
Attributes as Operators
(Supplementary Material)

This document consists of supplementary material to support the main paper text.
The contents include:

– Further analysis of the problems with the closed world setting (from Section 4.2 in
the main paper) in the context of the MIT-States dataset.

– Architecture details of our LABELEMBED+ baseline model proposed in Section.
4.1 (Baselines) of the main paper.

– Variants of baseline models that add our proposed auxiliary regularizer (from Sec-
tion 3.3).

– TSNE visualization of the joint semantic space described in Section 3.1 learned by
our method.

– Our procedure to obtain the subset of UT-Zappos50K described in Section 4.1
(Datasets) of the main paper.

– Additional training details including hyper-parameter selection for all experiments
in Section 4.2 of the main paper.

– Additional qualitative examples for retrieval on ImageNet from Section 4.3 of the
main paper.

Attribute Affordances: Open vs. Closed world

As discussed in Section 4.2 of the main paper, recognition in the closed world setting is
considerably easier than in the open world setting due to the reduced search space for
attribute-object pairs.

Figure 1 highlights this difference for the MIT-States dataset. In the open world set-
ting, each object would have many potential candidates for compositions (red region),
but in the closed world case (blue region), this shrinks to a fraction of compositions.
Overall this translates to a 2.8× higher chance of randomly picking the correct com-
position in the closed world. To make things worse, about 14% of the objects occur in
the test set compositions that are dominated by a single attribute. For example, “tiger”
affords 2 attributes, but one of those occurs in a single image, leaving old tiger as the
only relevant composition. A model with poor attribute recognition abilities can still get
away with a high accuracy in terms of the “closed world” setting as a result, giving a
false sense of performance.

Previous work has focused only on the closed world setting, and as a result, com-
promised on the ability to perform well in the open world (Table 1 in the main text).
Our model performs similarly well in both settings, indicating that it does not become
dependent on the (artificially) simpler setting of the closed world.

LABELEMBED+ Details

In Section 4.1 (Baselines) of the main paper, we propose the LABELEMBED+ baseline
as an improved baseline model, improving the LABELEMBED baseline presented in
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Fig. 1: Attribute affordances for objects. The closed world setting is easier overall due to the re-
duced number of attribute choices per object. In addition, about 14% of the objects are dominated
by a single attribute affordance.

MIT-States UT-Zappos
closed open h-mean closed open h-mean

LabelEmbed+ (1) 14.9 5.8 8.3 36.1 5.3 9.2
LabelEmbed+ (2) 14.9 5.7 8.2 37.4 9.4 15.0
LabelEmbed+ (3) 14.3 5.3 7.7 37.6 7.7 12.8

Ours 12.0 11.4 11.7 38.1 29.7 33.4
Table 1: Model capacity of baseline methods. The LABELEMBED+ baseline model with in-
creasing model capacity (number of layers shown in brackets). Our model outperforms this base-
line regardless of how many layers are involved, suggesting that model capacity is not the limiting
factor.

the REDWINE paper by Misra et al. We present the details of the architecture of this
baseline here. We use a two layer feed-forward network. Specifically, we concatenate
the two primitive input representations of dimension D each, and pass it through a feed-
forward network with the configuration (linear-relu-linear) and output dimensions 2D
and D. Unlike REDWINE, we transform the image representation using a single linear
layer, followed by a ReLU non-linearity. We do this to allow some flexibility on the
side of the image representation (since we are not finetuning the network responsible
for generating the image features themselves).

Here we report additional experiments where we vary the number of layers for this
baseline (Table 1). We see that our model outperforms LABELEMBED+ regardless of
how many layers are used. This suggests that our improvements are a result of learning
a better composition model, and is not related to the network capacity of the baseline
model.
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Original Augmented Baselines
closed open h-mean closed open h-mean

REDWINE 12.5 3.1 5.0 12.7 3.2 5.1
LABELEMBED 13.4 3.3 5.3 12.2 3.1 4.9
LABELEMBED+ 14.9 5.7 8.2 8.1 7.4 7.7
OURS 12.0 11.4 11.7 12.0 11.4 11.7

Table 2: Baseline variants on MIT-States. The proposed auxiliary loss term, together with al-
lowing attribute and object representations to be optimized during training, can also help the
baselines learn a better composition model. Our complete model outperforms these baseline vari-
ants as well.

Baselines Variants

Next we include modifications to the baselines presented in Section 4.1 of the main pa-
per that are inspired by components of our own model. Specifically, we allow trainable
inputs and include the proposed auxiliary regularizer from Section 3.3.

Table 2 shows the results. The first column denotes the models as reported in the
main paper, while the second column shows the models with extra components from our
own model. Note that our model already includes these modifications, and we simply
repeat its results on the “augmented” side for clarity. REDWINE and LABELEMBED
are not severely affected because of the way the composition is interpreted—as a set of
classifier weights. Extracting the attribute and object identity from classifier weights is
less meaningful compared to extracting them from a general composition embedding.
The auxiliary loss does however improve the embedding learning models. Our model
outperforms all augmented variants of the baselines as well.

Visualization of Composition Space

We visualize the common embedding space described in Section 3.1. Figure 2 con-
tains the 2D TSNE projection of the 300D space generated by our method. The black
points represent the embeddings of all unseen compositions in MIT-States. Each cluster
(squared) represents the span of a single attribute operator—i.e., the points in the vector-
space that it can reach by transforming object vectors. Our composition model main-
tains a clear separation between several attribute-object compositions, despite many
sharing the same object or attribute.

We also highlight three object superclasses, “fruit”, “scenes” and “clothing”, and
plot all the compositions they are involved in to show which parts of this subspace are
shared among different object classes. We see that common attributes like old and new
are shared by many objects of each superclass, while more specialized attributes like
caramelized for “fruit” are separated in this space.

UT-Zappos Subset Selection

As discussed in Section 4.1 (Datasets) of the main paper, we use a subset of the pub-
licly available UT-Zappos50K dataset in our experiments. The attributes and annota-
tions typically used in this dataset are relative attributes, which are not relevant for our
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Fig. 2: TSNE visualization of our common embedding space. The span of an attribute op-
erator represents the extent of its application to all objects that afford the attribute. Here each
cluster of black points represents a single attribute’s span. We see a strong separation between
compositions in this semantic space, despite these compositions sharing attributes or objects.
We highlight composition clusters for three common object superclasses, “fruit”, “scenes” and
“clothing”. Each colored ‘x’ corresponds to a single composition involving an object from the
respective superclass. For example, a blue ‘x’ is a composition of the form (attr, fruit) where attr
is one of (peeled, diced, etc.) and fruit is one of (apple, banana, etc.).

experiments and are not applicable for comparisons to existing work. However, it also
contains labels for binary material attributes that are relevant for our experiments.

Here we describe the process for generating the subset of UT-Zappos50K that we
use in our experiments. These images have top level object categories of shoe type
(e.g., high heel, sandal, sneaker) as well as finer-grained shoe-type labels (e.g., ankle
boots, knee-high boots for the top-level boots category). We merge object categories that
have fewer than 200 images per category into a single class (e.g., all slippers are consid-
ered as one class), and discard the sub-classes that do not meet this threshold amount.
We then discard all the images that do not have annotations for material attributes of
shoes (e.g., leather, sheepskin, rubber), which leaves us with ∼33K images. We ran-
domly split this set of images into training and testing sets based on their attribute-object
compositions. Our subset contains 116 compositions, over 16 attribute classes and 12
object classes.

Additional Training Details

We provide additional details to accompany Section 4.1 (Implementation Details) in the
main paper. For our combined loss function, we take a weighted sum of all the losses,
and select the weights using a validation set. We create this set for both our datasets by
holding out a disjoint subset of 20% of the training pairs.

– For MIT-States, we train all models for 800 epochs. We set the weight of the auxil-
iary loss Laux to 1000 for our model.
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Fig. 3: Retrieval results on ImageNet images. Text queries of unseen compositions with top-10
image retrievals shown alongside. Note that the compositions are learned from a disjoint set of
compositions on a disjoint dataset (MIT-States), then used to issue queries for images in Ima-
geNet.

– For UT-Zappos, we train all models for 1000 epochs. We weight all regularizers
equally.

The weight for Laux is substantially higher for MIT-States, which may be neces-
sitated by the low volume of training data per composition. On both datasets, we train
our models with a learning rate of 1e− 4 and a batch size of 512.

Additional Qualitative Examples

Next we show additional qualitative examples from Section 4.3 for the unseen composi-
tions. Figure 3 shows retrieval results on a diverse set of images from ImageNet, where
object and attribute categories do not directly align with MIT-States. These examples
are computed and displayed in the same manner as Figure 4 in the main paper.




