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Abstract

We present a feature matching algorithm that leverages

bottom-up segmentation. Unlike conventional image-to-

image or region-to-region matching algorithms, our method

finds corresponding points in an “asymmetric” manner,

matching features within each region of a segmented im-

age to a second unsegmented image. We develop a dy-

namic programming solution to efficiently identify corre-

sponding points for each region, so as to maximize both

geometric consistency and appearance similarity. The final

matching score between two images is determined by the

union of corresponding points obtained from each region-

to-image match. Our encoding for the geometric con-

straints makes the algorithm flexible when matching ob-

jects exhibiting non-rigid deformations or intra-class ap-

pearance variation. We demonstrate our image matching

approach applied to object category recognition, and show

on the Caltech-256 and 101 datasets that it outperforms

existing image matching measures by 10∼20% in nearest-

neighbor recognition tests.

1. Introduction

Finding corresponding points between images is a long-

standing research problem in computer vision, and is es-

pecially important to today’s object recognition and im-

age retrieval methods that use local feature representa-

tions. Point-to-point matching methods with local descrip-

tors (e.g., SIFT, shape context [1, 2]) are particularly valu-

able for these tasks, due to the features’ robustness to partial

occlusion, illumination changes, and clutter.

The locality of such appearance-based feature matches

yields some noisy correspondences when used alone, and

so additional geometric constraints are typically imposed

to select the consistent matching points among the initial

pool of point matches. Parameterized geometric constraints

(e.g., an affine transformation between local regions) can be

used for more reliable object instance matching and image

retrieval [1, 3, 4, 5]. For generic categories, however, geo-

metric consistency is less exact and the correct transforma-

tions are non-global, making the parametric constraints less

amenable to category-level object matching (e.g., match-

ing images of articulated giraffes, or different models of

boats). Instead, non-parametric approaches that identify a

group of matches having minimal geometric distortion may

be preferable in order to establish correspondences at the

category-level [6, 7]. In addition to measuring overall im-

age similarity, the resulting correspondences are useful to

localize the object within the two views.

However, there are two key limitations to current tech-

niques. First, pre-computing the distortion for all tentative

matching pairs is computationally expensive, making very

densely sampled feature points off-limits in practice. As a

result, most methods restrict the stronger geometric consis-

tency measures to a sparsely sampled set of features (such

as local maxima in scale-space, edge points, etc.). While

generally effective for matching object instances, sparsely

sampled interest points provide a weaker representation for

category-level matching; much evidence suggests that a

dense coverage of features is preferable [8].

Second, non-parametric methods that use pairwise mea-

sures of distortion typically identify a single group of cor-

responding points that undergo a common (low-distortion)

transformation. Yet in typical real images, each part of a

non-rigid object—or each instance of multiple objects in the

image—can undergo a different transformation, suggesting

that we should identify multiple groups of corresponding

points, each with a different geometric configuration.

We propose a dense feature matching algorithm that ex-

ploits the grouping provided by bottom-up segmentation

to compare generic objects with non-parametric geomet-

ric constraints. Our method takes two images as input and

returns a score for their similarity. One input is left un-

segmented, while the other is segmented. The matching

process begins by finding correspondences between points

within each region of the segmented image and some sub-

set of those within the unsegmented image, while efficiently

enforcing layout consistency in each of the region-to-image

match groups via an objective solvable with dynamic pro-
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(a) Asymmetric region-to-image point matching (Our approach)

?

(b) Region-to-region matching

Figure 1. (a) The proposed asymmetric region-to-image matching method, and (b) the key contrast with region-to-region matching. In a

region-to-image match, we use regions from the segmentation of one image (top row, left) to group points for which to seek matches in the

second unsegmented image (bottom row, left). In our asymmetric strategy, we exploit the fact that a group of feature points (small squares,

e.g., denoting dense SIFT) within the same segment often belong to the same object subpart, giving us an automatic way to generate

groups which when matched to the second image, should have low total geometric distortion. For example, here, the elk horns, body, and

grass are well-matched (center, larger images) even though the parts separately undergo different deformations to fit to a different category

instance in the second image. In contrast, a region-to-region match that seeks correspondences between pairs of regions from both images’

segmentations (two rows on right side), cannot exploit the bottom-up grouping as well, since it can be misled whenever the bottom-up

segmentations for the two images lack agreement.

gramming. The union of these correspondence groups are

then further evaluated for their mutual geometric consis-

tency, at which point we favor low distortion matches for

each segmented region, while allowing larger deformations

between the segmented regions of the original image.

We call our image matching “asymmetric” because only

one of the input images is segmented into regions, and its

groups of points can match within any (consistent) portion

of the other image. We find this deliberate imbalance to be

an advantage when matching: we get the grouping power

of low-level segmentation to assemble candidate regions of

points, but without suffering in the inevitable event where

the bottom-up cues produce incompatible regions for two

images of the same object (see Figure 1).

We apply our matching algorithm to exemplar-based

object category recognition on the Caltech-256 and 101

datasets. The results show our method works robustly un-

der challenging appearance and pose variations. It provides

10-20% better accuracy over existing matching-based cate-

gorization techniques, and is competitive with methods that

include more sophisticated learning components when us-

ing the same local feature types. To our knowledge, this

is the first image matching algorithm tested on Caltech-

256 that achieves a raw matching accuracy comparable to

some classifier-based algorithms. We highlight the impor-

tant conceptual differences between our approach and exist-

ing matching measures in the following section.

2. Related Work

One strategy to impose more “forgiving” geometric con-

straints for category-level feature matching is to generate

semi-local constraints, building neighborhood features cen-

tered about each individual interest point [9, 10, 11]. An-

other idea is to minimize the total pairwise distortion be-

tween correspondences; while expensive to compute opti-

mally, approximate methods have also been explored and

yield good results [7, 6]. Nonetheless, the approximate

methods still require computing pairwise candidate dis-

tortions prior to optimizing the assignment, which adds a

significant computational overhead—O(m2n2) for images

with m and n points. We show that by representing the

pairwise geometric relations between only adjacent points

using multiple “strings” in a region, we can capture suf-

ficient layout information without sacrificing efficiency; in

contrast to the above, our dynamic programming method re-

quires only O(nm2) time. The other important distinction

between our approach and [7, 6] is that it identifies geo-

metrically consistent correspondences in groups, not for the

entire image at once, while allowing deformations between

matches within different regions. This grants us more flex-

ibility when matching each part of a non-rigid object, or

when computing many-to-one matches.

To deal with non-uniform distortion patterns, a technique

proposed in [12] uses agglomerative clustering to get mul-

tiple clusters of corresponding points, each of which ex-

hibits an independent geometric configuration to the other.

However, all pairwise geometric relations among candidate

matching points must still be evaluated, and the method tar-

gets object instance matching rather than object categories.

The SIFT-flow algorithm [13] provides dense correspon-

dences between every pixel of two images, and has shown

promising results for scene matching. It is not clear whether

it will correctly match images with significant non-rigid

transformations or background clutter, since it enforces a

smoothness constraint on the displacement between nearby

corresponding points over the entire image.

Like our method, the “bundling features” algorithm [14]

also uses a region as a unit for which geometric constraints

are independently imposed. The method gives state-of-the-

art results for instance-level image retrieval; however, since



the bundled points are taken from within affine invariant re-

gions detected with MSER, they may be too local to cope

with substantial distortion, and inter-region geometric rela-

tions are not used.

A spatial mismatch kernel [15] measures image similar-

ity by counting the number of similar sub-strings within an

allowed amount of mismatch. Our approach also integrates

a form of string matching; however, unlike [15], it does not

attempt to match strings from two images using identical

ordering—which can only work well when the images have

a globally similar layout (e.g., for scenes). Additionally, our

strings are constructed within region primitives only.

Recent progress in region-to-region matching includes

a bag-of-regions scheme [16], graph matching approaches

using region hierarchies [17, 18, 19], and multiple

segmentation-based methods (e.g., [20]). Hierarchical or

multiple segmentations help reduce the risk of getting stuck

with only poor segments, and the above methods give strong

results for category recognition. In contrast to these meth-

ods, we use the region primitives in an asymmetric way,

matching region-to-image rather than region-to-region. Fig-

ure 1 highlights the potential advantages. Essentially, by

matching from a region in one image to some unrestricted

(but geometrically consistent) portion of the second image,

we can leverage the strength of bottom-up segmentation

algorithms (keeping coherent pixels of object sub-parts in

the same regions) while avoiding their known weaknesses

(oversegmenting objects with homogeneous texture, and in-

consistently decomposing different instances of the same

generic category).

3. Approach

Our method takes two images as input and returns a score

for their similarity, as well as correspondences explicitly in-

dicating their matching features. We first describe our algo-

rithm in detail (Sec. 3.1), and then discuss some important

implications of our choices (Sec. 3.2).

3.1. Region­to­Image Point Matching

We first decompose one of the two input images into

regions using bottom-up segmentation. Each region is

mapped to a set of local SIFT descriptors densely sampled

at multiple scales on a regular grid. We denote each grid

location as a “point”. Then, we represent each region by

strings of its constituent points. To more robustly represent

the 2D layout using a 1D string, we extract two strings per

region: a column-wise string and row-wise string. In the

column-wise linkage of a string, we start from the top-left

point in the region, and link nearest points along a column.

When we arrive at the end of a column, the end-point is

linked to the closest point in the next column. We repeat

this process until we reach the end-point of the last column.

Similarly, row-wise linkage links nearest points along a row.
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Figure 2. Illustration of an asymmetric string match. (a) A seg-

mented region in the left image is represented by a column-wise

string. For each point in the string, we identify candidate matches

in the (unsegmented) right image by SIFT matching. (b) We use

dynamic programming (DP) to solve for the assignment between

the string and the candidates that minimizes the total geometry

and appearance costs. Short arrows and stars denote the optimal

matches selected with DP. (Note, this example does not include

any null matches.) Best viewed in color.

When matching a region to the unsegmented image, for

each point in the string, we first find a set of candidate

matching points in the unsegmented image, as determined

by the SIFT descriptor distances across multiple scales.

Note that we only extract strings from one of the input im-

ages; the candidate matches may come from anywhere in

the second (unsegmented) image. Given these candidate

matches, we compute the optimal correspondence by us-

ing dynamic programming (DP) to minimize a cost function

that accounts for both appearance and geometric consis-

tency (to be defined below). See Figure 2 for an overview.

We obtain the solution for both the row-wise linked string

and the column-wise linked string, and take the union of the

correspondence pairs to be the region-to-image matches for

that particular region.

In the following, we define the cost function, and then

explain how the resulting correspondences are scored to

produce a single similarity value between the two images.

Match assignment cost function: The segmented im-

age produces a string for every region. Each region’s string

consists of a set of points, Pi = {p1 . . . , pli}, where li de-

notes the length of the i-th region’s string, each pk records

the image coordinates for that point, and any (pk, pk+1) de-

notes a pair of neighboring points on the string. We nor-

malize the image coordinates by the length of the longer

side of the image, making the range of coordinate val-

ues between 0 and 1. Let Ck denote the set of candidate

matching points for a point pk; each point in Ck is a fea-

ture in the unsegmented image whose SIFT descriptor is

close to the one associated with pk (e.g., C1 is the first col-

umn of patches in Figure 2(b)). Among the candidate sets



[C1, . . . , Cli ], we want to solve for the optimal matching

M∗ = {m1, . . . , mli}, where each mk ∈ Ck, such that the

assignment minimizes the following cost function:

C(P,M) =

li−1
∑

k=1

wgG(pk, pk+1, mk, mk+1) +

li
∑

k=1

waA(pk, mk)

+

li−1
∑

k=1

woO(pk, pk+1, mk, mk+1) +

li
∑

k=1

wdD(pk, mk). (1)

The cost function has two pairwise terms, G(·) and O(·),
and two unary terms, A(·) and D(·). Each term has an asso-

ciated weight (wg, wo, wa, and wd) that scales their relative

impact. The input P is fixed; we optimize over the selec-

tions in M . We now define each component term.

The geometric distortion term,

G(pk, pk+1, mk, mk+1) = ‖(pk−pk+1)−(mk−mk+1)‖2,

measures the pairwise geometric deformation between pairs

of corresponding points. This gives preference to neighbor-

ing match pairs that have similar distortion.

The ordering constraint term, O(·), penalizes the pairs

of correspondences when they violate the geometric order-

ing. Its value is 1 if the ordering of pk and pk+1 is different

from that of mk and mk+1 (in either the horizontal or ver-

tical direction), and 0 otherwise. This means, for example,

that if point pk is located left of the point pk+1, its matching

point mk should be located left of mk+1.

The appearance similarity term penalizes dissimilarity

between the SIFT descriptors extracted at the two points,

and is defined as:

A(pk, mk) =
1

1 + exp
(

−τa

(

1
µa

‖fpk
− fmk

‖2 − 1
)) , (2)

where fpk
and fmk

denote the SIFT descriptors at pk and

mk, respectively, and ‖fpk
− fmk

‖2 is determined by the

minimum distance among the descriptors at all scales ex-

tracted at the two points. The positive constants µa and τa

simply adjust the shape of sigmoid function to make the

values compatible with the other cost terms. Larger SIFT

distances induce larger cost values.

Finally, the displacement constraint term D(pk, mk) pe-

nalizes large displacement between the locations of corre-

sponding points, thereby giving some preference for objects

that occur within similar scene layouts:

D(pk, mk) =

{

‖pk − mk‖2, if ‖pk − mk‖2 > t

0, otherwise,
(3)

where t is a displacement threshold.

Our description thus far assumes that every point in the

string has a corresponding point in the second image. How-

ever, some points may not have a reliable matching point.

To handle this, we insert a “null match” candidate into each

candidate set Ck. If a null match is selected when optimiz-

ing C(P, M), it means that the associated point does not

have a real corresponding point. For every term where ei-

ther mk or mk+1 is a null match, the cost value in each sum

of Eqn. 1 is set to a constant value χ. We set the constant

χ to be larger than the typical matching costs for reliable

correspondences.

For each region Pi in the segmented image, we use

dynamic programming to minimize Eqn. 1 over the can-

didate selections for M , producing a set of correspond-

ing points for each region. The union of those correspon-

dences across all of the segmented image’s regions is then

the final set of matches between the two images. Let

{(p1, m1), . . . , (pn, mn)} denote this final set of n total

corresponding points.

Scoring the resulting correspondences: Given these

correspondences, we want to assign a single match score

between the two original images. Note that while each indi-

vidual region’s match is scored by C(P, M), the final match

score is based on the union of the regions’ matches, and

must both summarize their appearance similarity as well as

incorporate the geometric deformations between the com-

ponent region matches. For two images I1 and I2, we define

this score as a summation of match scores between all their

corresponding points:

S(I1, I2) =
1√

N1N2

n
∑

i=1

ωi sa(pi, mi) sg(pi, mi), (4)

where N1 and N2 are the total number of points in each im-

age, respectively, ωi is a weight assessing the importance

of the i-th matching pair (and will be defined below), and

the sa and sg functions score each point match’s appear-

ance and geometric similarity, respectively. High values of

S(I1, I2) mean the two images are very similar.

The appearance similarity score is determined by the

SIFT distance: sa(pi, mi) = 1 − A(pi, mi), where we are

simply mapping the cost from Eqn. 2 to a similarity value.

The inter-point geometric consistency score sg(pi, mi)
measures the average pairwise deformation between a

matching pair (pi, mi) and all other matching pairs in the

final set:

sg(pi, mi) =
1

n − 1

∑

k

1

1 + exp
(

τg

(

G(pi,pk,mi,mk)
αik

− 1
)) ,

where G(·) is as defined above, and k ∈ {1, . . . , n}\i. This

entire term gives lower similarity values to larger total dis-

tortions. The constant τg adjusts the shape of the sigmoid

function, and αik weights the pairwise deformation differ-

ently according to whether the two points are in the same

region. Specifically, if pi and pk are in the same region,

αik = α; otherwise, αik = 2α, where α is a positive



constant. This doubling of the penalty for within-region

matches enforces stronger consistency for pairs within the

same region, while allowing more distortions for the match-

ing pairs across different regions.

Finally, the weight ωi in Eqn. 4 emphasizes the sim-

ilarity of those correspondence pairs for which the point

pi has fewer initial candidates in the unsegmented image;

the intuition is that those matches will be more discrimi-

nating. For example, a point in a textureless region will

have a large number of SIFT candidate matches in the sec-

ond image, but many will be less distinctive. Thus, we set

ωi = (1 + exp(τω( |Ci|/N2

µω
− 1))−1, where |Ci| denotes

the number of initial matching candidate points for point pi

found in the unsegmented image, and N2 denotes the total

number of points in the second (unsegmented) image. The

remaining constants simply serve to adjust the shape of the

sigmoid, and provide a weight value ωi ∈ [0.5, 1].

3.2. Discussion

We stress two important aspects of our approach. First,

rather than consider only region-to-region matches between

the two images’ segmentations, we take the feature group-

ing given by each region in one image to find a geometri-

cally consistent match in any part of the second image. This

way, we can find the best matches whether or not the region

in the second image would have happened to appear in a

segmentation (see Figure 1).

Second, this very idea is what lets us efficiently solve for

matching regions using DP, without being susceptible to tra-

ditional string matching’s sensitivity. Our matches are not

string-to-string. Rather, we match a string from one region

to a set of candidate points identified by local appearance

similarity (see Figure 2). This means we avoid the pitfalls

of traditional DP-based matching, namely, sensitivity to the

strings’ start and end points, and overly strict geometric

consistency requirements. The upshot, as we demonstrate

in Sec. 4, is that ours is the first image matching method

to realize a dense matching with non-parametric geomet-

ric constraints—both aspects vital to matching images with

generic object categories.

Compared to existing approaches that compute pairwise

relations among all points, our approach substantially re-

duces the computational complexity of enforcing pairwise

geometric constraints on the candidate match pairs. This

complexity advantage does come at the price of consider-

ing geometric relations only between adjacent points on the

string when solving for the optimal match. Nonetheless,

we purposely mitigate the impact of this simplification by

both (a) using two strings per region (column- and row-wise

linked), as well as (b) using densely sampled local features

and cross-scale matches.

Our current implementation is not fully scale or rotation

invariant. While we do employ multiple scales of SIFT de-

(a) (b)

Figure 3. Example many-to-one and many-to-many matches. In

both examples, the left image is segmented, and the right remains

unsegmented. Points are color-coded according to their correspon-

dence. (a) Different parts of an object (Mandolin’s neck and base)

are matched to a single instance of the object in the second image.

(b) Multiple instances of the same category (dice) are matched.

(a) (b)

Figure 4. Examples showing robustness to the choice of which im-

age is segmented. First columns in (a) and (b) show the segmenta-

tion of each image, and the remaining two columns show matched

points (black dots) when we swap the segmentation used.

scriptors for matching, we sample feature points on a single

grid. One could easily add scale invariance by matching

across an image pyramid, or adding a multi-scale grid. We

retain orientation information (which can be useful for ob-

ject matching) since the geometric distortion term is com-

puted with respect to 2D coordinates. When using our mea-

sure for example-based recognition, we assume a class’s

pose and scale variation will be represented via the exem-

plars.

Figure 3 shows examples of many-to-one or many-to-

many object matching with our method, which illustrates

how our asymmetric approach can successfully match im-

ages that lack a strict global geometric consistency. This

flexibility is useful for matching object categories whose in-

stances have noticeable geometric variation.

A possible concern might be that because of the asym-

metry, our matching results may vary depending on which

image’s segmentation is used for matching. We find in

practice it typically produces similar final matching scores,

which makes sense given that we only use a segment as a

bounding area for imposing geometric constraints, not as a

matching primitive. Figure 4 shows two examples illustrat-

ing this point. The matching points are not identical when

we swap which image is segmented, yet we see that the

quality of the assignments is quite similar.

Lastly, we find that SIFT descriptors of the points near

the region boundary encode rich information about the

shape of the region. To make full use of those near-



boundary points, we dilate a segmented region using a

morphological operator, thereby including near-boundary

points outside the region for building a string of the region.

4. Results

We test our algorithm on the publicly available Caltech-

101 and 256 datasets. Both are among the largest bench-

marks available for object category recognition.

Implementation Details: For both datasets, we resize

the images such that their longer side is 320 pixels, and then

densely sample SIFT descriptors at every eight pixels over

four scales, generating about 1200 points per scale for the

typical image size (320 x 240). The descriptors are sampled

in square patches of sizes 16, 24, 32, and 40 pixels. We

use the segmentation method of [21], and the authors’ code.

The initial candidate matching points are those with a SIFT

descriptor distance within 1.25µa for each scale, among

all scales. We use approximate nearest neighbor search to

quickly find close SIFT descriptors, with code by [22].

We set the weight parameters in the cost function by

visually inspecting the matches for ten same-class image

pairs, mainly to understand the trade-off between the geo-

metric and appearance terms. All were fixed after this initial

inspection; we did not attempt to validate them with recog-

nition accuracy. We lock the values for all experiments and

all ∼15,000 images. The weights we use for the matching

cost terms are: wd = 4.0, wo = 1.5, wa = 1.25, wg = 1.0.

The remaining constants in Sec. 3.1 serve to massage the

sigmoid function outputs into appropriate ranges, and can

be found in the supplementary file.1

We use a simple near-neighbor classifier to perform

exemplar-based category recognition with our matching. To

avoid exhaustively matching against each of the exemplars,

for each query, we first prune the pool of classes accord-

ing to SIFT descriptor distances (we use the top 25 and 30

classes for the 256 and 101, respectively). Then, we apply

our matching method to search for the top matched exem-

plars in only those classes. To categorize a query image,

we take the sum of our method’s matching scores for the

k top-scoring exemplars in each category; the top-scoring

category is the predicted label. All of the results use k = 2,

which produced the best performance (for k = 1, 2, 3, ac-

curacy varies only by 0.5-1%).

Caltech-101 Dataset: We randomly pick 15 exemplar

and test images per category. Table 1 compares our algo-

rithm to other image matching algorithms. Here we focus

on those methods that are most closely related: all results

listed use a nearest-neighbor scheme based on image-to-

image matching scores. Our method clearly outperforms

the existing methods by a large margin. In particular, it

gives far stronger recognition accuracy than the method

1http://userweb.cs.utexas.edu/∼jaechul/

Method Accuracy (%)

SPM [23] 42.1 ± 0.81

GBDist [24] 45.2 ± 0.96

BergMatching [7] 48.0

GBVote [25] 52.0

Ours 61.3

Table 1. Comparison of our method to other image matching al-

gorithms on the Caltech-101, for 15 training images per category.

All methods listed here use nearest-neighbor classification based

on an image matching score.

Feature Method Accuracy (%)

Single

PMK+SVM [26] 50.0

SVM+kNN [27] 59.1 ± 0.6

SPM+SVM [23] 59.3

GBDist+SVM [24] 59.3 ± 1.0

NBNN (1 desc.) [28] 65.0 ± 1.14

Ours 61.3

Multiple

SKM [29] 57.3

KTA [30] 59.8

LearnDist [31] 63.2

MKL [32] 70.0

BoschTree [33] 70.4 ± 0.7

NBNN (5 desc.) [28] 72.8 ± 0.39

Table 2. Comparison of our method to best existing recognition

algorithms on the Caltech-101, for 15 exemplar images per class.

The table divides the methods into two groups, depending on

whether they use a single descriptor type or combine multiple.

Method Accuracy (%)

Todorovic-GenLearn [17] 54.0

Todorovic-DiscLearn [18] 72.0

Gu et al. [16] 65.0

Ours 61.3

Table 3. Comparison of our method to region-to-region matching

methods on the Caltech-101, for 15 training images per class.

of [7], though both algorithms include related pairwise ge-

ometric constraints. This suggests that our asymmetric

region-to-image matching is more effective for imposing

geometric constraints than an image-to-image matching ap-

proach when dealing with intra-class variations, and also

supports using more densely sampled descriptors (which is

more efficiently done in our method).

Table 2 compares existing state-of-the-art algorithms, di-

vided into two groups based on whether single (top) or

multiple (bottom) descriptor types are used. When com-

paring to methods using a single local feature type as we

do, our method is better than all previous methods, except

for the method of [28], which measures an image-to-class

distance without explicitly computing individual image-to-

image distances. In contrast, our method computes both the

similarity between images as well as the matching feature

assignment. This can be seen as an advantage, since the lo-



Method Accuracy (%)

Todorovic-GenLearn [17] 31.5

SPM+SVM [23] 34.1

NBNN (1 desc.) [28] 37.0

NBNN (5 desc.) [28] 42

BoschTree (No ROI) [33] 38.7 ± 1.3

BoschTree (ROI) [33] 43.5 ± 1.1

MKL [32] 45.8

Torodivic-DiscLearn [18] 49.5

Ours 36.3

Table 4. Comparison of our method to existing results on the

Caltech-256, for 30 training images per category.

calization functionality is potentially useful for both detec-

tion in new images as well as for feature selection among

training exemplars. Interestingly, the authors report that

their accuracy decreases by 17% when they attempt an ex-

plicit image-to-image matching using the same protocol as

the one used in their image-to-class matching [28].

When compared to the methods using multiple types of

local features (Table 2, bottom), our accuracy using a only

single feature is a bit behind the state-of-the-art, which is

perhaps expected given the known value of complemen-

tary feature types. At the same time, however, we do out-

perform some multi-feature learning methods [29, 30], and

have comparable numbers to the method of [31], which in-

cludes a sophisticated learning stage to identify discrimina-

tive features. Thus, overall, these results demonstrate that

our raw matching accuracy is quite strong.

Table 3 compares our method to those based on region-

to-region matching. Numbers reported for other algorithms

in Table 3 do not give their “raw” region-to-region match-

ing accuracy, since all incorporate learning algorithms on

top of the matching. Without learning, our algorithm out-

performs that of [17], suggesting that the image-to-region

match can indeed be more robust when matching with im-

perfect bottom-up segmentations. We obtain close accuracy

to [16], though in our case without any discriminative re-

gion selection. Compared to [18], our algorithm is about 10

points less accurate. One interesting thing here is that both

[17] and [18] rely on the same region-to-region matching

algorithm, but the more recent [18] improves over [17] by

about 20 points, apparently due to the switch from gener-

ative to discriminative learning. Since the matching algo-

rithm is the same in both cases, this suggests that the sig-

nificant jump may be largely attributable to the powerful

learning algorithm, not the matching itself.

Caltech-256 Dataset: For the Caltech-256, we ran-

domly pick 30 exemplar images and 25 test images per cat-

egory. Table 4 compares our algorithm to existing methods.

To our knowledge, we are the first to attempt to use raw

image matching to perform recognition on this challenging

dataset.

Figure 5. Examples of matching results on the Caltech-256. Left-

most image in each row is a query, following six are nearest ex-

emplars found by our method among 7680 total images. Last two

rows show queries whose nearest exemplar has the wrong label,

and yet seem to be fairly intuitive errors.

Compared to methods using a single type of local

feature, our nearest-neighbor accuracy improves over the

SVM-based method used in [23], and gives very simi-

lar results to that of [28]. Compared to region-to-region

matching-based methods, we achieve better accuracy than

the method of [17], which learns generative models for each

category based on the matching. Compared to methods

using multiple feature types [33, 32], our method lags by

only about 2.4-9.5%. Given that our recognition accuracy

is based solely on raw image matching with a single feature

type, these are very encouraging results.

Finally, for qualitative evaluation we show the nearest

neighbors for some image queries (see Figure 5). We se-

lected query images from some of the hard categories for

which previous recognition methods produce below aver-

age accuracy [23]. Our algorithm shows powerful match-

ing results for those difficult object categories under notable

intra-class variations or background clutter. Further, even

for the failure cases (as judged by the true category label

of the nearest exemplar), we find that the top matched im-

ages often show very similar geometric configurations and

appearance, meaning the mistakes made are somewhat in-

tuitive (see last two rows).



Computational Cost: Using the dense sampling de-

scribed above, we get about 4800 features per image. It

takes about 5-15 seconds to match two such images using

our MATLAB implementation on a 2.5GHz CPU. Compu-

tation time varies depending on how many initial matching

candidates are obtained via SIFT search. Segmentation us-

ing [21] required about 3-5 minutes per image, though the

authors report that much faster parallel implementations are

possible (∼2 s). When using our matching to compare to

exemplars for recognition, note that the segmentation cost

is a one-time thing; due to the asymmetry, we only need to

have segmented exemplars, and can leave all novel queries

unsegmented.

To compare the cost of our method to other matching

algorithms, we tested the computation time of the spectral

matching algorithm [6], which is known as the most effi-

cient matching algorithm among ones using a pairwise geo-

metric constraint. In our MATLAB implementation, it takes

more than 10 minutes to match images of 320 by 240 pixels

with dense features. Most of that time was consumed by the

pairwise distortion computation; once those are computed,

the spectral matching itself runs fast. Another popular and

effective matching algorithm ([7]) has been reported in [6]

to be limited in practice to running with under 50-100 fea-

tures, due to the expense of the linear programming step.

Thus, the existing most related matching algorithms that en-

force geometric constraints do not seem amenable for dense

point matching with large datasets.

5. Conclusions

The proposed method offers a novel and efficient way to

exploit segmentation for image matching, using an asym-

metric region-to-image strategy. Our experiments with two

datasets demonstrate its effectiveness in practice. We show

that when used within a simple nearest neighbor recognition

application, the matching is powerful enough to produce re-

sults better than a number of existing related methods, and

competitive with the state-of-the-art.
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