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Figure 1. Likelihoods of pairwise tasks being assigned to
the same cluster, for USPS (left) and MNIST (right).
While the two are largely different, there are some regions
(highlighted with red ellipses) for which the two are simi-
lar, suggesting that at least for some digits, the grouping
structure our algorithm discovers is not highly sensitive to
the exact instances or dataset used during learning.

1. Additional Experiments

1.1. Handwritten digit recogntiion

1.1.1. Visualizing discovered task groups

Given that both datasets consist of very related
content—handwritten characters—we are interested in
seeing whether the task group structure learned in ei-
ther case has any similarities. To analyze this, we
compute the likelihoods for pairwise tasks being as-
signed to the same cluster, as follows: we take the
task-cluster membership assignment qgt and form a
matrix Q ∈ R

G×T. We then compute QTQ, and aver-
age over the final results of all experiments. If the s-th
task and the t-th task are often assigned to the same
cluster, then the averaged QTQ will have high values
at (s, t)-th element.

Fig. 1 visualizes this matrix for the USPS (left) and
MNIST (right) datasets. Despite their very different

results on MTL classification accuracy, we see that the
two matrices do share some common regional patterns.
(Note, in the figure, the diagonal elements are set to
zero to better highlight the other elements on paper.)

A. Proof of Theorem 1

Our proof starts by observing that T (Q) can be ex-
pressed in an equivalent form
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where Ωg is constrained to be positive definitive. Fur-
thermore, Trace[Ωg] = 1. Let Ψg = WTΩ−1

g W , we
have

T (Q) = min
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g

Trace [ΨgQg] (2)

Since Qg is a diagonal matrix, we have immediately
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ψ
g
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where ψg
tt is the t-th diagonal element of Ψg. Thus, in

terms of qgt, eq. (9) of Theorem 1 is just to minimize
over a linear function of these variables over the poly-
tope defined by qqt ≥ 0 and

∑

g qgt = 1. Therefore, by
appealing to the basic property of linear programming,
the statement of the theorem is obviously true.

B. Calculating the gradient

For notation simplicity, we consider calculating the
gradient of ‖W

√
Q‖∗ with the t-th element qt of the

diagonal matrix Q.

From the definition, we have
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We decompose WQWT in its eigenvalues and eigen-
vectors,

WQWT = PΛPT (5)

where Λ is the diagonal matrix composed of the eigen-
value λt. This leads to
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To calculate the gradient of ‖W
√
Q‖∗ with respect to

qt, we need to compute the gradient of λi with respect
to qt
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where pi is the eigenvector corresponding to λi and
wt is the t-th column in W , ie, the parameter vector
of the t-th task. Combining everything together, we
have,
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