Hashing Hyperplane Queries to Near Points
with Applications to Large-Scale Active Learning
Supplementary Material

Prateek Jain Sudheendra Vijayanarasimhan
Algorithms Research Group Department of Computer Science
Microsoft Research, Bangalore, India University of Texas at Austin
prajain@microsoft.com svnaras@cs.utexas.edu

Kristen Grauman
Department of Computer Science
University of Texas at Austin
grauman@cs.utexas.edu

Appendix A: Proof of LSH for Hyperplane Hashing

We first recall the data-structure used for LSH. We store [-hash tables and every hash table contains
k-bit hash keys. So, the s-th hash table has a corresponding function g, : R? — 0, 1% that given a
vector, maps the vector to k-bit hash keys. Each function g is obtained by randomly sampling H
with replacement: g5 = (hs,, hsyy .-, hsy)-

Here, we show that using locality-sensitive hash functions for the distance dy(+,) along with hash
tables, we can get a (1 + €)-approximate solution to our hyperplane-to-point search problem in
sub-linear time.

In particular, we prove the following theorem:

Theorem 0.1. Let H be a family of (r,r(1 + €), p1, p2)-locality hash functions (see Definition 3.1
(Main Text)), with p1 > pa. Now given a database of N points, we set k = log, ;,, N and | = N,

%. Now using 'H along with [-hash tables over k-bits, given a hyperplane query
1_ 1

w, with probability at least 5 — -, the algorithm solves the (r,€)-neighbor problem, i.e., if there
exists a point x s.t. dg(x,w) < (1 + €)r, then the algorithm will return the point with probability
> 1/2 — 1/e. The retrieval time is bounded by O(NP).

where p =

Proof. Our proof is a simple adaption of the proof of Theorem 1, Gionis et al. [1]. We present it
here for the sake of completeness.

Following [1] we prove two properties:
P1: Let * be a point such that dg(x*,w) < r, then g;(x*) = g,;(w) for some 1 < j < [with
probability 1/2 — 1/e.
Proof: Now we know that
% log, » N _
Prlg;(x") = g;(w)] > p} =p, """ = N7,
Hence,
Prlg; (") # g;(w), ¥j] = I1; Prlg;(z*) # gj(w)] < (1 = N77)' = (1 = NN < 1/e.
Thus, P1 holds with probability > 1 — 1/e.

P2: Consider the set S = {ys.t., dg(y,w) > r(1 +€)and g;(y) = g;(w) for some j}. Then
|S|] < ¢l with probability at least 1 — 1/c.

Proof: Now if dg(y, w) > r(1 + ¢), then Pr[h(y) = h(w)] < p2. Hence, for any j,

log n
Prlg;(y) = g;(w)] < ps =p, /™ =1/N.

Thus the expected number of collisions for a single j is N - Pr[g;(y) = g,;(w)] = 1 and hence
E[|S|] = l. Therefore, by Markov’s inequality:

Pr(|S| > cl) < 1/ec.
Hence, P2 holds with probability > 1 — 1/c.

The theorem now immediately follows from P1 and P2, as by P1 we are assured of retrieving the
point x* with probability > 1/2 — 1/e, and by P2 we are assured of not looking at more than
cl = O(NP) points. O

Appendix B: Comparison of approximation guarantees

In this section we compare the bounds on retrieval for both of our hashing methods. To recall, our
1-log(1—4%)

1+ 5

H-Hash method guarantees the (1 + ¢)-approximate solution in time N?, where p <
1+ 1—7 log 4

Similarly, our EH-Hash method guarantees the (1 + €)-approximate solution in time N, where

log cos ! sin®(y/7)—log 7 . =1 .2 ..
P S TomcosTamE (Vi 1e) ogn- Note that the function cos™" sin (1/r) behaves similarly to

1 2r

5 — =%, which is twice the probability of collision for our H-Hash method when the points are
within distance 7 (see Figure 1). This indicates that the bounds for our EH-Hash method should be
significantly stronger than the corresponding bounds for our H-Hash method.

Figure 2 compares the values of p obtained by our two methods for different values of e. We can
clearly see that for our EH-Hash method the value of p is always smaller than the corresponding
value for H-Hash method. Now, we give a concrete example. Let e = 3.5. Then it can be easily
computed that if the closest point to the hyperplane is at angle of around 5°, then H-Hash will return
a point within 9° in time N'-°7 while the corresponding bound for EH-Hash method will be N8,
a significant gain.

o
3

- 'acos(sin(r"z)z)/n
e 1/2-21/n°

Probability of Collision
o o o
N W »

/

o
:
N
w

Figure 1: Comparison of the probability of collision p; for our EH-Hash method with the function

for)=3-%

r vs p for e=3.500000 r vs p for e=4.000000
r vs p for €=3.000000 1w 1 s
1 T “*:\‘:‘-—-.--..."“-"“ ‘;\ "0-0!.......‘“
Rk LT T — 0.8] - * e
\ ™, 0.8 \\
0.8 \‘. o, o,
a \~. 20.6 .‘"u < "o,
e, »," ",
0. ‘-..% e, 0.6 e,
EH-Hash pate 0.4f.++EH-Hash) ++:EH-Hash e,
04 ssH-Hash 0 H-Hash o4 «ssH-Hash
'40 0.2 0.4 20 01 02 03 04 "0 0.1 0.2 0.3

r r r

Figure 2: Comparision of the values of p for our H-Hash and EH-Hash methods with different values
of e = {3.0,3.5,4.0}

Appendix C: Randomized Sampling

Proof of Lemma 3.4. Let ij denote the randomly sampled index (using probability distribution p
defined in the lemma) at the k-th round, i.e., i) is index j with probability p;. Next, we define a

random variable G}, as,
Gr = Vi, Yiy, [Diy -
Note that,

Gil = ijvjyj/pj =o'y,
J
242

v; =
Var Gk Zp] vjyj/pj ('U y) = t2/|| jHQ = H'U”QH'!/”2 =1

Now, our final approximation for v”'y is obtained by averaging random variables G, i.e.,
1
=32 Ck
k

Now, using Bernstein’s inequality:

t

|Z (G —vTy)| > te) < exp(—te?).
k=1

Hence, if we select t = -5, then with probability at least 1 — log(1/c),

o7y —vTy| <e.

References

(D

2

3)

[1] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hashing. In

Proceedings of the 25th Intl Conf. on Very Large Data Bases, 1999.

