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Abstract
We present a novel form of interactive video object segmenta-
tion where a few clicks by the user helps the system produce
a full spatio-temporal segmentation of the object of interest.
Whereas conventional interactive pipelines take the user’s ini-
tialization as a starting point, we show the value in the sys-
tem taking the lead even in initialization. In particular, for a
given video frame, the system precomputes a ranked list of
thousands of possible segmentation hypotheses (also referred
to as object region proposals) using image and motion cues.
Then, the user looks at the top ranked proposals, and clicks
on the object boundary to carve away erroneous ones. This
process iterates (typically 2-3 times), and each time the sys-
tem revises the top ranked proposal set, until the user is satis-
fied with a resulting segmentation mask. Finally, the mask is
propagated across the video to produce a spatio-temporal ob-
ject tube. On three challenging datasets, we provide extensive
comparisons with both existing work and simpler alternative
methods. In all, the proposed Click Carving approach strikes
an excellent balance of accuracy and human effort. It outper-
forms all similarly fast methods, and is competitive or better
than those requiring 2 to 12 times the effort.

Introduction
Video object segmentation entails computing a pixel-level
mask for an object(s) across the frames of video, regard-
less of that object’s category. Analogous to image segmen-
tation, which produces a 2D map delineating the object’s
spatial region (“blob”), video segmentation produces a 3D
map delineating the object’s spatio-temporal extent (“tube”).
The problem has received substantial attention in recent
years, with methods ranging from wholly unsupervised
bottom-up approaches (Grundmann et al. 2010; Xu, Xiong,
and Corso 2012; Galasso, Cipolla, and Schiele 2012), to
propagation methods that exploit user input on the first
frame (Ren and Malik 2007; Tsai, Flagg, and Rehg 2010;
Fathi et al. 2011; Vijayanarasimhan and Grauman 2012;
Jain and Grauman 2014; Wen et al. 2015), to human-in-
the-loop methods where a user closely guides the system
towards a good segmentation output (Wang et al. 2005;
Li, Sun, and Shum 2005; Bai et al. 2009; Shankar Nagaraja,
Schmidt, and Brox 2015). Successful video segmentation al-
gorithms have potential for significant impact on tasks like
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activity and object recognition, video editing, and abnormal
event detection.

Despite very good progress in the field, it remains chal-
lenging to collect quality video segmentations at a large
scale. The system is expected to segment objects for which it
may have no prior model, and the objects may move quickly
and change shape or appearance over time—or (often even
worse) never move with respect to the background. To scale
up the ability to generate well-segmented data, human-in-
the-loop methods that leverage minimal human input are ap-
pealing (Ren and Malik 2007; Tsai, Flagg, and Rehg 2010;
Badrinarayanan, Galasso, and Cipolla 2010; Fathi et al.
2011; Vondrick and Ramanan 2011; Vijayanarasimhan and
Grauman 2012; Jain and Grauman 2014; Wen et al. 2015;
Wang et al. 2005; Li, Sun, and Shum 2005; Bai et al. 2009;
Shankar Nagaraja, Schmidt, and Brox 2015). These meth-
ods benefit greatly by combining the respective strengths
of humans and machines. They can reserve for the human
the more difficult high-level job of identifying a true object,
while reserving for the algorithm the more tedious low-level
job of propagating that object’s boundary over time. This
synergistic interaction between humans and computers re-
sults in accurate segmentations with minimal huamn effort.

Critical to the success of an interactive video segmen-
tation algorithm is how the user interacts with the sys-
tem. In particular, how should the user indicate the spa-
tial extent of an object of interest in video? Existing meth-
ods largely rely on the tried-and-true interaction modes
used for image labeling; namely, the user draws a bound-
ing box or an outline around the object of interest on a
given frame, and that region is propagated through the video
either indefinitely or until it drifts (Ren and Malik 2007;
Tsai, Flagg, and Rehg 2010; Fathi et al. 2011; Vijaya-
narasimhan and Grauman 2012; Jain and Grauman 2014;
Wen et al. 2015). Furthermore, regardless of the exact input
modality, the common assumption is to get the user’s input
first, and then generate a segmentation hypothesis thereafter.
In this sense, in video segmentation propagation, informa-
tion flows first from the user to the system.

We propose to reverse this standard flow of information.
Our idea is for the system itself to first hypothesize plausible
object segmentations in the given frame, and then allow the
human user to efficiently and interactively prioritize those
hypotheses. Such an approach stands to reduce human an-
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notation effort, since the user can use very simple feedback
to guide the system to its best hypotheses.

To this end, we introduce Click Carving, a novel method
that uses point clicks to obtain a foreground object mask
for a video frame. Clicks, largely unexplored for video seg-
mentation, are an attractive input modality due to their ease,
speed, and intuitive nature (e.g., with a touch screen the user
may simply point a finger). Our method works as follows.
First, the system precomputes thousands of mask hypothe-
ses based on object proposal regions. Importantly, those ob-
ject proposal regions exploit both image coherence cues as
well as motion boundaries computed in the video. Then, the
user efficiently navigates to the best hypotheses by clicking
on the boundary of the true object and observing the refined
top hypotheses.

Essentially, the user’s clicks “carve” away erroneous hy-
potheses whose boundaries disagree with the clicks. By con-
tinually revising its top rated hypotheses, the system implic-
itly guides the user where input is most needed next. Af-
ter the user is satisfied, or the maximal budget of clicks is
exhausted, the system propagates the best mask hypothesis
through the video with an existing propagation algorithm.
For videos in the three datasets we tested, only 2-4 clicks
are typically required to accurately segment the entire clip.
Note that our novel idea is not so much about the “clicking”
interface itself; rather our new ideas center around the idea
of simple point supervision as a sufficient cue to perform
semi-automatic segmentation and the carving backend that
efficiently discerns the most reliable proposals.

Aside from testing our approach with real users, we also
develop several simulated user clicking models in order to
systematically analyze the relative merits of different click-
ing strategies. For e.g., is it more effective to click in the
object center, or around its perimeter? How should multi-
ple clicks be spaced? Is it advantageous to place clicks in
reaction to where the system currently has the greatest er-
rors? One interesting outcome of our study is that the be-
havior one might assume as a default—clicking in the ob-
ject’s interior (Bearman et al. 2015; Wang, Han, and Col-
lomosse 2014)—is much less effective than clicking on its
boundaries. We show that boundary clicks are better able to
discriminate between good and bad object proposal regions.

The results show that Click Carving strikes an excel-
lent balance of accuracy and human effort. It is faster (re-
quires less annotation interaction) than most existing in-
teractive methods, yet produces better results. In extensive
comparisons with state-of-the-art methods on three chal-
lenging datasets we show that Click Carving outperforms
all similarly fast methods, and is competitive or better than
those requiring 2 to 12 times the effort. This large reduc-
tion in annotion time by effective use of human interac-
tion naturally leads to large savings in annotation costs. Be-
cause of the ease with which our framework can assist even
non-experts in making high quality annotations, it has great
promise for scaling up video segmentation. Ultimately such
tools are critical for accelerating data collection in several
research communities (e.g., computer vision, graphics, med-
ical imaging), where large-scale spatio-temporal annotations
are lacking and/or often left to experts.

Related Work
Unsupervised video segmentation methods use no human
input, and typically produce an over-segmentation of the
video that is useful for mid-level grouping. Supervoxel
methods find space-time blobs cohesive in color and/or mo-
tion (Grundmann et al. 2010; Xu, Xiong, and Corso 2012;
Galasso, Cipolla, and Schiele 2012), while point trajectory
approaches find consistent motion threads beyond optical
flow (Brox and Malik 2010; Lezama et al. 2011). Unlike
unsupervised work, we consider interactive video segmen-
tation and our method produces spatio-temporal tubes cov-
ering the extent of the complete object.

Other methods extract “object-like” segments in
video (Lee, Kim, and Grauman 2011; Ma and Latecki 2012;
Zhang, Javed, and Shah 2013; Li et al. 2013;
Papazoglou and Ferrari 2013), typically by learn-
ing the category-independent properties of good re-
gions, and employing some form of tracking. Re-
lated are the methods that generate a large number of
bounding box or region proposals (Wu et al. 2015;
Fragkiadaki et al. 2015; Yu and Yuan 2015;
Oneata et al. 2014), an idea originating in im-
age segmentation (Carreira and Sminchisescu 2012;
Arbeláez et al. 2014). The idea is to maintain high recall
for the sake of downstream processing. As such, these
methods typically produce many segmentation hypotheses,
100s to 1000s for today’s popular datasets. To adapt them
for the object segmentation problem would require human
inspection to select the best one, which is non-trivial once
the video contains more than a handful. Our approach
makes use of object proposals, but our idea to prioritize
them with Click Carving is entirely new. We are the first
to propose using proposals for the sake of speeding up
interactive segmentation, whether for images or videos.

Semi-automatic video segmentation methods accept man-
ually labeled frame(s) as input, and propagate the anno-
tation to the remaining video clip (Ren and Malik 2007;
Tsai, Flagg, and Rehg 2010; Badrinarayanan, Galasso, and
Cipolla 2010; Fathi et al. 2011; Vijayanarasimhan and Grau-
man 2012; Jain and Grauman 2014; Wen et al. 2015). Often
the model consists of an MRF over (super)pixels or super-
voxels, with both spatial and temporal connections. Some
systems actively guide the user how to annotate (Fathi et al.
2011; Vondrick and Ramanan 2011; Vijayanarasimhan and
Grauman 2012; Karasev, Ravichandran, and Soatto 2014).
All the prior methods assume that initialization starts with
the user, and all use traditional modes of user input (bound-
ing boxes, scribbles, or outlines). In contrast, we explore
the utility of clicks for video segmentation, and we propose
a novel, interactive way to perform system-initiated initial-
ization. We show our approach achieves comparable perfor-
mance to drawing complete outlines, but with much less an-
notation effort. Following our novel user interaction stage,
we rely on an existing propagation method and make no nov-
elty claims about how the propagation stage itself is done.

Human-in-the-loop systems have proved to very useful in
diverse computer vision tasks such as training object de-
tectors (Patterson et al. 2015), counting objects (Sarma et
al. 2015) etc. Interactive video segmentation methods also
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Figure 1: Generation of object region proposals using both static and dynamic cues. Best viewed on pdf.

leverage user input, but unlike the above propagation meth-
ods, the user is always in the loop and engages in a back and
forth until the video is adequately segmented (Wang et al.
2005; Bai et al. 2009; Shankar Nagaraja, Schmidt, and Brox
2015). In all existing methods, the user guides the system
to generate a segmentation hypothesis, and then iteratively
corrects mistakes by providing more guidance. In contrast,
Click Carving pre-generates thousands of possible hypothe-
ses and then employs user guidance to efficiently filter high
quality segmentations from them. Our approach could po-
tentially be used in conjunction with many of these systems
as well, to reduce the interaction effort. Compared to prop-
agation methods, the interactive methods usually have the
advantage of greater precision, but at the disadvantages of
greater human effort and less amenability to crowdsourcing.

Only limited work explores click supervision for image
and video annotation. Clicks on objects in images can re-
move ambiguity to help train a CNN for semantic segmenta-
tion from weakly labeled images (Bearman et al. 2015), or to
spot object instances in images for dataset collection (Lin et
al. 2014). Clicks on patches are used to obtain ground truth
material types in (Bell et al. 2015).

We are aware of only two prior efforts in video segmenta-
tion using clicks, and their usage is quite different than ours.
In one, a click and drag user interaction is used to segment
objects (Pont-Tuset, Farré, and Smolic 2015). A small re-
gion is first selected with a click, then dragged to traverse up
in the hierarchy until the segmentation does not bleed out of
the object of interest. Our user-interaction is much simpler
(jut a few mouse clicks or taps on the touchscreen) and our
boundary clicks are discriminative enough to quickly filter
good segmentations. In the other, the TouchCut system uses
a single touch to segment the object using level-set tech-
niques (Wang, Han, and Collomosse 2014). However, the
evaluation is focused on image segmentation, with only lim-
ited results on video; our approach outperforms it.

Approach
We now present our approach.

Generating video foreground proposals
Existing propagation-based video segmentation methods
rely on human input (a bounding box, contour, or scribble) at
the onset to generate results. The key idea behind our Click
Carving approach is to flip this process. Instead of the hu-
man annotator providing a foreground region from scratch,
the system generates many plausible segmentation mask hy-
potheses and the annotator efficiently navigates to the best
ones with point clicks.

Specifically, we use state-of-the-art region proposal gen-
eration algorithms to generate 1000s of possible foreground
segmentations for the first video frame.1 Region proposal
methods aim to obtain high recall at the cost of low preci-
sion. Even though this guarantees that at least a few of these
segmentations will be of good quality, it is difficult to filter
out the best ones automatically with existing techniques.

To generate accurate region proposals in videos, we
use the multiscale combinatorial grouping (MCG) algo-
rithm (Arbeláez et al. 2014) with both static and motion
boundaries. The original algorithm uses image boundaries
to obtain a hierarchical segmentation, followed by a group-
ing procedure to obtain region-based foreground object pro-
posals. The video datasets that we use in this work have
both static and moving objects. We observed that due to
factors like motion blur etc., static image boundaries are
not very reliable in many cases. On the other hand, optical
flow provides a strong cue about the objects contours while
the object is in motion. Hence we also use motion bound-
aries (Weinzaepfel et al. 2015) to generate per-frame motion
region proposals using MCG. The two sources are comple-
mentary in nature: for static objects, the per-frame region
proposals obtained using static boundaries will be more ac-
curate, and vice versa.

Figure 1 illustrates this with an example. Both the per-
son and bike (Figure 1a) are in motion. As a result, we get
weaker static boundaries (Figure 1b). Figure 1c shows the
best static proposal for each object; the proposal quality for
the bike is very poor. On the other hand, the motion bound-
aries (Figure 1d) are much stronger and result in very accu-
rate proposals for both the person and the bike (Figure 1e).

In summary, given a video frame, we generate the set
of foreground region proposals (M) for it by taking the
union between the static region proposals (Mstatic) and mo-
tion region proposals (Mmotion), i.e., M = {Mstatic ∪
Mmotion}. On average we generate a total of about 2000
proposals per frame, resulting in a very high overall recall.
(The Mean Average Best Overlap score (MABO) is 78.3 on
the three datasets that we use. This is computed by selecting
the proposal with highest overlap score in each frame and
taking a dataset-wide average). In what follows, we explain
how Click Carving allows a user to efficiently navigate to
the best proposal among these thousands of candidates.

Click Carving for discovering an object mask
The region proposal step yields a large set of segmentation
hypotheses (1000s), out of which only a few are very ac-

1For clarity of presentation, we describe the process as always
propagating from the first annotated frame. However, the system
can be initialized from arbitrary frames.
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Figure 2: Click Carving based foreground segmentation. Best viewed on pdf and in video on project page. See text for details.

curate object segmentations. A naive approach that asks an
annotator to manually scan through all proposals is both te-
dious and inefficient. We now explain how our Click Carv-
ing algorithm effectively and very quickly identifies the
quality segmentations. We show that within a few clicks, it
is possible to obtain a very high quality segmentation of the
desired object of interest. We stress that while Click Carv-
ing assists in getting the mask for a single frame, it is closely
tied to the video source due to the motion-based proposals.

At a high level, our Click Carving algorithm converts the
user clicks into votes cast for the underlying region propos-
als. The user initiates the algorithm by clicking somewhere
on the boundary of the object of interest. This click casts a
vote for all the proposals whose boundaries also (nearly) in-
tersect with the user click. Using these votes, the underlying
region proposals are re-ranked and the user is presented with
the top-k proposals having the highest votes.

This process of clicking and re-ranking iterates. At any
time, the user can choose any of the top-k as the final seg-
mentation if he/she is satisfied, or he/she can continue to
re-rank by clicking and casting more votes.

More specifically, we characterize each proposal,
Mj ∈ M with the following four components
(Mm

j ,Me
j ,Ms

j ,Mv
j ):

• Segmentation mask (Mm
j ): This quantity represents the

actual region segmentation mask obtained from the MCG
region proposal algorithm (static or dynamic).

• Contour mask (Me
j): Our algorithm requires the user to

click on the object boundaries, which as we will show
later is much more discriminative than clicking on inte-
rior points and results in a much faster filtering of good
segmentations. To infer the votes on the boundaries, we
convert the segmentation maskMm

j into a contour mask.
This contour mask only contains the boundary pixels from
Mm

j . For error tolerance, we dilate the boundary mask by
5 pixels on either side. This reduces the sensitivity of the
exact user click location, which need not coincide exactly
with the mask boundary.

• Objectness score (Ms
j): We use the objectness score from

the MCG algorithm (Arbeláez et al. 2014) to break ties if

multiple region proposals get the same number of votes.
This score reflects the likelihood of a given region to be
an accurate object segmentation.

• User votes (Mv
j ): This quantity represents the total num-

ber of user votes received by a particular proposal at any
given time. It is initialized to 0.
As a first step, we begin by computing a lookup table

which allows us to efficiently account for the votes cast for
each proposal by the user. Let n be the total number of pixels
in a given image and m be the total number of region pro-
posals generated for that image. We define and precompute
a lookup table T ∈ {0, 1}n×m as follows:

T (i, j) =

{
1 ifMe

j(i) = 1

0 otherwise,
(1)

where i denotes a particular pixel and j denotes a particular
region proposal.

When the user clicks at a particular pixel location c, the
weights for each of the region proposal are updated as fol-
lows:

Mv
j =Mv

j + T (c, j). (2)
The updated set of votes is used to re-rank all the region

proposals. The proposals with equal votes are ranked in the
order of their objectness scores. This interactive re-ranking
procedure continues until the user is satisfied with any of the
top-k proposals and chooses that as the final segmentation.
In our implementation, k is set such that k copies of the im-
age, one proposal on each, fit easily on one screen (k = 9).

Figure 2 illustrates our user interface and explains this
process with two examples. We show the user interaction on
the leftmost column. Red circles denote clicks. The “Con-
tourMap” column shows the average contour map of the top-
5 ranked proposals after the user click. Here the colors are a
heat-map coding of the number of votes for a boundary frag-
ment. Remaining columns show the top-5 ranked proposals.

The top two rows show an example frame from a “cat”
video in the iVideoSeg (Shankar Nagaraja, Schmidt, and
Brox 2015) dataset. The user2 places the first click on the

2We discuss our user study in the next section.



left side of the object (top left image). We see that the result-
ing top ranked proposals (5 foreground images in top row)
align well to the current user click, meaning they all contain
a boundary near the click point. The average contour map of
these top ranked proposals, informs the user about areas that
have been carved well already (red lines) and which areas
may need more attention (blue lines, or contours on the true
object that remain uncolored). The user observes that most
current top-k segmentations are missing the cat’s right leg
and decides to place the next click there (second row, left-
most image). The next ranking of the proposals brings up
segmentations which cover the entire object accurately.

In the next example, we consider a frame from the “sol-
dier” video in the Segtrack-v2 dataset (Li et al. 2013). The
user decides to place a click on the right side of the object
(third row, leftmost image). This click itself retrieves a very
good segmentation for the soldier. However, to explore fur-
ther, the user continues by making more clicks. Each new
constraint eliminates the bad proposals from the previous
step, and after just 3 clicks, all the top-ranked proposals are
of good quality. See video on project webpage for more ex-
amples.

User clicking strategies
To quantitatively evaluate Click Carving, we employ both
real human annotators and simulated users with different
clicking strategies. We design a series of clicking strategies
to simulate, each of which represents a hypothesis for how
a user might efficiently convey which object boundaries re-
main missing in the top proposals. While real users are ar-
guably the best way to judge final impact of our system (and
so we use them), the simulated user models are complemen-
tary. They allow us to run extensive trials and to see at scale
which strategies are most effective. Simulated human users
have also been studied in interactive segmentation for brush
stroke placement (Kohli et al. 2012).

We categorize the user models into three groups: human
annotators, boundary clickers, and interior clickers.
Human annotators: We conduct a user study to analyze
the performance of our method by recruiting 3 human anno-
tators to work on each image. The 3 annotators included a
computer vision student and 2 non-expert users. The human
annotators were encouraged to click on object boundaries,
while observing the current best segmentations. They were
also given some time to familiarize themselves with the in-
terface, before starting the actual experiments. They had a
choice to stop by choosing one of the segmentations among
the top ranked ones or continue clicking to explore further.
A maximum budget of 10 clicks was used to limit the to-
tal annotation time, after which the annotation process stops
and a final object mask selection had to be made. The target
object was indicated to them before starting the experiment.
In the case of multiple objects, each object was chosen as the
target object in a sequential manner. We recorded the num-
ber of clicks, time spent, and the best object mask chosen by
the user during each segmentation. The user corresponding
to the median number of clicks is used for our quantitative
evaluation. The total recorded time includes the time to both
place the clicks and to select the best segmentation mask.

Boundary clickers: We design three simulated users which
operate by clicking on object boundaries. To simulate these
artificial users, we make use of the ground-truth segmenta-
tion mask of the target object. Equidistant points are sam-
pled from the ground truth object contour to define object
boundaries. Each simulated boundary clicker starts from
the same initial point. We use principal component analysis
(PCA) on the ground truth shape to find the axis of maxi-
mum shape variation. We consider a ray from the centroid
of the object mask along the direction of this principal axis.
The furthest point on the object boundary where this ray in-
tersects is chosen as the starting point. The three boundary
clickers that we design differ in how they make subsequent
clicks from this starting point. They are:

(a) Uniform clicker: To obtain uniformly spaced clicks,
we divide the total number of boundary points by the maxi-
mum click budget to obtain a fixed distance interval d. Start-
ing from the initial point and walking along the boundary,
a click is made every d points apart from the previous click
location.

(b) Submod clicker: The uniform user has a high level of
redundancy, since it clicks at locations which are still close
to the previous clicks; hence the gain in information between
two consecutive clicks might be small. Next we design a
boundary clicker that tries to impact the maximum boundary
region with each subsequent click. This is done by placing
the click at a boundary point which is furthest away from its
nearest user click among all boundary points. This resem-
bles the sub-modular subset selection problem (Krause and
Guestrin 2007), where one tries to maximize the set cover-
age while choosing a subset. We employ a greedy algorithm
to find the next best point.

(c) Active clicker: The previous two methods only looked
at the ground truth segmentation to devise a click strategy,
without taking into account the segmentation performance
after each click is added. Our active clicking strategy takes
into account the current best segmentation among the top-k
(vs. the ground truth) and uses that to make the next click
decision. It is similar in design to the Submod user, except
that it skips those boundary points which have already been
labeled correctly by the top-ranked proposal. We find that
this active simulated user comes the closest in mimicking
the actual human annotators (see results for details).
Interior clickers: A novel insight of our method is the dis-
criminative nature of boundary clicks. In contrast, default
behavior and previous user models (Wang, Han, and Col-
lomosse 2014; Bearman et al. 2015) assumes a click in the
interior of the object is well-suited. To examine this contrast
empirically, our final simulated user clicks on interior ob-
ject points. To simulate interior clicks, we uniformly sample
object pixel locations from the entire ground truth segmen-
tation mask (up to the maximum click budget) and then se-
quentially place clicks on the object of interest.

We analyze the impact of the click strategies in our results
section.

Propagating the mask through the video
Having discovered a good object mask using Click Carving
in the initial frame, the next step is to propagate this segmen-



tation to all other frames in the video. We use the foreground
propagation method of (Jain and Grauman 2014) as our seg-
mentation method primarily due to good performance and
efficiency. We also tried other methods like (Wen et al. 2015)
but found (Jain and Grauman 2014) to be most scalable for
large experiments. In its original form the method requires
a human drawn object outline in the initial frame. We in-
stead initialize the method using the region proposal which
was selected using Click Carving. This initial mask is then
propagated to the entire video to obtain the final segmen-
tation. We computed the supervoxels required by (Jain and
Grauman 2014) using (Grundmann et al. 2010) and use the
default parameter settings.

Results
Datasets and metrics
We evaluate on 3 publicly available datasets: Segtrack-v2 (Li
et al. 2013), VSB100 (Sundberg et al. 2011; Galasso et al.
2013) and iVideoSeg (Shankar Nagaraja, Schmidt, and Brox
2015). For evaluating segmentation accuracy we use the
standard intersection-over-union (IoU) overlap metric be-
tween the predicted and ground-truth segmentations. A brief
overview of the datasets:

• SegTrack v2 (Li et al. 2013): the most common bench-
mark to evaluate video object segmentation. It consists
of 14 videos with a total of 24 objects and 976 frames.
Challenges include appearance changes, large deforma-
tion, motion blur etc. Pixel-wise ground truth (GT) masks
are provided for every object in all frames.

• Berkeley Video Segmentation Benchmark (VSB100)
(Sundberg et al. 2011; Galasso et al. 2013): consists of
100 HD sequences with multiple objects in each video.
We use the “train” subset of this dataset in our experi-
ments, for a total of 39 videos and 4397 frames. This is
a very challenging dataset; interacting objects and small
object sizes make it difficult to segment and propagate.
We use the GT annotations of multiple foreground objects
provided by (Pont-Tuset, Farré, and Smolic 2015) on ev-
ery 20th frame.

• iVideoSeg (Shankar Nagaraja, Schmidt, and Brox 2015):
This new dataset consists of 24 videos from 4 different
categories (car, chair, cat, dog). Some videos have view-
point changes and others have large object motions. GT
masks are available for 137 of all 11,882 frames.

Methods for comparison
We compare with state-of-the art methods (Papazoglou and
Ferrari 2013; Shankar Nagaraja, Schmidt, and Brox 2015;
Wen et al. 2015; Lee, Kim, and Grauman 2011; Wang, Han,
and Collomosse 2014; Grundmann et al. 2010; Li et al.
2013; Jain and Grauman 2014; Godec, Roth, and Bischof
2011) and our own baselines. Below we group them into 6
groups based on the amount of human annotation effort, i.e.,
the interaction time between the human and algorithm. In
some cases, a human simply initializes the algorithm, while
in others the human is in the loop always.

(1) Unsupervised: We use the state-of-the-art method of
(Papazoglou and Ferrari 2013), which produces a single re-
gion segmentation result per video with zero human involve-
ment.
(2) Multiple segmentation: Most existing unsupervised
methods produce multiple segmentations to achieve high re-
call. We consider both 1) Static object proposals (Best-
StaticProp): where the best per frame region proposal (out
of approx 2000 proposals per frame) is chosen as the fi-
nal segmentation for that frame 2) Spatio-temporal pro-
posals (Li et al. 2013; Lee, Kim, and Grauman 2011;
Grundmann et al. 2010): These methods produce multiple
spatio-temporal region tracks as segmentation hypotheses.
To simulate a human picking the desired segmentation from
the hypotheses, we use the dataset ground truth to select
the most overlapping hypothesis. We use the duration of the
video to estimate interaction time. This is a lower bound on
cost, since the annotator has to at least watch the clip once
to select the best segmentation. For the static proposals, we
multiply the number of frames by 2.4 seconds, the time re-
quired to provide one click (Bearman et al. 2015).
(3) Scribble-based: We consider two existing methods: 1)
JOTS (Wen et al. 2015): the first frame is interactively seg-
mented using scribbles and GrabCut. The segmentation re-
sult is than propagated to the entire video. We use the tim-
ing data from the detailed study by (McGuinness and OCon-
nor 2010), who find it takes a human on average 66.43 sec-
onds per image to obtain a good segmentation with scrib-
bles. 2) iVideoSeg (Shankar Nagaraja, Schmidt, and Brox
2015): This is a recently proposed state-of-the-art technique
that uses scribbles to interactively label point trajectories.
These labels are then used to segment the object of interest.
We use the timing data kindly shared by the authors.
(4) Object outline propagation: the human outlines the
object completely to initialize the propagation algorithm
(typically in the first frame), which then propagates to the
entire video. Here we use the same method for propaga-
tion (Jain and Grauman 2014) as in our approach. Timing
data from (Jain and Grauman 2013; Lin et al. 2014) indicate
it typically takes 54-79 seconds to manually outline an ob-
ject; we use the more optimistic 54 seconds for this baseline.
(5) Bounding box: Rather than segment the object, the an-
notator draws a tight bounding box around it. The base-
line BBox-VidGrabCut uses that box to obtain a segmen-
tation for the video as follows. We learn a Gaussian Mix-
ture Model (GMM) based appearance model for foreground
and background pixels according to the box, then apply
them in a standard spatio-temporal MRF defined over pix-
els. The unaries are derived from the learnt GMM model and
contrast-sensitive spatial and temporal potentials are used
for smoothness.
(6) 1-Click based: We also consider baselines which per-
form video segmentation with a single user click. 1) Touch-
Cut (Wang, Han, and Collomosse 2014) the only prior work
using clicks for video segmentation. 2) Click-VidGrabCut:
This is similar to BBox-VidGrabCut except that we take a
small region around the click to learn the foreground model.
The background model is learnt from a small area around



Objectness Interior BBox-GrabCut BBox-Prop Uniform Submod Active Human BestProp

Segtrack-v2
Clicks 0 6.29 2 2 4.46 3.83 3.34 2.46 -

Time (sec) 0 15.09 7 7 16.98 14.58 12.72 9.37 -
IoU 42.36 52.79 59.55 67.51 75.8 76.76 76.24 78.77 80.74

VSB100
Clicks 0 7.05 2 2 5.34 5.28 5.23 4.35 -

Time (sec) 0 16.92 7 7 22.81 22.55 22.33 18.58 -
IoU 28.45 46.98 57.81 58.98 64.2 65.67 66.91 69.63 72.82

iVideoSeg
Clicks 0 5.02 2 2 3.84 3.29 3.15 2.84 -

Time (sec) 0 12.05 7 7 15.20 13.02 12.47 11.24 -
IoU 50.69 72.54 65.43 68.04 77.57 77.84 78.65 78.24 81.34

Table 1: Click-carving proposal selection quality for real users (Human), the different user click models (Interior, Uniform, Submod, Active), Objectness, and BBox baselines. With
an average of 2-4 clicks to carve the proposal boundaries, users attain IoU accuracies very close to the upper bound (BestProp). Objectness, Interior clicks, and the BBox baselines
are substantially weaker. IoU measures segmentation overlap with the ground truth; perfect overlap is 100.

Visual results for Click-Carving Visual comparisons with baselines
Figure 3: Left: Qualitative results for Click Carving. The yellow-red dots show the clicks made by human annotators. The best selected segmentation boundaries are overlayed on the
image (green). Right: Comparisons with baselines: The top example shows the segmentation we obtain with a single click as opposed to applying GrabCut segmentation with a tight
bounding box. Bottom example shows the discriminative power of clicking on boundaries by comparing it with a baseline which clicks in the interior regions. Best viewed on pdf.

image boundaries. 3) Click-STProp: To propagate the im-
pact of a user click to the entire video volume, we use the
spatio-temporal proposals from (Oneata et al. 2014). We do
this by selecting all proposals which enclose the click inside
them. Fg and bg appearance models are learnt using the se-
lected proposals and refined using a spatio-temporal MRF.
We again use the timing data from (Bearman et al. 2015),
which reports that a human takes about 2.4 seconds to place
a single click on the object of interest.

Experiments
We first test the accuracy/speed tradeoff in terms of locat-
ing the best available proposal, and compare the simulated
user models. Then we present comparisons against all the
existing methods and baselines.

Click Carving for region proposal selection: We first
present the performance of Click Carving for interactively
locating the best region proposal for the object of interest.
We do this for the first frame in all videos. In all experi-
ments, we set the total click budget to be a maximum of 10
clicks per object. For simulated users, clicks are placed se-
quentially depending on its design, until a proposal which
is within 5% overlap of the best proposal is ranked in the
top-k or the click budget is exhausted. For the human user
study, the user stops when they decide that they found a good
segmentation within the top-k ranked proposals or have ex-
hausted the click budget.

Table 1 shows the results for all datasets and compares
the performance with all simulated users. We compare both
in terms of the number of clicks and time required3 and also
how close they get to the best proposal available in the pool
of ∼2000 (BestProp). As expected, in all cases real users
achieve the best segmentation performance and require far
fewer clicks than all simulated users to achieve it. Our simu-
lated Active user, which takes into account the current state
of the segmentation, comes closest to matching the human’s
performance. Also, we see clicking uniformly on the object
boundaries requires more clicks on average than the Active
and Submodular users, which try to impact the largest object
area with each subsequent click. The Objectness baseline,
which first ranks all the proposals using objectness scores
and picks the best proposal among top-k (k=9), performs
the worst. This shows that user interaction is key to picking
good quality proposals among 1000s of candidates.

All users that operate by clicking on boundaries (Human,
Uniform, Submod, and Active), come very close to choos-
ing the best proposal in most cases. In contrast, clicking on
the interior points requires substantially more clicks—often
double the number. More importantly, the best segmentation
it obtains is much worse in quality than the best possible seg-
mentation. This makes the use of interior clicks impractical

3We use the average time per click from our human studies as
an estimate for simulated boundary clickers. For interior clicks we
use 2.4 seconds per click (Bearman et al. 2015).



Unsup. Multiple Segmentations Scribbles Outline Bounding
Box Click Based

(Papazoglou and
Ferrari 2013)

(Grundmann
et al. 2010)

(Lee et al.
2011)

(Li et al.
2013)

BestStat-
icProp

(Wen et al.
2015)

(Jain and
Grauman 2014)

BBox-
VidGrabCut

Click-
VidGrabCut

Click-
STProp Ours

Avg. Accuracy 35.24 51.89 45.26 65.92 78.48 71.91 67.86 23.04 16.81 46.18 63.65

Annot. Effort - 336.6 tracks 10.6
tracks 60 tracks 120k

proposals 1 frame 1 frame 2 clicks 1 click 1 click 2.46
clicks

Annot. Time (sec) 0 673.2 21.2 120 142.5 66.43 54 7 2.4 2.4 9.37

Table 2: Video segmentation accuracy (IoU) on all 14 videos from Segtrack-v2. See project webpage for per-video results. The last column shows our result with real human users.
The bottom two rows summarize the amount of human annotation effort required to obtain the corresponding segmentation performance, for all methods. Our approach leads to an
excellent trade-off between video segmentation accuracy and human annotation effort.

Unsup. Outline Bounding Box Click Based
(Papazoglou and

Ferrari 2013)
(Jain and

Grauman 2014)
BBox-

VidGrabCut
Click-

VidGrabCut
Click-

STProp Ours

Avg. Accuracy 17.79 61.43 14.74 11.14 26.76 56.15

Annot. Effort - 1 frame 2 clicks 1 click 1 click 4.35
clicks

Annot. Time (sec) 0 54 7 2.4 2.4 18.58

Table 3: Video segmentation accuracy (IoU) on all 39 videos in VSB100; format as in Table 2. Our approach
provides an excellent trade-off between video segmentation accuracy and human annotation effort.

here even after accounting for the fact that they may be faster
to provide than boundary clicks. This supports our hypothe-
sis that clicking on boundaries is much more discriminative
in separating good proposals from the bad ones. Whereas a
matching between an object proposal contour and a bound-
ary click will rarely be accidental, several bad proposals may
have the interior click point lie within them.

In fact, selecting the best proposal using an enclosing
bounding box around the true object (BBox-Prop, Table 1) is
more effective than clicking on interior points. This is likely
because a tight bounding box can eliminate a large number
of proposals that extend outside its boundaries. On the other
hand, an interior click cannot restrict the selected proposals
to the ones which align well to the object boundaries. Our
method outperforms the bounding box selection by a large
margin, showing the efficacy of our approach. Our approach
also significantly outperforms the standard GrabCut inter-
active image segmentation method, initialized with a tight
bounding box around the object (BBox-GrabCut, Table 1).

On Segtrack-v2 and iVideoSeg, Click Carving requires
less than 3 clicks on average to obtain a high quality segmen-
tation. For the most challenging dataset, VSB100, we obtain
good results with an average of 4.35 clicks. This shows the
potential of our method to collect large amounts of segmen-
tation data economically. The timing data reveals the effi-
ciency and scalability of our method. Below we show how
this translates to advantages for full video segmentation.

Figure 3 (left) show qualitative results for Click Carving.
In many cases (e.g., lions, soldier, cat), only a single click
is sufficient to obtain a high quality segmentation. Several
challenging instances like the cat (bottom row) and the lion
(middle row), are segmented very accurately with a single
click. These objects would otherwise require a large amount
of human interaction to obtain good segmentation (say using
a GrabCut like approach). More clicks are typically needed
when multiple objects are close-by or interacting with each
other. Still, we observe that in many cases only a small num-
ber of clicks on each object results in good segmentations.
For example, in the car video (top row), only 5 clicks are
required to obtain final segmentations for both objects.

Figure 3 (right) highlights the key strengths of our method
over two baselines. In the top example, we see that GrabCut

segmentation applied even with a very tight bounding box
fails to segment the object. On the other hand, even with
a single click, our proposed approach produces very accu-
rate segmentation. The example on the bottom shows the
importance of clicking on boundaries. Clicking on the in-
terior fails to retrieve a good proposal, because several bad
proposals also contain those interior clicks. Our boundary
clicks, which are highly discriminative, retrieve the best pro-
posal quickly.

Next we discuss the results for video segmentation, where
we propagate the results of Click Carving to the remaining
frames in the video.

Video segmentation propagation on Segtrack-v2: Table
2 shows the results on Segtrack-v2. We compare using the
standard intersection-over-union (IoU) metric with a total of
10 methods which use varying amounts of human supervi-
sion. The unsupervised algorithm (Papazoglou and Ferrari
2013) that uses no human input results in the lowest accu-
racy. Among the approaches which produce multiple seg-
mentations, BestStaticProp and (Li et al. 2013) have the best
accuracy. This is expected because these methods are de-
signed for having high recall, but it requires much more ef-
fort to sift through the multiple hypotheses to pick the best
one. For example, it is prohibitively expensive to go through
2000 segmentations for each frame to get to the accuracy
level of BestStaticProp. The method of (Li et al. 2013) pro-
duces much fewer segmentations, but still requires 12x more
time than our method to achieve comparable performance.

The scribble based method (Wen et al. 2015) achieves the
best overall accuracy on this dataset, but is 6 times more ex-
pensive than our method. The propagation method of (Jain
and Grauman 2014), which we also use as our propagation
engine, sees an increase of 4% in accuracy when propagated
from human-labeled object outlines. On the other hand, our
method which is initialized from slightly imperfect—but
much quicker to obtain—object boundaries achieves com-
parable performance. Using computer generated segmenta-
tions coupled with our Click Carving interactive selection
algorithm is sufficient to obtain high performance.

Moving on to the methods that require less human super-
vision, i.e., bounding boxes and clicks, we see that Click
Carving continues to hold advantages. In particular, BBox-
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Figure 4: Cost vs accuracy on Segtrack (left), VSB100 (center), and iVideoSeg (right). Our Click Carving based video propagation results in similar accuracy as state-of-the-art
metods, but it does so with much less human effort. Click Carving offers an excellent trade-off between cost and accuracy. Best viewed on pdf.

VidGrabCut and Click-VidGrabCut result in poor perfor-
mance, indicating that more nuanced propagation methods
are needed than just relying on appearance-based segmen-
tation alone. Click-STProp, which obtains a spatial prior by
propagating the impact of a single click to the entire video
volume, results in much better performance than solely ap-
pearance based methods. However, our method, which first
translates clicks into accurate per-frame segmentation before
propagating them, yields a 17% gain (37% relative gain).

All these trends show that our method offers an excel-
lent trade-off between segmentation performance and anno-
tation time. Figure 4 (left), visually depicts this trade-off.
All methods which result in better segmentation accuracy
than ours need substantially more human effort. Even then
the gap in the performance in relatively small. On the flip
side, the methods which require less annotation effort than
us also result in a significant degradation in segmentation
performance.

Video segmentation propagation on VSB100: Next, we
test on VSB100. This is an even more challenging dataset
and very few existing methods have reported foreground
propagation results on it. Since this dataset includes several
videos that contain multiple interacting objects in challeng-
ing conditions, Click Carving tends to require more clicks
(4.35 on average). Our method again outperforms all base-
lines which require less human effort and results in compa-
rable performance with (Jain and Grauman 2014), but at a
much lower cost. Figure 4 (center) again reflects this trend.

Video segmentation propagation on iVideoSeg: We also
compare our method on the recently proposed iVideoSeg
dataset (Shankar Nagaraja, Schmidt, and Brox 2015). We
compare with 3 methods (Grundmann et al. 2010; Godec,
Roth, and Bischof 2011; Shankar Nagaraja, Schmidt, and
Brox 2015) out of which (Shankar Nagaraja, Schmidt, and
Brox 2015) is the current state-of-the-art method for inter-
active foreground segmentation in videos. Since the videos
in the dataset are much longer (between 300-1000 frames),
we use our Click Carving method to reinitialize the segmen-
tation propagation every 100 frames. Figure 4 (right) shows
the results. We outperform both (Grundmann et al. 2010;
Godec, Roth, and Bischof 2011) by a considerable margin.
When compared with (Shankar Nagaraja, Schmidt, and Brox
2015), our method achieves similar segmentation accuracy

but with less than half the total annotation time. On aver-
age over all 24 videos, (Shankar Nagaraja, Schmidt, and
Brox 2015) takes 110.05 seconds to achieve an IoU score of
80.04. In comparison our method only takes 54.35 seconds
to reach an IoU score of 77.68.
Comparison with TouchCut: To our knowledge Touch-
Cut (Wang, Han, and Collomosse 2014) is the only prior
work which utilizes clicks for video segmentation. In that
work, the user places a click somewhere on the object,
then a level-sets technique transforms the click to an ob-
ject contour. This transformed contour is then propagated to
the remaining frames. Very few experimental results about
video segmentation are discussed in the paper, and code is
not available. Therefore, we are only able to compare with
TouchCut on the 3 Segtrack videos reported in their pa-
per. Table 4 shows the result. When initialized with a sin-
gle click, our method outperforms TouchCut in 2 out of 3
videos. With 1 more click, we perform better in all 3 videos.

TouchCut Ours (1-click) Ours (2-clicks)
birdfall2 248 213 187

girl 1691 2213 1541
parachute 228 225 198

Table 4: Comparison with TouchCut in terms of pixel error (lower is better).

Qualitative results on video segmentation propagation:
Figure 5 shows some qualitative results. The leftmost im-
age in each row shows the best region proposal chosen by
a human annotator using Click Carving. Subsequent images
show the results of segmentation propagation, when initial-
ized from the selected proposal.

Figure 5: Qualitative results for video segmentation. Best viewed on pdf.

Conclusion: We presented a novel interactive video object
segmentation technique, Click Carving using which only a
few clicks are required to obtain accurate spatio-temporal
object segmentation in videos. Our method strikes an excel-
lent balance between accuracy and human effort resulting



in large savings. Because of the ease of use even for non-
experts, our method offers great promise for scaling up video
segmentation which can be beneficial for several research
communities.
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