

Zero-shot recognition with unreliable attributes

Dinesh Jayaraman and Kristen Grauman **UT** Austin

Zero-shot category recognition with attributes

Given: attribute classifiers, category-attribute signatures

How to identify a band-tailed pigeon:

Attribute signature:

- ✓ White collar
- ✓ Yellow feet
- ✓ Yellow bill
- Red breast

The catch: unreliable attribute classifiers

Training positives ("blue back")

Problem 2: unseen categories

Prior approaches: ignore unreliability

Given:

Ground truth attributes

Ground truth objects

Object

Object

predictions

based on category-attribute signatures

Standard framework (e.g., Direct Attribute Prediction, Lampert '09):

same function Unreliable attribute predictions

predictions "soft" predictions e.g. MAP

Our key idea: account for unreliability

Approach overview

- Random forests trained on category-attribute signatures.
- Learning approach exploits attribute classifier ROC curves.
- Fractional samples to emulate estimated test distribution.
- Selected node splits are both discriminative and reliable.

Step 1: Train attribute classifiers

Train SVMs for M attribute classifiers on attribute-labeled data $\,\mathcal{D}_{T}\,$

Step 2: Build 1-vs-rest random forest for each category k Signature random forest: ignore attribute unreliability

Assuming ideal classifiers

To select at each node:

(attribute m, threshold t)

Category presence indicators:

$$I_r(k) = \begin{cases} 1, & \text{if } A_k(m) > t \text{ and } I_n(k) = 1 \\ 0, & \text{otherwise} \end{cases}$$
$$I_l(k) = 1 - I_r(k)$$

Information gain criterion:

$$H(p_{I_n}) - \left(\frac{\|I_l\|_1}{\|I_n\|_1}H(p_{I_l}) + \frac{\|I_r\|_1}{\|I_n\|_1}H(p_{I_r})\right)$$

Idea #1: Attribute ROC-guided fractional samples

Set aside 20% attribute-labeled data:

Measure attribute prediction error:

 $TPR(m,t) = true positive rate on \mathcal{D}_V$ $FPR(m, t) = false positive rate on \mathcal{D}_V$

Fractional sample propagation:

$$I'_r(k) = \begin{cases} I'_n(k) \times \text{TPR}(m, t), & \text{if } A_k(m) = 1\\ I'_n(k) \times \text{FPR}(m, t), & \text{if } A_k(m) = 0 \end{cases}$$
$$I'_l(k) = 1 - I'_r(k)$$

Idea #2: Node-specific attribute error statistics

- Validation data propagation: Node-specific attribute validation data models test distribution better: $\mathcal{D}_V \to \mathcal{D}_V(n)$
- Node-specific error rates: $TPR(m,t) \to TPR(n,m,t)$ etc.

Extensions

Few-shot learning: Information gain criterion redefined as weighted sum of zero-shot gain and standard gain: $IG_{few}(m,t) = \lambda \, IG_{zero}(m,t) \{A_1, \dots, A_K\} + (1-\lambda) \, IG_{basic}(m,t) \{\mathcal{D}_T\}$

Unreliability in category-attribute signatures: handled with an extra probability term in child node indicator vector definition.

Experiments

Synthetic unreliable classifier predictions:

Gains from (1) reliable attribute selection, (2) modeling unreliability

Real datasets:

AwA (animals)

aPY (objects)

SUN (scenes)

Dataset details:

-			
	AwA	aPY	SUN
# attributes	85	65	102
# unseen cls	10	12	10
# seen cls	40	20	707
# images	30475	15339	14340

Comparison to prior art (AwA):

Method	Accuracy
Lampert, CVPR '09	40.5
Yu, ECCV '10	40.0
Rohrbach, CVPR'10	35.7
Kankuekul, CVPR '12	32.7
Yu, CVPR '13	48.3
OURS (named attributes)	43.0 ± 0.07
OURS (discovered attributes)	$\textbf{48.7}\pm\textbf{0.09}$

Quantifying attribute prediction unreliability even more important than training better attribute predictors!

Ablation studies

Method/Dataset	AwA	aPY	SUN
DAP	40.50	18.12	52.50
SIGNATURE-RF	36.65 ± 0.16	12.70 ± 0.38	13.20 ± 0.34
OURS W/O ROC PROP, SIG UNCERTAINTY	39.97 ± 0.09	24.25 ± 0.18	47.46 ± 0.29
OURS W/O SIG UNCERTAINTY	41.88 ± 0.08	24.79 ± 0.11	56.18 ± 0.27
OURS	$\textbf{43.01} \pm \textbf{0.07}$	26.02 ± 0.05	56.18 ± 0.27
OURS+TRUE ROC	54.22 ± 0.03	33.54 ± 0.07	66.65 ± 0.31

Each component contributes significantly to overall gain

Few-shot learning results

Our method builds strong priors for knowledge transfer