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Abstract

In visual recognition problems, the common data distribution mismatches between
training and testing make domain adaptation essential. However, image data is
difficult to manually divide into the discrete domains required by adaptation al-
gorithms, and the standard practice of equating datasets with domains is a weak
proxy for all the real conditions that alter the statistics in complex ways (lighting,
pose, background, resolution, etc.) We propose an approach to automatically dis-
cover latent domains in image or video datasets. Our formulation imposes two key
properties on domains: maximum distinctiveness and maximum learnability. By
maximum distinctiveness, we require the underlying distributions of the identified
domains to be different from each other to the maximum extent; by maximum
learnability, we ensure that a strong discriminative model can be learned from the
domain. We devise a nonparametric formulation and efficient optimization pro-
cedure that can successfully discover domains among both training and test data.
We extensively evaluate our approach on object recognition and human activity
recognition tasks.

1 Introduction

A domain refers to an underlying data distribution. Generally, there are two: the one with which
classifiers are trained, and the other to which classifiers are applied. While many learning algorithms
assume the two are the same, in real-world applications, the distributions are often mismatched,
causing significant performance degradation when the classifiers are applied. Domain adaptation
techniques are crucial in building robust classifiers to address mismatched new and unexpected
target environments. As such, the subject has been intensively studied in computer vision [1, 2, 3, 4],
speech and language processing [5, 6], and statistics and learning [7, 8, 9, 10].

While domain adaptation research largely focuses on how adaptation should proceed, there are also
vital questions concerning the domains themselves: what exactly is a domain composed of? and
how are domains different from each other? For some applications, the answers come naturally.
For example, in speech recognition, we can organize data into speaker-specific domains where each
domain contains a single speaker’s utterances. In language processing, we can organize text data
into language-specific domains. For those types of data, we can neatly categorize each instance
with a discrete set of semantically meaningful properties; a domain is thus naturally composed of
instances of the same (subset of) properties.

For visual recognition, however, the same is not possible. In addition to large intra-category ap-
pearance variations, images and video of objects (or scenes, attributes, activities, etc.) are also
significantly affected by many extraneous factors such as pose, illumination, occlusion, camera res-
olution, and background. Many of these factors simply do not naturally lend themselves to deriving
discrete domains. Furthermore, the factors overlap and interact in images in complex ways. In fact,
even coming up with a comprehensive set of such properties is a daunting task in its own right—not
to mention automatically detecting them in images!
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Partially due to these conceptual and practical constraints, datasets for visual recognition are not
deliberately collected with clearly identifiable domains [11, 12, 13, 14, 15]. Instead, standard im-
age/video collection is a product of trying to ensure coverage of the target category labels on one
hand, and managing resource availability on the other. As a result, a troubling practice in visual do-
main adaptation research is to equate datasets with domains and study the problem of cross-dataset
generalization or correcting dataset bias [16, 17, 18, 19].

One pitfall of this ad hoc practice is that a dataset could be an agglomeration of several distinctive
domains. Thus, modeling the dataset as a single domain would necessarily blend the distinctions,
potentially damaging visual discrimination. Consider the following human action recognition task,
which is also studied empirically in this work. Suppose we have a training set containing videos of
multiple subjects taken at view angles of 30◦ and 90◦, respectively. Unaware of the distinction of
these two views of videos, a model for the training set as a single training domain needs to account
for both inter-subject and inter-view variations. Presumably, applying the model to recognizing
videos taken at view angle of 45◦ (i.e., from the test domain) would be less effective than applying
models accounting for the two view angles separately, i.e., modeling inter-subject variations only.

How can we avoid such pitfalls? More specifically, how can we form characteristic domains, with-
out resorting to the hopeless task of manually defining properties along which to organize them?
We propose novel learning methods to automatically reshape datasets into domains. This is a chal-
lenging unsupervised learning problem. At the surface, we are not given any information about
the domains that the datasets contain, such as the statistical properties of the domains, or even the
number of domains. Furthermore, the challenge cannot be construed as a traditional clustering prob-
lem; simply clustering images by their appearance is prone to reshaping datasets into per-category
domains, as observed in [20] and our own empirical studies. Moreover, there may be many com-
plex factors behind the domains, making it difficult to model the domains with parametric mixture
models on which traditional clustering algorithms (e.g., Kmeans or Gaussian mixtures) are based.

Our key insights are two axiomatic properties that latent domains should possess: maximum dis-
tinctiveness and maximum learnability. By maximum distinctiveness, we identify domains that are
maximally different in distribution from each other. This ensures domains are characteristic in terms
of their large inter-domain variations. By maximum learnability, we identify domains from which
we can derive strong discriminative models to apply to new testing data.

In section 2, we describe our learning methods for extracting domains with these desirable prop-
erties. We derive nonparametric approaches to measure domain discrepancies and show how to
optimize them to arrive at maximum distinctiveness. We also show how to achieve maximum learn-
ability by monitoring an extracted domain’s discriminative learning performance, and we use that
property to automatically choose the number of latent domains. To our best knowledge, [20] is
the first and only work addressing latent domain discovery. We postpone a detailed discussion and
comparison to their method to section 3, after we have described our own.

In section 4, we demonstrate the effectiveness of our approach on several domain adaptation tasks for
object recognition and human activity recognition. We show that we achieve far better classification
results using adapted classifiers learned on the discovered domains. We conclude in section 5.

2 Proposed approach

We assume that we have access to one or more annotated datasets with a total of M data instances.
The data instances are in the form of (xm, ym) where xm ∈ RD is the feature vector and ym ∈ [C]
the corresponding label out of C categories. Moreover, we assume that each data instance comes
from a latent domain zm ∈ [K] where K is the number of domains.

In what follows, we start by describing our algorithm for inferring zm assuming K is known. Then
we describe how to infer K from the data.

2.1 Maximally distinctive domains

Given K, we denote the distributions of unknown domains Dk by Pk(x, y) for k ∈ [K]. We do not
impose any parametric form on Pk(·, ·). Instead, the marginal distribution Pk(x) is approximated
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by the empirical distribution P̂k(x)

P̂k(x) =
1

Mk

∑
m

δxmzmk,

where Mk is the number of data instances to be assigned to the domain k and δxm
is an atom at

xm. zmk ∈ {0, 1} is a binary indicator variable and takes the value of 1 when zm = k. Note that
Mk =

∑
m zmk and

∑
k Mk = M.

What kind of properties do we expect from P̂k(x)? Intuitively, we would like any two different
domains P̂k(x) and P̂k′(x) to be as distinctive as possible. In the context of modeling visual data,
this implies that intra-class variations between domains are often far more pronounced than inter-
class variations within the same domain. As a concrete example, consider the task of differentiating
commercial jetliners from fighter jets. While the two categories are easily distinguishable when
viewed from the same pose (frontal view, side view, etc.), there is a significant change in appearance
when either category undergoes a pose change. Clearly, defining domains by simply clustering the
images by appearance is insufficient; the inter-category and inter-pose variations will both contribute
to the clustering procedure and may lead to unreasonable clusters. Instead, to identify characteristic
domains, we need to look for divisions of the data that yield maximally distinctive distributions.

To quantify this intuition, we need a way to measure the difference in distributions. To this end, we
apply a kernel-based method to examine whether two samples are from the same distribution [21].
Concretely, let k(·, ·) denote a characteristic positive semidefinite kernel (such as the Gaussian ker-
nel). We compute the the difference between the means of two empirical distributions in the repro-
ducing kernel Hilbert space (RKHS)H induced by the kernel function,

d(k, k′) =

∥∥∥∥∥ 1

Mk

∑
m

k(·,xm)zmk −
1

M′k

∑
m

k(·,xm)zmk′

∥∥∥∥∥
2

H

(1)

where k(·,xm) is the image (or kernel-induced feature) of xm under the kernel. The measure
approaches zero as the number of samples tends to infinity, if and only if the two domains are the
same, Pk = Pk′ . We define the total domain distinctiveness (TDD) as the sum of this quantity over
all possible pairs of domains:

TDD(K) =
∑
k 6=k′

d(k, k′), (2)

and choose domain assignments for zm such that TDD is maximized. We first discuss this optimiza-
tion problem in its native formulation of integer programming, followed by a more computationally
convenient continuous optimization.

Optimization In addition to the binary constraints on zmk, we also enforce

K∑
k=1

zmk = 1, ∀m ∈ [M], and
1

Mk

M∑
m=1

zmkymc =
1

M

M∑
m=1

ymc, ∀ c ∈ [C], k ∈ [K] (3)

where ymc is a binary indicator variable, taking the value of 1 if ym = c.

The first constraint stipulates that every instance will be assigned to one domain and one domain
only. The second constraint, which we refer to as the label prior constraint (LPC), requires that
within each domain, the class labels are distributed according to the prior distribution (of the labels),
estimated empirically from the labeled data.

LPC does not restrict the absolute numbers of instances of different labels in each domain. It only
reflects the intuition that in the process of data collection, the relative percentages of different classes
are approximately in accordance with a prior distribution that is independent of domains. For ex-
ample, in action recognition, if the “walking” category occurs relatively frequently in a domain
corresponding to brightly lit video, we also expect it to be frequent in the darker videos. Thus, when
data instances are re-arranged into latent domains, the same percentages are likely to be preserved.

The optimization problem is NP-hard due to the integer constraints. In the following, we relax it
into a continuous optimization, which is more accessible with off-the-shelf optimization packages.
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Relaxation We introduce new variables βmk = zmk/Mk, and relax them to live on the simplex

βk = (β1k, · · · , βMk)T ∈ ∆ =

{
βk : βmk ≥ 0,

M∑
m=1

βmk = 1

}
for k = 1, · · · ,K. With the new variables, our optimization problem becomes

max
β

∑
k 6=k′

TDD(K) =
∑
k 6=k′

(βk − βk′)TK(βk − βk′) (4)

s.t. 1/M ≤
∑
k

βmk ≤ 1/C, m = 1, 2, · · · ,M, (5)

(1− δ)/M
∑
m

ymc ≤
∑
m

βmkymc ≤ (1 + δ)/M
∑
m

ymc, c = 1, · · · ,C, k = 1, · · · ,K,

whereK is the M×M kernel matrix. The first constraint stems from the (default) requirement that
every domain should have at least one instance per category, namely, Mk ≥ C and every domain
should at most have M instances (Mk ≤ M). The second constraint is a relaxed version of the LPC,
allowing a small deviation from the prior distribution by setting δ = 1%. We assign xm to the
domain k for which βmk is the maximum of βm1, · · · , βmK.

This relaxed optimization problem is a maximization of convex quadratic function subject to linear
constraints. Though in general still NP-hard, this type of optimization problem has been studied
extensively and we have found existing solvers are adequate in yielding satisfactory solutions.

2.2 Maximally learnable domains: determining the number of domains

Given M instances, how many domains hide inside? Note that the total domain distinctiveness
TDD(K) increases as K increases — presumably, in the extreme case, each domain has only a few
instances and their distributions would be maximally different from each other. However, such tiny
domains would offer insufficient data to separate the categories of interest reliably.

To infer the optimal K, we appeal to maximum learnability, another desirable property we impose
on the identified domains. Specifically, for any identified domain, we would like the data instances it
contains to be adequate to build a strong classifier for labeled data — failing to do so would cripple
the domain’s adaptability to new test data.

Following this line of reasoning, we propose domain-wise cross-validation (DWCV) to identify the
optimal K. DWCV consists of the following steps. First, starting from K = 2, we use the method
described in the previous section to identify K domains. Second, for each identified domain, we
build discriminative classifiers, using the label information and evaluate them with cross-validation.
Denote the cross-validation accuracy for the k-th domain byAk. We then combine all the accuracies
with a weighted sum

A(K) = 1/M
K∑

k=1

MkAk.

For very large K such that each domain contains only a few examples, A(K) approaches the classi-
fication accuracy using the class prior probability to classify. Thus, starting at K = 2 (and assuming
A(2) is greater than the prior probability’s classification accuracy), we choose K∗ as the value that
attains the highest cross-validation accuracy: K∗ = arg maxKA(K). For N-fold cross-validation,
a practical bound for the largest K we need to examine is Kmax ≤ min{M/(NC),C}. Beyond this
bound it does not quite make sense to do cross-validation.

3 Related work

Domain adaptation is a fundamental research subject in statistical machine learning [9, 22, 23, 10],
and is also extensively studied in speech and language processing [5, 6, 8] and computer vision [1,
2, 3, 4, 24, 25]. Mostly these approaches are validated by adaptating between datasets, which, as
discussed above, do not necessarily correspond to well-defined domains.
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In our previous work, we proposed to identify some landmark data points in the source domain which
are distributed similarly to the target domain [26]. While that approach also slices the training set, it
differs in the objective. We discover the underlying domains of the training datasets, each of which
will be adaptable, whereas the landmarks in [26] are intentionally biased towards the single given
target domain. Hoffman et al.’s work [20] is the most relevant to ours. They also aim at discovering
the latent domains from datasets, by modeling the data with a hierarchical distribution consisting
of Gaussian mixtures. However, their explicit form of distribution may not be easily satisfiable
in real data. In contrast, we appeal to nonparametric methods, overcoming this limitation without
assuming any form of distribution. In addition, we examine the new scenario where the test set is
also composed of heterogeneous domains.

A generalized clustering approach by Jegelka et al. [27] shares the idea of maximum distinctive-
ness (or “discriminability” used in [27]) criterion with our approach. However, their focus is the
setting of unsupervised clustering where ours is domain discovery. As such, they adopt a different
regularization term from ours, which exploits labels in the datasets.

Multi-domain adaptation methods suppose that multiple source domains are given as input, and the
learner must adapt from (some of) them to do well in testing on a novel target domain [28, 29, 10].
In contrast, in the problem we tackle, the division of data into domains is not given—our algorithm
must discover the latent domains. After our approach slices the training data into multiple domains,
it is natural to apply multi-domain techniques to achieve good performance on a test domain. We
will present some related experiments in the next section.

4 Experimental Results

We validate our approach on visual object recognition and human activity recognition tasks. We
first describe our experimental settings, and then report the results of identifying latent domains
and using the identified domains for adapting classifiers to a new mono-domain test set. After that,
we present and report experimental results of reshaping heterogeneous test datasets into domains
matching to the identified training domains. Finally, we give some qualitative analyses and details
on choosing the number of domains.

4.1 Experimental setting

Data For object recognition, we use images from Caltech-256 (C) [14] and the image datasets of
Amazon (A), DSLR (D), and Webcam (W) provided by Saenko et al. [2]. There are total 10 common
categories among the 4 datasets. These images mainly differ in the data collection sources: Caltech-
256 was collected from webpages on the Internet, Amazon images from amazon.com, and DSLR
and Webcam images from an office environment. We represent images with bag-of-visual-words
descriptors following previous work on domain adaptation [2, 4]. In particular, we extract SURF
[30] features from the images, use K-means to build a codebook of 800 clusters, and finally obtain
an 800-bin histogram for each image.

For action recognition from video sequences, we use the IXMAS multi-view action dataset [15].
There are five views (Camera 0, 1, · · · , 4) of eleven actions in the dataset. Each action is performed
three times by twelve actors and is captured by the five cameras. We keep the first five actions
performed by alba, andreas, daniel, hedlena, julien, and nicolas such that the irregularly performed
actions [15] are excluded. In each view, 20 sequences are randomly selected per actor per action.
We use the shape-flow descriptors to characterize the motion of the actions [31].

Evaluation strategy The four image datasets are commonly used as distinctive domains in research
in visual domain adaptation [2, 3, 4, 32]. Likewise, each view in the IXMAS dataset is often taken
as a domain in action recognition [33, 34, 35, 24]. Similarly, in our experiments, we use a subset of
these datasets (views) as source domains for training classifiers and the rest of the datasets (views)
as target domains for testing. However, the key difference is that we do not compare performance of
different adaptation algorithms which assume domains are already given. Instead, we evaluate the
effectiveness of our approach by investigating whether its automatically identified domains improve
adaptation, that is, whether recognition accuracy on the target domains can be improved by reshaping
the datasets into their latent source domains.
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Table 1: Oracle recognition accuracy on target domains by adapting original or identified domains
S A, C D, W C, D, W Cam 0, 1 Cam 2, 3, 4
T D, W A, C A Cam 2, 3, 4 Cam 0, 1

GORIG 41.0 32.6 41.8 44.6 47.1
GOTHER [20] 39.5 33.7 34.6 43.9 45.1
GOURS 42.6 35.5 44.6 47.3 50.3

Table 2: Adaptation recognition accuracies, using original and identified domains with different
multi-source adaptation methods

Latent Multi-DA A, C D, W C, D, W Cam 0, 1 Cam 2, 3, 4
Domains method D, W A, C A Cam 2, 3, 4 Cam 0, 1

ORIGINAL UNION 41.7 35.8 41.0 45.1 47.8

[20] ENSEMBLE 31.7 34.4 38.9 43.3 29.6
MATCHING 39.6 34.0 34.6 43.2 45.2

OURS
ENSEMBLE 38.7 35.8 42.8 45.0 40.5
MATCHING 42.6 35.5 44.6 47.3 50.3

We use the geodesic flow kernel for adapting classifiers [4]. To use the kernel-based method for
computing distribution difference, we use Gaussian kernels, cf. section 2. We set the kernel band-
width to be twice the median distances of all pairwise data points. The number of latent domains K
is determined by the DWCV procedure (cf. section 2.2).

4.2 Identifying latent domains from training datasets

Notation Let S = {S1,S2, . . . ,SJ} denote the J datasets we will be using as training source datasets
and let T = {T1, T2, . . . , TL} denote the L datasets we will be using as testing target datasets.
Furthermore, let K denote the number of optimal domains discovered by our DWCV procedure and
U = {U1,U2, . . . ,UK} the K hidden domains identified by our approach. Let r(A → B) denote the
recognition accuracy on the target domain B with A as the source domain.

Goodness of the identified domains We examine whether {Uk} is a set of good domains by com-
puting the expected best possible accuracy of using the identified domains separately for adaptation

GOURS = EB∈P max
k

r(Uk,B) ≈ 1

L

∑
l

max
k

r(Uk → Tl) (6)

where B is a target domain drawn from a distribution on domains P . Since this distribution is not
obtainable, we approximate the expectation with the empirical average over the observed testing
datasets {Tl}. Likewise, we can define GORIG where we compute the best possible accuracy for the
original domains {Sj}, and GOTHER where we compute the same quantity for a competing method
for identifying latent domains, proposed in [20]. Note that the max operation requires that the target
domains be annotated; thus the accuracies are the most optimistic estimate for all methods, and
upper bounds of practical algorithms.

Table 1 reports the three quantities on different pairs of sources and target domains. Clearly, our
method yields a better set of identified domains, which are always better than the original datasets.
We also experimented using Kmeans or random partition for clustering data instances into domains.
Neither yields competitive performance and the results are omitted here for brevity.

Practical utility of identified domains In practical applications of domain adaptation algorithms,
however, the target domains are not annotated. The oracle accuracies reported in Table 1 are thus not
achievable in general. In the following, we examine how closely the performance of the identified
domains can approximate the oracle if we employ multi-source adaptation.

To this end, we consider several choices of multiple-source domain adaptation methods:

• UNION The most naive way is to combine all the source domains into a single dataset and
adapt from this “mega” domain to the target domains. We use this as a baseline.
• ENSEMBLE A more sophisticated strategy is to adapt each source domain to the target do-

main and combine the adaptation results in the form of combining multiple classifiers [20].
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Table 3: Results of reshaping the test set when it consists of data from multiple domains.
From identified (Reshaping training only) No reshaping Conditional reshaping
A′ → F B′ → F C′ → F A

⋃
B

⋃
C → F X → FX , ∀X ∈ {A′, B′, C′}

Cam 012 36.4 37.1 37.7 37.3 38.5
Cam 123 40.4 38.7 39.6 39.9 41.1
Cam 234 46.5 45.7 46.1 47.8 49.2
Cam 340 50.7 50.6 50.5 52.3 54.9
Cam 401 43.6 41.8 43.9 43.3 44.8

• MATCHING This strategy compares the empirical (marginal) distribution of the source
domains and the target domains and selects the single source domain that has the smallest
difference to the target domain to adapt. We use the kernel-based method to compare
distributions, as explained in section 2. Note that since we compare only the marginal
distributions, we do not require the target domains to be annotated.

Table 2 reports the averaged recognition accuracies on the target domains, using either the original
datasets/domains or the identified domains as the source domains. The latent domains identified
by our method generally perform well, especially using MATCHING to select the single best source
domain to match the target domain for adaptation. In fact, contrasting Table 2 to Table 1, the
MATCHING strategy for adaptation is able to match the oracle accuracies, even though the matching
process does not use label information from the target domains.

4.3 Reshaping the test datasets

So far we have been concentrating on reshaping multiple annotated datasets (for training classifiers)
into domains for adapting to test datasets. However, test datasets can also be made of multiple latent
domains. Hence, it is also instrumental to investigate whether we can reshape the test datasets into
multiple domains to achieve better adaptation results.

However, the reshaping process for test datasets has a critical difference from reshaping training
datasets. Specifically, we should reshape test datasets, conditioning on the identified domains from
the training datasets — the goal is to discover latent domains in the test datasets that match the
domains in the training datasets as much as possible. We term this conditional reshaping.

Computationally, conditional reshaping is more tractable than identifying latent domains from the
training datasets. Concretely, we minimize the distribution differences between the latent domains in
the test datasets and the domains in the training datasets, using the kernel-based measure explained in
section 2. The optimization problem, however, can be relaxed into a convex quadratic programming
problem. Details are in the Suppl. Material.

Table 3 demonstrates the benefit of conditionally reshaping the test datasets, on cross-view action
recognition. This problem inherently needs test set reshaping, since the person may be viewed from
any direction at test time. (In contrast, test sets for the object recognition datasets above are less
heterogeneous.) The first column shows five groups of training datasets, each being a different view,
denoted by A,B and C. In each group, the remaining views D and E are merged into a new test
dataset, denoted by F = D

⋃
E.

Two baselines are included: (1) adapting from the identified domains A′, B′ and C ′ to the merged
dataset F ; (2) adapting from the merged dataset A

⋃
B
⋃
C to F . These are contrasted to adapting

from the identified domains in the training datasets to the matched domains in F . In most groups,
there is a significant improvement in recognition accuracies by conditional reshaping over no re-
shaping on either training or testing, and reshaping on training only.

4.4 Analysis of identified domains and the optimal number of domains

It is also interesting to see which factors are dominant in the identified domains. Object appearance,
illumination, or background? Do they coincide with the factors controlled by the dataset collectors?

Some exemplar images are shown in Figure 1, where each row corresponds to an original dataset,
and each column is an identified domain across two datasets. On the left of Figure 1 we reshape
Amazon and Caltech-256 into two domains. In Domain II all the “laptop” images 1) are taken from
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Figure 1: Exemplar images from the original and identified domains after reshaping. Note that
identified domains contain images from both datasets.
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Figure 2: Domain-wise cross-validation (DWCV) for choosing the number of domains.

the front view and 2) have colorful screens, while Domain I images are less colorful and have more
diversified views. It looks like the domains in Amazon and Caltech-256 are mainly determined by
the factors of object pose and appearance (color).

The figures on the right are from reshaping DSLR and Webcam, of which the “keyboard” images
are taken in an office environment with various lighting, object poses, and background controlled
by the dataset creators [2]. We can see that the images in Domain II have gray background, while
in Domain I the background is either white or wooden. Besides, keyboards of the same model,
characterized by color and shape, are almost perfectly assigned to the same domain. In sum, the
main factors here are probably background and object appearance (color and shape).

Figure 2 plots some intermediate results of the domain-wise cross-validation (DWCV) for deter-
mining the number of domains K to identify from the multiple training datasets. In addition to the
DWCV accuracy A(K), the average classification accuracies on the target domain(s) are also in-
cluded for reference. We set A(K) to 0 when some categories in a domain are assigned with only
one or no data point (as a result of optimization). Generally, A(K) goes up and then drops at some
point, before which is the optimal K? we use in the experiments. Interestingly, the number favored
by DWCV coincides with the number of datasets we mix, even though, as our experiments above
show, the ideal domain boundaries do not coincide with the dataset boundaries.

5 Conclusion

We introduced two domain properties, maximum distinctiveness and maximum learnability, to dis-
cover latent domains from datasets. Accordingly, we proposed nonparametric approaches encour-
aging the extracted domains to satisfy these properties. Since in each domain visual discrimination
is more consistent than that in the heterogeneous datasets, better prediction performance can be
achieved on the target domain. The proposed approach is extensively evaluated on visual object
recognition and human activity recognition tasks. Our identified domains outperform not only the
original datasets but also the domains discovered by [20], validating the effectiveness of our ap-
proach. It may also shed light on dataset construction in the future by examining the main factors of
the domains discovered from the existing datasets.
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