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Abstract

The appearance of an attribute can vary considerably
from class to class, causing standard class-independent at-
tribute models to break down. Yet, training object-specific
models for each attribute is impractical, and defeats the
purpose of using attributes to bridge category boundaries.
We propose a novel form of transfer learning that addresses
this dilemma. Given a sparse set of class-specific attribute
classifiers, our tensor factorization approach can infer new
ones for object-attribute pairs unobserved during training.
We apply our idea to learn over 25,000 analogous attribute
classifiers on SUN and ImageNet.1

1. Introduction

Attributes are visual properties that describe objects or
scenes, such as “fluffy” or “formal”. A major appeal of
attributes is the fact that they appear across category bound-
aries. But are attributes really category-independent? Does
fluffiness on a dog look the same as fluffiness on a towel?
While the linguistic semantics are preserved across cate-
gories, the visual appearance of the property may be trans-
formed to some degree. This suggests that the standard ap-
proach [1, 2, 4, 3]—pooling training images from any cat-
egory and learning a discriminative classifier—will weaken
the learned model to account for the “least common denom-
inator” of the attribute’s appearance.

Taking the other extreme, one might attempt to learn
category-sensitive2 attribute classifiers, by gathering posi-
tive exemplar images for each category+attribute combina-
tion (e.g., separate sets of fluffy dog images, fluffy towel im-
ages). However, learning attributes in this manner is quite
costly in terms of annotations. In fact, even in the era of Big
Vision, the long-tailed distribution of object/scene/attribute
occurrences in the real world means that some object-
attribute pairs will have inadequate exemplars to build a sta-
tistically sound model. Furthermore, naively training each
attribute in an object-specific manner would fail to leverage
the common semantics of attributes.

1Per the call for papers, we are submitting single-blind because this
work appears in the main conference at CVPR 2014.

2We use “category” to refer to either an object or scene class.
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Figure 1. Having learned a sparse set of object-specific attribute
classifiers, our approach infers analogous attribute classifiers. The
inferred models are object-sensitive, despite having no object-
specific labeled images of that attribute during training.

To resolve this problem, we propose a novel form of
transfer learning to infer analogous category-sensitive at-
tribute models. Intuitively, even though an attribute’s ap-
pearance may be specialized for a particular object, there
likely are latent variables connecting it to other objects’
manifestations of the property. So, having learned some
category-sensitive attributes, we aim to predict how the at-
tribute might look on a new object, even without labeled ex-
amples depicting that object with the attribute. See Fig. 1.

2. Approach: Main Idea
Given training images labeled by their category and at-

tributes, our method produces as output a series of category-
sensitive attribute classifiers. Some of those classifiers are
explicitly trained with the labeled data, while the rest are
“analogous” attributes inferred by our method using no ad-
ditional training images.

For each attribute for which we do have category-specific
labeled examples, we train an importance-weighted support
vector machine (SVM). It uses images from all categories,
but places a higher penalty on violating attribute label con-
straints for the specified category. Only a fraction of possi-
ble attributes can be explicitly trained in this manner—for
example, only ∼25% for ImageNet or SUN.

Next we define a tensor to capture the structure underly-
ing many such category-sensitive models. Let m index the
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Trained explicitly Trained via transfer
Category-sens. Universal Inferred Adopt One-shot

ImageNet 0.7589 0.7037 0.7428 0.6194 0.6309
SUN 0.6505 0.6343 0.6429 N/A N/A

Table 1. mAP accuracy for thousands of attribute models.

M attributes in the vocabulary, let n index the N possible
object/scene categories, and let D be the image descriptor
dimensionality. Let w(n,m) denote a category-sensitive
linear SVM weight vector trained for the n-th object and
m-th attribute. We construct a tensor W ∈ �N×M×D

using all available category-sensitive models. Each entry
wd

nm contains the value of the d-th dimension of the classi-
fier w(n,m). The resulting tensor is quite sparse; we can
only fill entries for which we have class-specific positive
and negative training examples for the attribute of interest.

Rather than resort to universal models for the “missing”
combinations, we propose to use the latent factors for the
observed classifiers to synthesize analogous models for the
unobserved classifiers. Let O ∈ �K×N , A ∈ �K×M ,
and C ∈ �K×D denote matrices whose columns are the
K-dimensional latent feature vectors for each object, at-
tribute, and classifier dimension, respectively, discovered
with Bayesian tensor factorization [5]. These factors af-
fect how the various attributes, objects, and image de-
scriptors covary (e.g., one might capture how “spots” ap-
pear on something “flat” vs. how they appear on some-
thing “bumpy”). We suppose that an analogous attribute
w(n,m) can be expressed as an inner product of latent fac-
tors: wd

nm ≈ 〈On, Am, Cd〉. In this way, we infer how an
attribute will look for another object category that lacks any
images labeled for that attribute.

3. Example Experimental Results
We evaluate our approach on ImageNet [4](384 object

categories and 25 attributes) and SUN Attributes [3](280
categories and 59 attributes) and use standard GIST, color,
SIFT descriptors. See our CVPR 2014 paper for all details.

First we test whether category-sensitive attributes are
even beneficial. We explicitly train 1,498 and 6,118
category-sensitive attribute classifiers for ImageNet and
SUN, respectively, and compare them to the standard uni-
versal class-independent approach. Both models have ac-
cess to the exact same set of images in training and test-
ing. Table 1 (cols 2 and 3) indicates it is indeed worth-
while to tailor attributes to specific categories when pos-
sible. Category-sensitive models surpass universal ones in
76% of the cases, with average increases of 0.15 in AP.

We stress that the explicit models (above) are impossible
to train for 18K of the ∼26K possible attributes in these
datasets. This is where our method comes in. We infer
all remaining 18K attribute models with our method, in a
leave-one-out manner.
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Figure 2. Analogous attribute examples for ImageNet (top) and SUN (bot-
tom). Words above each neighbor indicate the 3 most similar attributes
(learned or inferred) between leftmost query category and its neighbor-
ing categories in latent space (not the image’s attribute prediction). Query
category:neighbor category = 1.Bottle: filter, syrup, bullshot, gerenuk.
2.Platypus: giraffe, ungulate, rorqual, patas. 3.Airplane cabin: aquarium,
boat deck, conference center, art studio. 4.Courtroom: cardroom, florist
shop, performance arena, beach house.

Table 1 (col 4) shows this key result, with comparisons
to standard transfer methods where applicable (cols 5 and
6). Our inferred analogous attributes are nearly as accu-
rate as the “upper bound” category-sensitive results, yet
use no category-specific labeled images. Critically, our in-
ferred models are more accurate than the status quo univer-
sal approach. We infer models for all missing attributes;
whereas the category-sensitive method would require 20 la-
beled examples per classifier—about 384K additional la-
beled images—to train those models, our method uses zero.

Fig. 2 illustrates how analogous attributes enable trans-
fer. We take a category j and identify its neighboring cat-
egories in the latent feature space. Then, for each neigh-
bor i, we sort its attribute classifiers (w(i, :), real or in-
ferred) by their maximal cosine similarity to any of category
j’s attributes w(j, :). The resulting shortlist shows which
attribute+category pairs our method expects to transfer to
category j. We show 4 examples, with one representative
image for each category. Neighboring categories in the la-
tent space are often semantically related (e.g., syrup/bottle)
or visually similar (e.g., airplane cabin/conference center).
Our method receives no explicit side information on seman-
tic distance, yet it discovers such ties via the observed at-
tribute classifiers. Some semantically more distant neigh-
bors (e.g., platypus/rorqual, courtroom/cardroom) are also
amenable to transfer.
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