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ABSTRACT
As it becomes increasingly viable to capture, store, and
share large amounts of image and video data, automatic
image analysis is crucial to managing visual information.
Many problems demand fast, accurate search of very large
databases of images, but often the most effective metrics for
image comparisons do not mesh well with known efficient
search methods. Specifically, useful image representations
use “structured” (non-vector) inputs that require specialized
distance functions to compare, and the best use of side in-
formation complementing the visual data itself (e.g., partial
annotations or tags) may require that a task-specific metric
be learned. This paper overviews our research developing
robust measures of image similarity intended to accommo-
date complex feature spaces and massive image databases.
In particular, we overview efficient strategies for metrics that
match local image features or learn from similarity con-
straints, and show how to perform sub-linear time search
with both resulting distance functions.1

1. INTRODUCTION
If a tree falls in the forest and no one is there to hear it, does
it make a sound? In the realm of content-based image re-
trieval, the question is: if an image is captured and recorded
but no one is there to annotate it, does it ever again make
an appearance? Over the last decade we have witnessed an
explosion in the number and throughput of imaging devices.
At the same time, advances in computer hardware and com-
munications have made it increasingly possible to capture,
store, and transmit image data at a low cost. Billions of
images and videos are hosted publicly on the web; cameras
embedded in mobile devices are commonplace. Climatolo-
gists compile large volumes of satellite imagery in search of
long-term trends that might elucidate glacial activity and
its impact on water supplies. Centralized medical image
databases archive terabytes of X-ray, CAT scans, and ultra-
sound images, which may assist in new diagnoses.

Image and video data are certainly rich with meaning, mem-
ories, or entertainment, and in some cases they can facilitate
communication or scientific discovery. However, without ef-
ficient vision algorithms to automatically analyze and index
visual data, their full value will remain latent—the ratio of
data to human attention is simply too large.

1This paper describes work done in collaboration with
Trevor Darrell, Prateek Jain, Brian Kulis, and Tuyen
Huynh, and summarizes ideas from several of our previous
publications [19, 21, 25, 26].
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Figure 1: Visual data is complex and often holds valu-

able information. Image-based search algorithms auto-

matically analyze and organize visual content, with the

goal of allowing efficient retrieval from large image or

video collections.

Most image search tools in operation today rely heavily on
keyword meta-tags, where an image or video is annotated
with a limited number of words that are either provided
manually, or else are taken from whatever text occurs nearby
in its containing document. While such a scheme simplifies
the image indexing task to one that well-known information
retrieval techniques can handle, it has serious shortcomings.
At the surface, accurate manual tags are clearly too expen-
sive to obtain on a large scale, and keywords in proximity
to an image are often irrelevant.

Even more problematic, however, is the semantic disconnect
between words and visual content: a word is a human con-
struct with a precise intent, whereas a natural image can
convey a multitude of concepts within its (say) million pix-
els, and any one may be more or less significant depending
on the context. For example, imagine querying a database
for all text documents containing the word “forest”. Now
imagine conjuring a text query that would find you all im-
ages relevant to the one on the left in Figure 1; while you
immediately have a visual concept, it may be difficult to
pinpoint words to capture it, especially if the objects within
the image are unfamiliar. Thus, even if we were to somehow
record keywords for all the images in the world, visual data
would still not be sufficiently accessible.

Content-based image search streamlines the process by sort-
ing images directly based on their visual information and
allowing images themselves to serve as queries. While early
work in the area focused on correlating low-level cues such
as color and texture [40, 13], more recently the image search



problem has become intertwined with the fundamental prob-
lem of recognition, in which algorithms must capture higher-
level notions of visual object and scene categories.

The technical challenges are considerable. Instances of the
same object category can generate drastically different im-
ages, depending on confounding variables such as illumina-
tion conditions, object pose, camera viewpoint, partial oc-
clusions, and unrelated background “clutter” (see Figure 2).
In general, the quality of image search relies significantly
on the chosen image representation and the distance metric
used to compare examples. Meanwhile, the complexity of
useful image representations combined with the sheer mag-
nitude of the search task immediately raises the practical
issue of scalability.

This paper overviews our recent work considering how to
construct robust measures of image similarity that can be
deployed efficiently, even for complex feature spaces and
massive image databases. We pose three essential techni-
cal questions: (1) what is an effective distance measure be-
tween images that can withstand the naturally occurring
variability among related examples? (2) when external cues
beyond observable image content are available, how can that
improve our comparisons? and (3) what kind of search strat-
egy will support fast queries with such image-driven metrics,
particularly when our database is so large that a linear scan
is infeasible? The following sections address each of these
issues in turn, and highlight some of our results to demon-
strate the impact with real image data.

Our approach enables rapid, scalable search for meaningful
metrics that were previously restricted to artificially mod-
estly sized inputs or databases. Additionally, we show how
minimal annotations can be exploited to learn how to com-
pare images more reliably. Both contributions support the
ultimate goal of harnessing the potential of very large repos-
itories and providing direct access to visual content.

2. COMPARING IMAGES WITH LOCAL
FEATURE MATCHES

Earlier work in content-based image retrieval focused on
global representations that describe each image with a single
vector of attributes, such as a color histogram, or an ordered
list of intensity values or filter responses. While vector rep-
resentations permit the direct application of standard dis-
tance functions and indexing structures, they are known to
be prohibitively sensitive to realistic image conditions. For
example, consider stacking the images in Figure 2 one on top
of the other, and then checking the intensity at any given
pixel for each example—it is quite likely that few of them
would be in agreement, even though each image contains a
koala as its most prominent object.

2.1 Local Image Representations
Much recent work shows that decomposing an image into
its component parts (or so-called “local features”) grants re-
silience to image transformations and variations in object
appearance [30, 41, 47, 10, 34, 7, 38, 43]. Typically, one
either takes a dense sample of regions at multiple scales, or
else uses an interest operator to identify the most salient
regions in an image. Possible salient points include pix-
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Figure 2: The same object type can generate dramati-

cally different images due to a variety of nuisance param-

eters (top), but local descriptions can offer substantial

robustness (bottom).

els marking high contrast (edges), or points selected for a
region’s repeatability at multiple scales (see [41] for a sur-
vey). Then, for each detected region, a feature descriptor
vector is formed. Descriptors may be lists of pixel values
within a patch, or histograms of oriented contrast within
the regions [30], for example. The result is one set of local
appearance or shape description vectors per image, often
numbering on the order of 2,000 or more features per image.

The idea behind such representations is to detect strong sim-
ilarity between local portions of related images, even when
the images appear quite different at the global level. Local
features are more reliable for several reasons:

• Isolate occlusions: An object may be partially oc-
cluded by another object. A global representation will
suffer proportionally, but for local representations, any
local parts that are still visible will have their descrip-
tions remain intact.

• Isolate clutter and the background: Similarly,
while the global description may be overwhelmed by
large amounts of background or clutter, small parts of
an image containing an actual object of interest can
emerge if we describe them independently by regions.
Recognition can proceed without prior segmentation.

• Accommodate partial appearance variation: When
instances of a category can vary widely in some dimen-
sions of their appearance, their commonality may be



best captured by a part-wise description that includes
the shared re-occurring pieces of the object class.

• Invariant local descriptors: Researchers have de-
veloped local descriptors designed explicitly to offer
invariance to common transformations, such as illumi-
nation changes, rotations, translations, scaling, or all
affine transformations.

This appealing representation—a set of vectors—does not
fit the mold of many traditional distances and learning al-
gorithms. Conventional methods assume vector inputs, but
with local representations, each image produces a variable
number of features, and there is no ordering among features
in a single set. In this situation, computing a correspondence
or matching between two images’ features can reveal their
overall resemblance: if many parts in image A can be asso-
ciated with some similar-looking part in image B, then they
are likely to display similar content (see Figure 2, bottom).

Current strategies for recognition and image matching ex-
ploit this notion in some form, often by building spatial con-
stellations of a category’s re-occurring local features [43],
summarizing images with a histogram of discretized local
patches [10, 38], or explicitly computing the least-cost cor-
respondences [7, 46, 15] (see [35] for a survey). However, a
real practical challenge is the computational cost of evalu-
ating the optimal matching, which is cubic in the number of
features extracted in an image. Compounding that cost is
empirical evidence showing how much recognition accuracy
improves when larger and denser feature sets are used [34].

2.2 The Pyramid Match Algorithm
To address this challenge, we developed the pyramid match—
a linear-time matching function over unordered feature sets—
and showed how it allows local features to be used efficiently
within the context of multiple image search and learning
problems [19, 20]. The pyramid match approximates the
similarity measured by the optimal partial matching between
feature sets of variable cardinalities. Because the matching
is partial, some features may be ignored without penalty to
the overall set similarity. This tolerance makes the mea-
sure robust in situations where superfluous or “outlier” fea-
tures may appear. Note that our work focuses on the image
matching and indexing aspects of the problem, and is flexi-
ble to the representation choice, i.e., which particular image
feature detectors and descriptors are used as input.

We consider a feature space V of d-dimensional vectors for
which the values have a maximal range D. The point sets
we match will come from the input space S, which con-
tains sets of feature vectors drawn from V: S = {X|X =
{x1, . . . ,xm}}, where each feature xi ∈ V ⊆ �d, and m =
|X|. We can think of each xi as a descriptor for one of the
elliptical image regions on the koalas in Figure 2. Note that
the point dimension d is fixed for all features in V, but the
value of m may vary across instances in S.

Given point sets X, Y ∈ S, with |X| ≤ |Y|, the optimal par-
tial matching π∗ pairs each point in X to some unique point
in Y such that the total distance between matched points
is minimized: π∗ = argminπ

P
xi∈X ||xi − yπi ||1, where πi

specifies which point yπi is matched to xi, and || · ||1 de-
notes the L1 norm. For sets with m features, the Hungarian
algorithm computes the optimal match in O(m3) time [28],
which severely limits the practicality of large input sizes. In
contrast, the pyramid match approximation requires only
O(mL) time, where L = log D, and L � m. In practice,
this translates to speedups of several orders of magnitude
relative to the optimal match for sets with thousands of fea-
tures.

We use a multi-dimensional, multi-resolution histogram pyra-
mid to partition the feature space into increasingly larger
regions. At the finest resolution level in the pyramid, the
partitions (bins) are very small; at successive levels they
continue to grow in size until a single bin encompasses the
entire feature space. At some level along this gradation in
bin sizes, any two particular points from two given point sets
will begin to share a bin in the pyramid, and when they do,
they are considered matched. The key is that the pyramid
allows us to extract a matching score without computing
distances between any of the points in the input sets—the
size of the bin that two points share indicates the farthest
distance they could be from one another. We show that
a weighted intersection of two pyramids defines an implicit
partial correspondence based on the smallest histogram cell
where a matched pair of points first appears.

Let a histogram pyramid for input example X ∈ S be de-
fined as: Ψ(X) = [H0(X), . . . , HL−1(X)], where L specifies
the number of pyramid levels, and Hi(X) is a histogram vec-
tor over points in X. The bins continually increase in size
from the finest-level histogram H0 until the coarsest-level
histogram HL−1. For low-dimensional feature spaces, the
boundaries of the bins are computed simply with a uniform
partitioning along all feature dimensions, with the length of
each bin side doubling at each level. For high-dimensional
feature spaces (e.g., d > 15), we use hierarchical cluster-
ing to concentrate the bin partitions where feature points
tend to cluster for typical point sets [20]. In either case,
we maintain a sparse representation per point set that maps
each point to its bin indices. Even though there is an ex-
ponential growth in the number of possible histogram bins
relative to the feature dimension (for uniform bins) or his-
togram levels (for non-uniform bins), any given set of fea-
tures can occupy only a small number of them. An image
with m features results in a pyramid description with no
more than mL nonzero entries to store.

Two histogram pyramids implicitly encode the correspon-
dences between their point sets, if we consider two points
matched once they fall into the same histogram bin, starting
at the finest resolution level. The matching is a hierarchical
process: vectors not found to correspond at a fine resolution
have the opportunity to be matched at coarser resolutions.
Thus, for each pyramid level, we want to count the number
of“new”matches—the number of feature pairs that were not
in correspondence at any finer resolution level. For exam-
ple, in Figure 3, there are two points matched at the finest
scale, two new matches at the medium scale, and one at the
coarsest scale.

To calculate the match count, we use histogram intersection,
which measures the “overlap” between the mass in two his-
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Figure 3: An example pyramid match. Here, two 1-

D feature sets are used to form two histogram pyra-

mids. Each row corresponds to a pyramid level. In (a),

set Y is on the left, and set Z is on the right; points

are distributed along the vertical axis. Light lines are

bin boundaries, bold dashed lines indicate a new pair

matched at this level, and bold solid lines indicate a

match already formed at a finer resolution level. In (b)
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across levels, so the number of new matches counted are
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pyramid match similarity. Figure is reprinted from [18]

with permission, c©2007 AAAI.

tograms: I (P, Q) =
Pr

j=1 min(Pj , Qj), where P and Q are
histograms with r bins, and Pj denotes the count of the j-th
bin. The intersection value effectively counts the number of
points in two sets that match at a given quantization level.
To calculate the number of newly matched pairs induced
at level i, we only need to compute the difference between
successive levels’ intersections. By using the change in inter-
section values at each level, we count matches without ever
explicitly searching for similar points or computing inter-
feature distances.

The pyramid match similarity score PΔ between two input
sets Y and Z is then defined as the weighted sum of the
number of new matches per level:

PΔ (Ψ(Y), Ψ(Z)) =

L−1X
i=0

wi

“
I (Hi(Y), Hi(Z))−I(Hi−1(Y), Hi−1(Z))

”
.

The number of new matches induced at level i is weighted
by wi = 1

d2i to reflect the (worst-case) similarity of points
matched at that level. This weighting reflects a geometric
bound on the maximal distance between any two points that
share a particular bin. Intuitively, similarity between vectors
at a finer resolution—where features are more distinct—is
rewarded more heavily than similarity between vectors at a
coarser level.

We combine the scores resulting from multiple pyramids
with randomly shifted bins in order to alleviate quantiza-

tion effects, and to enable formal error bounds. The ap-
proximation error for the pyramid match cost is bounded in
the expectation by a factor of C · d log D [22], for a constant
C. We have also proven that the pyramid match kernel
(PMK) naturally forms a Mercer kernel, which essentially
means that it satisfies the necessary technical requirements
to permit its use as a similarity function within a number of
existing kernel-based machine learning methods.

Previous approximation methods have also considered a hi-
erarchical decomposition of the feature space to reduce com-
plexity [24, 9, 1, 3, 5]; the method in [24] particularly in-
spired our approach. However, earlier matching approxima-
tions assume equally-sized input sets, and cannot compute
partial matches. In addition, while previous techniques suf-
fer from distortion factors that are linear in the feature di-
mension, we have shown how to alleviate this decline in ac-
curacy by tuning the hierarchical decomposition according
to the particular structure of the data [20]. Finally, our ap-
proximation is unique in that it forms a valid Mercer kernel,
and is useful in the context of various learning applications.

In short, the pyramid match gives us an efficient way to mea-
sure the similarity between two images based on the match-
ing between their (potentially many) local features. Now,
given a query image such as the one on the left of Figure 1,
we can first extract descriptors for its local regions using any
standard feature extractor [30, 41], and then find its relevant
“neighbors” in the collection on the right by computing and
sorting their pyramid match scores. In this way, we are able
to search the image collection based on content alone.

Figure 4 shows some illustrative results using two well-known
publicly available benchmark datasets, the ETH-80 [12] and
Caltech-101 [8]. Both datasets are used to measure image
categorization accuracy. The ETH collection is comprised of
80 object instances from eight different categories positioned
on simple backgrounds; it is among the first benchmarks es-
tablished for the categorization task, and since several cate-
gories are visually rather similar (e.g., horse and cow, apple
and tomato), it is a good test for detailed discrimination.
The Caltech collection, first introduced in 2003, contains
101 categories. It is challenging due to the magnitude of the
multi-class problem it poses, and for many categories it of-
fers noticeable intra-class appearance variation. It has been
the subject of much attention in the research community
and today stands as a key point of comparison for existing
methods. For all the following results we employ the SIFT
descriptor of [30], which is insensitive to shifts and rotations
in the image yet provides a distinctive summary of a local
patch.

The leftmost plot of Figure 4 demonstrates that when the
pyramid match is used to sort the images from the ETH-
80 database in a retrieval task, its complete ranking of the
database examples is highly correlated to that of the optimal
matching. The vertical axis measures how well results from
two variants of the PMK agree with the optimal cubic-time
results, and the horizontal axis shows the relative impact of
the feature dimension d. While for low-dimensional features
either a uniform or data-dependent partitioning of the fea-
ture space is adequate for good results, due to the curse of
dimensionality, a data-dependent pyramid bin structure is
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Figure 4: (a) The image rankings produced by the linear-time pyramid match are closely aligned with those produced

by the cubic-time optimal matching. This plot shows how closely rankings computed with our approximate measure

correlate with the optimal result, for features of increasing dimensionality. The vertical axis measures the rank

correlation; perfect ranking agreement with the optimal measure would yield a score of 1. (b) More features per image

lead to more reliable matches, but explicit matching techniques scale poorly with the representation size. The pyramid

match makes large feature sets easily affordable. (c) The four category pairs in the Caltech-101 database that our

method confused most.

much more effective for high-dimensional features.

The center plot shows accuracy as a function of computa-
tion time when the eight categories of the same dataset are
learned using local feature matches between images. The
plot compares the performance of the pyramid match to an
exact matching function that averages the cost between the
closest features in one set to the other. The horizontal axis
measures the total training time, which is directly affected
by the size of the feature sets. To vary the size of a typical
set, we tune the saliency parameter controlling how many
regions are detected per image. For both methods, more fea-
tures lead to striking accuracy improvements; this behavior
is expected since introducing more features assures better
coverage of all potentially relevant image regions. How-
ever, the linear-time pyramid match offers a key advantage
in terms of computational cost, reaching peak performance
for significantly less computation time.

On the Caltech-101 benchmark, we have shown that classi-
fiers employing the PMK with a variety of features currently
yield the most accurate performance in the field for object
recognition [27], with accuracy over 75% on the 101-way de-
cision problem when training with just five exemplars per
class, and 88% when training with 15. Figure 4(c) shows
example images from four pairs of categories in the Caltech-
101 dataset that cause the most confusion for the pyramid
match: schooner and ketch, lotus and water lily, gerenuk
and kangaroo, and nautilus and brain. In each row, the two
images on the left have local features that match quite well
to the two on the right, as compared to images from any of
the other 100 classes in the dataset. Some of these confused
category pairs have rather subtle distinctions in appearance.
However, the case of the gerenuk and kangaroo reveals a lim-
itation of the completely local description, as by definition it
fails to capture the significance of the global contour shapes
of the two objects.

Overall, approaches based on the pyramid match consis-
tently show accuracy that is competitive with (or better
than) the state-of-the-art while requiring dramatically less
computation time. This complexity advantage frees us to

consider much richer representations than were previously
practical. Methods that compute explicit correspondences
require about one minute to match a novel example; in
the time that these methods recognize a single object, the
pyramid match can recognize several hundred [22]. Due to
its flexibility and efficiency, the pyramid match has been
adapted and extended for use within a number of tasks,
such as scene recognition [29], near-duplicate detection [44],
human action recognition [31], and robot localization [32].

3. LEARNING IMAGE METRICS
Thus far, we have considered how to robustly measure image
similarity in situations where we have no background knowl-
edge; that is, where the system only has access to the image
content itself. However, in many cases the system could also
receive external side-information that might benefit its com-
parisons. For example, if provided with partially annotated
image examples, or if a user wants to enforce similarity be-
tween certain types of images, then we ought to use those
constraints to adapt the similarity measure.

A good distance metric between images accurately reflects
the true underlying relationships, e.g., the category labels or
other hidden parameters. It should report small distances
for examples that are similar in the parameter space of inter-
est (or that share a class label), and large distances for un-
related examples. Recent advances in metric learning make
it possible to learn distance functions that are more effective
for a given problem, provided some partially labeled data or
constraints are available (see [45] and references within). By
taking advantage of the prior information, these techniques
offer improved accuracy when indexing examples. Typically,
the strategy is to optimize any parameters to the metric so
as to best satisfy the desired constraints.

Figure 5 (a) depicts how metric learning can influence im-
age comparisons: the similarity (solid line) and dissimilarity
(dotted lines) constraints essentially warp the feature space
to preserve the specified relationships, and generalize to af-
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Figure 5: (a) By constraining some examples to be similar (green solid line), and others to be dissimilar (red dotted

lines), the learned metric refines the original distance function so that examples are close only when they share the

relevant features. (b) Retrieval accuracy is improved by replacing two matching-based image metrics (the PMK and

CORR) with their learned counterparts (ML+PMK and ML+CORR). See text for details. Plot is reprinted from [26]

with permission, c©2008 IEEE.

fect distances between other examples like them. In this
illustrative example, even though we may measure high sim-
ilarity between the greenery portions of both the cockatoo
and koala images, the dissimilarity constraint serves to re-
focus the metric on the other (distinct) parts of the images.

In the case of the pyramid match, the weights associated
with matches at different pyramid levels can be treated as
learnable parameters. While fixing the weights according to
the bin diameters allows the most accurate approximation
of true inter-feature distances in a geometric sense, when
we have some annotated images available, we can actually
learn the weights that will best map same-class images close
together [25].

The idea is that the best matching function is distinct for
different classes of images, and is inherently defined by the
variability a given class exhibits. For example, to distinguish
one skyscraper from another, we might expect matchings be-
tween same-class examples to contain some very tight local
feature correspondences, whereas to distinguish all skyscrap-
ers from koalas, we would expect feature matches to occur at
greater distances even among same-class examples. While
the same type of image feature may be equally relevant in
both situations, what is unique is the distance at which sim-
ilarity is significant for that feature. Therefore, by learning
the reward (weight) associated with each matching level in
the pyramid, we can automatically determine how close fea-
ture matches must be in order to be considered significant
for a given object class.

To achieve this intuition, we observe that the PMK can be
written as a weighted sum of base kernels, where each base
kernel is the similarity computed at a given bin resolution.
We thus can compute the weights using a form of kernel
alignment [4], where we find the optimal combination of ker-
nel matrices that most closely mimics the “ideal” kernel on
the training data, i.e., the one that gives maximal similarity
values for in-class examples and minimal values for out-of-
class examples. See [25] for details.

We have also considered how image retrieval accuracy can
benefit from learning the Mahalanobis parameterization for
several different base metrics, including matching functions [26].

Given points {x1, . . . , xn}, with xi ∈ �d, a positive-definite
d× d matrix A parameterizes the squared Mahalanobis dis-
tance:

dA(xi, xj) = (xi − xj)
T A(xi − xj). (1)

A generalized inner product measures the pairwise similar-
ity associated with that distance: sA(xi, xj) = xT

i Axj .
Thus for a kernel K(xi, xj) = φ(xi)

T φ(xj), the parameters
transform the inner product in the implicit feature space as
φ(xi)

T Aφ(xj). Given a set of inter-example distance con-
straints, one can directly learn a matrix A to yield a measure
that is more accurate for a given problem. We use the effi-
cient method of [11] because it is kernelizable. This method
optimizes the parameters of A so as to minimize how much
that matrix diverges from an initial user-provided “base”
parameterization, while satisfying constraints that require
small distances between examples specified as similar, and
large distances between pairs specified as dissimilar.

Figure 5 (b) shows the significant retrieval accuracy gains
achieved when we learn image metrics using two matching-
based kernels as the base metrics. The first kernel is the
PMK, the approximate matching measure defined above.
The second kernel was defined in [46], and uses exhaustive
comparisons between features to compute a one-to-many
match based on both descriptor and positional agreement;
we refer to it as CORR for“correspondence”. For this dataset
of 101 object types, note that chance performance would
yield an accuracy rate of only 1%. Both base metrics do
the most they can by matching the local image features; the
learned parameters adapt those metrics to better reflect the
side-information specifying a handful of images from each
class that ought to be near (or far) from the others.

4. SEARCHING IMAGE COLLECTIONS IN
SUB-LINEAR TIME

Now that we have designed effective similarity measures,
how will image search scale? We must be able to use these
metrics to query a very large image database—potentially
on the order of millions of examples or more. Certainly,
a naive linear scan that compares the query against every
database image is not feasible, even if the metric itself is
efficient. Unfortunately, traditional methods for fast search
cannot guarantee low query time performance for arbitrary
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specialized metrics.2 This section overviews our work de-
signing hash functions that enable approximate similarity
search for both types of metrics introduced above: a match-
ing between sets, and learned Mahalanobis kernels.

The main idea of our approach is to construct a new family
of hash functions that will satisfy the locality-sensitivity re-
quirement that is central to existing randomized algorithms [23,
9, 2] for approximate nearest neighbor search. Locality sen-
sitive hashing (LSH) has been formulated in two related
contexts—one in which the likelihood of collision is guar-
anteed relative to a threshold on the radius surrounding a
query point [23], and another where collision probabilities
are equated with a similarity function score [9]. We use the
latter definition here.

A family of LSH functions F is a distribution of functions
where for any two objects xi and xj ,

Pr
h∈F

[h(xi) = h(xj)] = sim(xi, xj), (2)

where sim(xi, xj) ∈ [0, 1] is some similarity function, and
h(x) is a hash function drawn from F that returns a single
bit [9]. Concatenating a series of b hash functions drawn
from F yields b-dimensional hash keys. When h(xi) =
h(xj), xi and xj collide in the hash table. Because the
probability that two inputs collide is equal to the similarity

2Data structures based on spatial partitioning and recursive de-
composition have been developed for faster search, e.g. k-d-
trees [14] and metric trees [42]. While their expected query time
requirement may be logarithmic in the database size, selecting
useful partitions can be expensive and requires good heuristics;
worse, in high-dimensional spaces all exact search methods are
known to provide little query time improvement over a naive lin-
ear scan [23]. Additionally, the expected query time for a k-d
tree contains terms that are exponential in the dimension of the
features [14], making them especially unsuitable for the pyramid
representation where the dimension can be on the order of mil-
lions.

between them, highly similar objects are indexed together
in the hash table with high probability. On the other hand,
if two objects are very dissimilar, they are unlikely to share
a hash key (see Figure 6). Given valid LSH functions, the
query time for retrieving (1 + ε)-near neighbors is bounded

by O(N1/(1+ε)) for the Hamming distance and a database
of size N [16]. One can therefore trade off the accuracy of
the search with the query time required.

Note that Eqn. 2 is essentially a gateway to locality-sensitive
hashing: if one can provide a distribution of hash func-
tions guaranteed to preserve this equality for the similarity
function of interest, than approximate nearest neighbor in-
dexing may be performed in sub-linear time. Existing LSH
functions can accommodate the Hamming distance [23], Lp

norms [2], and inner products [9], and such functions have
been explored previously in the vision community [37]. In
the following we show how to enable sub-linear time search
with LSH for metrics that are useful for image search.

4.1 Matching-sensitive hashing
Even though the pyramid match makes each individual match-
ing scalable relative to the number of features per image,
once we want to search a large database of images accord-
ing to the correspondence-based distance, we still cannot
afford a naive linear scan. To guarantee locality-sensitivity
for a matching, we form an embedding function that maps
our histogram pyramids into a vector space in such a way
that the inner product between vectors in that space exactly
yields the PMK similarity value [21].

This re-mapping is motivated by the fact that randomized
hash functions exist for similarity search with the inner prod-
uct [9]. Specifically, in [17] it is shown that the probability
that a hyperplane r drawn uniformly at random separates
two vectors xi and xj is directly proportional to the angle
between them: Pr

ˆ
sgn(rT xi) �= sgn(rT xj)

˜
= 1

π
cos−1(xT

i xj).
An LSH function that exploits this relationship is given
in [9]. The hash function hr accepts a vector x ∈ �d, and
outputs a bit depending on the sign of its product with r:

hr(x) =

j
1, if rT x ≥ 0
0, otherwise

. (3)

Since Pr [hr(xi) = hr(xj)] = 1− 1
π

cos−1(xT
i xj), the proba-

bility of collision is high whenever the examples’ inner prod-
uct is high.

To embed the pyramid match as an inner product, we exploit
the relationship between a dot product and the min operator
used in the PMK’s intersections. Taking the minimum of
two values is equivalent to computing the dot product of a
unary-style encoding in which a value v is written as a list of
v ones, followed by a zero padding large enough to allot space
for the maximal value that will occur. So, since a weighted
intersection value is equal to the intersection of weighted
values, we can compute the embedding by stacking up the
histograms from a single pyramid, and weighting the entries
associated with each pyramid level appropriately. Figure 7
(a) illustrates this process. Our embedding enables LSH for
normalized partial match similarity with local features, and
we have shown that it can achieve results very close to a
naive linear scan when searching only a small fraction of an
image database (1-2%). See [21] for more details.
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Figure 7: (a) By appropriately embedding weighted pyramids into a vector space, a simple dot product will give the

pyramid match similarity. This enables LSH-based similarity search for the pyramid match. (b) A generic hash function

would choose the orientation of the hyperplane r uniformly at random, causing collisions only for examples that have

small angles between their features (xi and xj). In contrast, the distribution of our randomized semi-supervised hash

functions is such that examples like those constrained to be similar are more likely to collide (left), while pairs like

those constrained to be dissimilar are less likely to collide (right). Here the hourglass shapes denote the regions from

which our randomized hash functions will most likely be drawn.

4.2 Semi-supervised hashing
To provide suitable hash functions for learned Mahalanobis
metrics, we propose altering the distribution from which the
randomized hyperplanes are drawn. Rather than drawing
the vector r uniformly at random, we want to bias the se-
lection so that similarity constraints provided for the metric
learning process are also respected by the hash functions. In
other words, we still want similar examples to collide, but
now that similarity cannot be purely based on the image
measurements xi and xj ; it must also reflect the constraints
that yield the improved (learned) metric (see Figure 7(b)).
We refer to this as “semi-supervised”hashing, since the hash
functions will be influenced by any available partial annota-
tions, much as the learned metrics were above in Section 3.

In [26], we present a straightforward solution for the case of
relatively low-dimensional input vector spaces, and further
derive a solution to accommodate very high-dimensional data
for which explicit input space computations are infeasible.
The former contribution makes fast indexing accessible for
numerous existing metric learning methods, while the latter
is of particular interest for commonly used image representa-
tions, such as bags-of-words or multi-resolution histograms.

Given the matrix A for a metric learned as above, such that
A = GT G, we generate the following randomized hash func-
tions hr,A:

hr,A(x) =

j
1, if rT Gx ≥ 0
0, otherwise

, (4)

where the vector r is chosen at random from a d-dimensional
Gaussian distribution with zero mean and unit variance.

By parameterizing the hash functions by both r and G, we
enforce the following probability of collision:

Pr [hr,A(xi) = hr,A(xj)] = 1 − 1

π
cos−1

„
xT

i Axjp|Gxi||Gxj |

«
,

which sustains the LSH requirement for a learned Maha-

lanobis metric. Essentially we have shifted the random hy-
perplane r according to A, and by factoring it by G we allow
the random hash function itself to “carry” the information
about the learned metric. The denominator in the cosine
term normalizes the kernel values.

For low-dimensional data, we could equivalently transform
all the data according to A prior to hashing. However, the
matrix A has d2 entries, and thus for very high-dimensional
input spaces it cannot be represented explicitly, and we must
work in the implicit kernel space. For example, for features
like the histogram pyramids above, we have d = 106; the
examples are sparse and representable, however the matrix
A is dense and is not. This complicates the computation of
hash functions, as they can no longer be computed directly
as in Eqn. 4 above. To handle this, we derived an algorithm
that simultaneously makes implicit updates to both the hash
functions and the metric being learned. We show that it
is possible to compute the value of rT G indirectly, based
on comparisons between the points involved in similarity
constraints and the new example x that we want to hash.
See [26] for details.

Figure 8 shows results using our semi-supervised hash func-
tions to index the Caltech data. In the top plot, we see that
the learned metric (denoted ‘ML’) again significantly im-
proves the base metric in the image retrieval task. Addition-
ally, we now can offer sub-linear time search even once the
metric has been altered by the input similarity constraints.
Note how accuracy varies as a function of ε, the parameter
controlling how many examples we have to search per query;
the more examples we can afford to search, the stronger our
guarantee of approximating an exhaustive linear scan.

The bottom plot shows results using another database, 300K
patches from the PhotoTourism project [39]. Here L2 is
the base metric; the recall rate is substantially improved
once we learn a metric on top of it. Negligible accuracy
is sacrificed when searching with our semi-supervised hash
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learned metric, and allow guaranteed sub-linear time

queries that are similar in accuracy to a naive linear scan.

Figure is reprinted from [26] with permission, c©2008 IEEE.

functions (as seen by the closeness of the top two curves),
yet our hashing strategy requires touching only 0.8% of the
patches in the database. In our Matlab implementation, we
observe speedup factors of about 400 relative to a linear scan
for databases containing half a million examples. Due to the
query time guarantees our hash functions enable, that factor
grows rapidly with the size of the database.

Relative to traditional exact search data structures, the ap-
proximate hashing approach is critical to performance when
inputs are high-dimensional. Modifications to classic tree
structures have also been explored to improve search time
with high-dimensional image features [6, 33], however such
approaches cannot provide query-time guarantees, and are
not applicable to searching with learned metrics. By hashing
to buckets containing a collection of examples with a high
probability of being very similar to the query, we are able to
sort out the most relevant list of near neighbors. This is im-
portant for content-based retrieval, where we do not expect
the single nearest exemplar to answer the query, but rather
that the pool of nearby content will give the user and/or
downstream processes access to relevant candidates.

5. CONCLUSIONS
As the world’s store of digital images continues to grow ex-
ponentially, and as novel data-rich approaches to computer
vision begin to emerge, fast techniques capable of accurately
searching very large image collections are critical. The algo-
rithms we have developed aim to provide robust but scalable

image search, and results show the practical impact. While
motivated by vision problems, these methods are fairly gen-
eral, and may be applicable in other domains where rich
features and massive data collections abound, such as com-
putational biology or text processing.

Looking forward, an important challenge in this research
area is to develop the representations that will scale in terms
of their distinctiveness; once a data collection is truly mas-
sive, the space of images is even more densely populated, and
relative differences are subtle. At the same time, flexibility
is still key to handling intra-category variation. While our
search methods can guarantee query-time performance, it is
not yet possible to guarantee a level of discrimination power
for the features chosen. In addition, a practical issue for
evaluating algorithms in this space is the difficulty of quan-
tifying accuracy for truly massive databases; the data itself
is easy to come by, but without ground truth annotations,
it is unclear how to rigorously evaluate performance.

An interesting aspect of the image search problem is the sub-
jectivity related to a real user’s perception of the quality of a
retrieval. We can objectively quantify accuracy in terms of
the categories contained in a retrieved image, which is help-
ful to systematically validate progress. Moreover, example-
based search often serves as one useful stage in a larger
pipeline with further processing downstream. Nonetheless,
when end users are in the loop, admittedly the perception of
quality may vary. On the evaluation side, this uncertainty
could be addressed by collecting user appraisals of similarity,
as is more standard in natural language processing [36]. In
terms of the algorithms themselves, however, one can also
exploit classic feedback and query refinement devices to tai-
lor retrieval towards the current user. In our work, we could
construct learned image metrics with constraints that target
the preferences of a given user or group of users.

Currently we are exploring online extensions to our algo-
rithms that will allow similarity constraints to be processed
in an incremental fashion, while still allowing intermittent
queries. We are also pursuing active learning methods that
will allow the system to identify which image annotations
seem most promising to request, and thereby most effec-
tively use minimal manual input.
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