attribute prédits is insufficient. In
spite of the fact that they include equal pairs during tragnsimply assigning simi-
lar scores to indistinguishable pairs is inadequate. The#akness is likely due both
to noise in those mid-level predictions as well as the eristeof IND regions that
vary in scale. Furthermore, the results show that even fallatging, realistic im-
age data, we can identify just noticeable differences agh precision and recall,
up to nearly 90% in some cases.

The SVM baseline is much weaker than our approach, indigdtiat discrim-
inatively learning what indistinguishable image pairskdi&e is insufficient. This
result underscores the difficulty of learning subtle défeces in a high-dimensional
image descriptor space, and supports our use of the comgactspace for our
likelihood model.

Looking at the per-attribute results (Tables 4 and 5), wels&esour method also
outperforms the Mean Shift baseline. While Mean Shift ceggwlominant clusters
in the spectrum of predicted attribute ranks for certainitattes, for others (like
pointy or masculing we find that the distribution of output predictions are more

7 We also implemented other encoding variants, such as takimglifference of the image de-
scriptors or using the predicted attribute scdRegx;) as features, and they performed similarly
or worse.
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Fig. 13: Example predictions. The top four rows are pairsmathod correctly classifies as indis-
tinguishable (left panel) and distinguishable (right ganehereas the Rank Margin baseline fails.
Each row shows pairs for a particular attribute. The bottomshows failure cases by our method,;
i.e., the bottom left pair is indistinguishable for poirgss, but we predict distinguishable.

P(D = 0lxp, xy) > P(D = 1], Xn) P(D = 0lxp, x) < P(D = 1x, %5)
Indistinguishable Distinguishable

Fig. 14: Example just noticeable differences. In each row,take leftmost image as a starting
point, then walk through nearest neighbors in relativelatte space until we hit an image that is
distinguishable, as predicted by our method. For examplew 2, our method finds the left block
of images to be indistinguishable feportinessit flags the transition from the flat dress shoe to
the pink “loafer-like sneaker” as being a noticeable défere.

evenly spread. Despite the fact that the rankers are omhiz minimize margins
for equal pairs, simple post-processing of their outpuisasiequate.

We also see that that our method is nearly always best, ef@epto attributes:
comfortin UT-Zap50K andyoungin LFW-10. Of the shoe attributespmfortis
perhaps the most subjective; we suspect that all methodhmagysuffered due to
label noise for that attribute. Whilgoungwould not appear to be subjective, it is
clearly a more difficult attribute to learn. This makes ser@seyouth would be a
function of multiple subtle visual cues like face shapengkiture, hair color, etc.,
whereas something likealdnessor smilinghas a better visual focus captured well
by the part features of [47]. Indeed, upon inspection we firad the likelihoods
insufficiently separate the equal and distinguishablesp&or similar reasons, the
Logistic Classifier baseline [32] fails dramatically on bhopenandyoung

Figure 13 shows qualitative prediction examples. Here veete subtleties of
JND. Whereas past methods would be artificially forced toe@remkomparison for
the left panel of image pairs, our method declares themtindisishable. Pairs may
look very different overall (e.g., different hair, race gagear) yet still be indistin-
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“Something similarly streamlined like this!”

Fig. 15: The modified WhittleSearch framework. The user cam @xpress an “equality” feedback,
speeding up the process of finding his envisioned target.

guishablein the context of a specific attributdleanwhile, those that are distin-
guishable (right panel) may have only subtle differences.

Figure 14 illustrates examples of just noticeable diffeeefirajectories” com-
puted by our method. We see how our method can correctly grétht various
instances are indistinguishable, even though the raw image be quite diverse
(e.g., a strappy sandal and a flat dress shoe are ecppaliy). Similarly, it can de-
tect a difference even when the image pair is fairly simi&ag(, a lace-up sneaker
and smooth-front sneaker are distinguishableojpennesgven though the shapes
are close).

Figure 16 displays 2D t-SNE [40] embeddings for a subset@®shoe images
based on the original image feature space and our learndolisgtspace for the
attributepointy. To compute the embeddings for our method, we representigach
agex; by its posterior probabilities of being indistinguishatdesvery other image.
i.e.v(x;) = [P(D = 0|x,x1),P(D = 0|x,X2),...,P(D = 0Jx,%ny)] whereN is the total
number of images in the embedding. We see that while the fgpnoeluces a rather
evenly distributed mapping without distinct structurds tatter produces a map-
ping containing unique structures along with “pockets’rafistinguishable images.
Such structures precisely reflect the non-uniformity wenfes out in Figure 10.

5.2.3 Image Search Application

Finally, we demonstrate how JND detection can enhance agdrsearch applica-
tion. Specifically, we incorporate our model into the WieiBkarch framework of
Kovashka et al. [34], overviewed in Chapter XXXXX of this BodVhittleSearch
is an interactive method that allows a user to provide radadittribute feedback,
e.g., by telling the system that he wants images “nsp@ty’ than some reference
image. The method works by intersecting the relative attélzonstraints, scoring
database images by how many constraints they satisfy, feplaying the top scor-
ing images for the user to review. See [34] for detalils.

We augment that pipeline such that the user can express hotroore/less”
preferences, but also “equal” preferences (Fig. 15). Fampte, the user can now
say, ‘| want images that are equaliportyas imagex.” Intuitively, enriching the
feedback in this manner should help the user more quickly reon relevant im-
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Fig. 16: t-SNE visualization of the original feature spat®p) and our learned attribute space
(bottom) for the attribut@ointy. Shoes with similar level gbointinessare placed closer together
in our learned space, forming loose “pockets” of indistiisgability. Best viewed on PDF.
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Fig. 17: Image search results. We enhance an existinguelatiribute search technique called
WhittleSearch [34] with our JND detection model. The rasglisystem finds target images more
quickly (left) and produces a better overall ranking of tla¢atbase images (right).

ages that match his envisioned target. To test this idea, iwecnthe method and
experimental setup of [34] as closely as possible, inclydieir feedback genera-
tion simulator.

We evaluate a proof-of-conceptexperiment on UT-Zap50Kchis large enough
to allow us to sequester disjoint data splits for training method and performing
the searches (LFW-10 is too small). We select 200 imagesndbra to serve as
the mental targets a user wants to find in the database, aed/ees,000 images
for the database. The user is shown 16 reference images preksegs 8 feedback
constraints per iteration.

Figure 17 shows the results. Following [34], we measure éh@/ance rank of
the target as a function of feedback iterations (left, loigdvetter), as well as the
similarity of all top-ranked results compared to the tafgght, higher is better). We
see that INDs substantially bolster the search task. I, sheuser gets to the target
in fewer iterations because he has a more complete way tesxpis preferences—
andthe system understands what “equally” means in terms adlbatér perception.

6 Discussion

Our results show the promise of local models for addressmgrdrained visual
comparisons. We saw how concentrating on the most clos&etetraining in-
stances is valuable for isolating the precise visual festovesponsible for the subtle
distinctions. Our methods expand the viability of localrféag beyond traditional
classification tasks to include ranking. Furthermore, inéral step towards elim-
inating the assumption of locality as the only relevantdadan local learning, we
introduced a novel approach to learn the composition aredafithe most effective
neighborhood conditioned on the novel test input. Finallg, explored how local
statistical models can address the “just noticeable diffee” problem in attributes,
successfully accounting for the non-uniformity of indigtuishable pairs in the fea-
ture space.

There are several interesting considerations worthy dfiéurdiscussion and new
research.

While global rankers produce comparable values for allgass, our local rank-
ing method’s predictions (Sect. 4) are test-pair specifiis Ts exactly what helps
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accuracy for subtle, fine-grained comparisons, and, to sextent, mitigates the
impact of inconsistent training comparisons. Howeverpims applications, it may
be necessary to produce a full ordering of many images. lirctise, one could try
feeding our method’s predictions to a rank aggregationrtiegte [12], or apply a
second layer of learning to normalize them, as in [11, 14, 38]

One might wonder if we could do as well by training one glolaailking function
per category—i.e., one for high heels, one for sneakersTéis would be another
local learning strategy, but it appears much too restecthirst of all, it would
require category-labeled examples (in addition to the rings P_4), which may
be expensive to obtain or simply not apropos for data lackiegr-cut category
boundaries (e.g., is the storefrontimage an “inside cignst or a “street scene”?).
Furthermore, it would not permit cross-category comparfgedictions; we want to
be able to predict how images from different categories ammn their attributes,
too.

As discussed in Section 4.4.4, straightforward implententa of lazy local
learning come with noticeable runtime costs. In our apgnptae main online costs
are nearest neighbor search and rank function trainingléAgtill only seconds
per test case, as larger labeled datasets become avalilabéedosts would need to
be countered with more sophisticated (and possibly apprate) nearest neighbor
search data structures, such as hashing or kd-trees. And#iaels to cache a set of
representative models, pre-computing offline a model fehgaototypical type of
new input pair. Such an implementation could also be donehirei@rchical way,
letting the system discover a fine-grained model in a coarfiae manner.

An alternative approach to represent partial orders (amsldkcommodate indis-
tinguishable pairs) would be ordinal regression, wheraitng data would consist
of ordered equivalence classes of data. However, ordigegssion has severe short-
comings for our problem setting. First, it requires a camsisordering of all train-
ing data (via the equivalence classes). This is less coemefar human annotators
and more challenging to scale than the distributed approtieted by learning-to-
rank, which pools any available paired comparisons. Foil@imeasons, learning-
to-rank is much better suited to crowdsourcing annotatarslearning universal
(as opposed to person-specific [1, 10]) predictors. Finaliginal regression re-
quires committing to a fixed number of buckets. This makesimental supervision
updates problematic. Furthermore, to represent veryedifferences, the number
of buckets would need to be quite large.

Our work offers a way to learn a computational model for justiceable differ-
ences. While we borrow the term JND from psychophysics tavatet our task, of
course the analogy is not 100% faithful. In particular, geyghysical experiments to
elicit IND often permit systematically varying a percepgignal until a human de-
tects a change, e.g., a color light source, a sound wave taiaglior a compression
factor. In contrast, the space of all visual attribute instgions does not permit such
a simple generative sampling. Instead, our method extasg®from relatively few
human-provided comparisons (fewer than 1,000 per at&ibubur experiments)
to obtain a statistical model for distinguishability, whigeneralizes to novel pairs
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based on their visual properties. It remains interestinigréuwork to explore the
possibility of generative models for comparative attrébrelationships.

Just noticeable difference models—and fine-grained ate&in general—appear
most relevant focategory-specifiattributes. Within a category domain (e.g., faces,
cars, handbags, etc.), attributes describe fine-grairmgzbpties, and it is valuable to
represent any perceptible differences (or realize thexeane). In contrast, com-
parative questions about very unrelated things or extraaio attributes can be
nonsensical. For example, do we need to model whether thes stral the table are
equally ornat® or whether the dog or the towelnsore fluffy? Accordingly, we fo-
cused our experiments on domains with rich vocabulariesmefdirained attributes,
faces and shoes.

Finally, we note that fine-grained differences, as address¢his chapter, are a
separate problem frosubjectiveattributes. That is, our methods address the prob-
lem where there may be a subtle distinction, yet the distnés non-controversial.
Other work considers ways in which to personalize attributedels [31, 33] or
discover which are subjective properties [13]. It would bieiesting to investigate
problems where both subjectivity and fine-grained distim interact.

7 Conclusion

Fine-grained visual comparisons have many compellingegumns, yet traditional
global learning methods can fail to capture their subtieti&e proposed several
local learning-to-rank approaches based on analogougtgagtomparisons, and we
introduced a new dataset specialized to the problem. Onpteuitttribute datasets,
we find our ideas improve the state-of-the-art.
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