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Abstract

Computer vision systems require large amounts of manually annotated
data to properly learn challenging visual concepts. Crowdsourcing plat-
forms offer an inexpensive method to capture human knowledge and un-
derstanding, for a vast number of visual perception tasks. In this survey,
we describe the types of annotations computer vision researchers have
collected using crowdsourcing, and how they have ensured that this
data is of high quality while annotation effort is minimized. We begin
by discussing data collection on both classic (e.g., object recognition)
and recent (e.g., visual story-telling) vision tasks. We then summarize
key design decisions for creating effective data collection interfaces and
workflows, and present strategies for intelligently selecting the most
important data instances to annotate. Finally, we conclude with some
thoughts on the future of crowdsourcing in computer vision.
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1
Introduction

Data has played a critical role in all major advancements of artificial
intelligence for the past several decades. In computer vision, annotated
benchmark datasets serve multiple purposes:

• to focus the efforts of the community on the next concrete step-
ping stone towards developing visual intelligence;

• to evaluate progress and quantitatively analyze the relative merits
of different algorithms;

• to provide training data for learning statistical properties of the
visual world.

We rely on big data to move computer vision forward; in fact, we rely
on big manually labeled data. Harnessing this large-scale labeled visual
data is challenging and expensive, requiring the development of new
innovative techniques for data collection and annotation. This paper
serves to summarize the key advances in this field.

In collecting large-scale labeled datasets for advancing computer
vision, the key question is what annotations should be collected. This
includes decisions about:
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• the type of media: simple object-centric images, complex scene
images, videos, or visual cartoons;

• the type of annotations: single image-level label, detailed pixel-
level annotations, or temporal annotations;

• the scale of annotation: more images with sparse labels or fewer
images with more detailed labels.

Different types of data come with different associated costs, includ-
ing computer vision researcher time (formulating the desired dataset),
crowdsourcing researcher time (user interface design and developing
the annotation procedure) and annotator time (e.g., finding the visual
media to annotate, or providing the semantic labels). There are trade-
offs to be made between the cost of data collection and the resulting
benefits to the computer vision community.

There are two ways to optimize this tradeoff between data collec-
tion cost and the benefits for the community. The first way is to care-
fully considering how data should be collected and annotated. In some
cases annotators may not require any prior knowledge and this effort
can be outsourced to an online marketplace such as Amazon Mechan-
ical Turk1. As many other crowdsourcing platforms, Mechanical Turk
allows “requesters” to post small tasks to non-expert “workers,” for
low cost per task. The overall cost can still be significant for large-scale
data annotation efforts. This can be partially remedied by developing
improved user interfaces and advanced crowd engineering techniques.

The second way to optimize the cost-to-benefit tradeoff is directly
using existing computer vision algorithms to select which data should
be annotated. Using algorithms in the loop allows the annotation ef-
fort to focus specifically on scenarios which are challenging for current
algorithms, alleviating human effort.

The rest of the survey is organized according to these three main
questions: what, how, and which data should be annotated. Section 2
discusses key data collection efforts, focusing on the tradeoffs that have
been been made in deciding what annotations should be collected.

1http://www.mturk.com

http://www.mturk.com
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Section 3 dives into the details of how to most effectively collect the
desired annotations. Section 4 considers the question of which data
should be annotated and how data collection can be directly integrated
with algorithmic development.

The goal of this survey is to provide an overview of how crowd-
sourcing has been used in computer vision, and to enable a computer
vision researcher who has previously not collected non-expert data to
devise a data collection strategy. This survey can also help researchers
who focus broadly on crowdsourcing to examine how the latter has
been applied in computer vision, and to improve the methods that
computer vision researchers have employed in ensuring the quality and
expedience of data collection. We assume that any reader has already
seen at least one crowdsourced micro-task (e.g., on Amazon Mechani-
cal Turk), and that they have a general understanding of the goals of
artificial intelligence and computer vision in particular.

We note that most data collection on Mechanical Turk and similar
platforms has involved low payment (on the order of cents) for the
annotators, and relatively small and often simple tasks (which require
minutes to complete), so this is the type of annotation scenario that
we ask the reader to imagine. However, crowdsourcing can also involve
long-term and more complex interactions between the requesters and
providers of the annotation work.

Crowdsourcing is a fairly recent phenomenon, so we focus on re-
search in the past 5-10 years. Some of the most interesting approaches
we overview involve accounting for subjective annotator judgements
(Sections 2.1.5 and 2.3.2), collecting labels on visual abstractions (Sec-
tion 2.2.3), capturing what visual content annotators perceive to be
similar (Section 2.3.3), translating between annotations of different
types (Section 2.4), grouping the labeling of many instances (Section
3.2.1), phrasing data collection as a game (Section 3.2.2), and interac-
tively reducing the annotation effort (Section 4.1, 4.2.1). The contribu-
tions we present are both algorithmic, in terms of novel mathematical
formulations of solutions to vision problems interlaced with a human
annotation effort, and design-based, in terms of accounting for human
factors in the implementation and presentation of annotation requests.



2
What annotations to collect

The computer vision tasks we want to solve motivate what annotations
we want to collect. For example, developing computer vision algorithms
that are able to automatically distinguish images of parks from images
of living rooms requires manually annotating a large collection of im-
ages with binary scene class labels. Similarly, developing algorithms
that are able to automatically sift through a large video archive and
automatically find all instances of a person running requires annotating
a large collection of videos with the temporal extent of human actions.

In this section we describe several computer vision tasks on images
and videos, and summarize the key efforts of collecting the correspond-
ing annotations in each setting. Figures 2.1, 2.3 and 2.6 illustrate the
key tasks. Note that here we do not distinguish between collecting
annotations to be used at training or test time. In other words, the an-
notations described here can be used both to train models to perform
the corresponding task, and to quantitatively evaluate what the models
have learned.

181
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Scene classification Object classification Object detection

Image segmentation Object parts Attributes

Figure 2.1: Computer vision tasks which require the understanding of the core
visual building blocks of the image. We describe strategies for collecting the corre-
sponding annotations in Section 2.1.

2.1 Visual building blocks

The most fundamental computer vision tasks require understanding
the visual building blocks of an image. These tasks are illustrated in
Figure 2.1. In this section we describe the challenges and the key liter-
ature related to collecting the corresponding annotations required for
each of these tasks: the scene label and/or the list of objects (image
classification in Section 2.1.1), the location of all the objects (object
detection in Section 2.1.2), the spatial extent of all semantic regions
(pixel-level image segmentation in Section 2.1.3), the spatial extent of
object parts (object parts in Section 2.1.4) and the visual properties of
objects (attributes in Section 2.1.5).
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2.1.1 Image classification

The task of semantic image classification is arguably one of the most
basic tasks in semantic image understanding. It involves assigning one
(or more) class label(s) corresponding to concept(s) that appear in the
image. Early efforts on this task on the datasets Caltech-101 [Fei-Fei
et al., 2004], Caltech-256 [Griffin et al., 2007], CIFAR [Krizhevsky,
2009], 15-Scenes [Oliva and Torralba, 2001, Fei-Fei and Perona, 2005,
Lazebnik et al., 2006] and SUN [Xiao et al., 2010] relied on in-house
annotators to name the prominent object or the scene category in hun-
dreds of images. However, as the desired number of visual categories
and images increased, researchers had to develop effective crowdsourc-
ing frameworks for annotation.

Most large-scale classification datasets follow a pro-
posal/verification pipeline, where proposed images for each category
are obtained from the web and then manually verified [Deng et al.,
2009, Zhou et al., 2014]. For example, proposed examples of “violin”
images would be obtained by querying an image search engine for
“violin” or semantically related queries such as “fiddle,” “violin and
piano” or “orchestra” to obtain a large and diverse set of images [Ev-
eringham et al., 2010, Deng et al., 2009, Russakovsky et al., 2015a].
The images are then manually verified by crowd workers to make sure
they indeed contain the desired “violin” concept. This data collection
strategy provides some apriori information about the concepts likely
to be contained in the image, so the expensive annotation state can
focus on just verifying a single concept rather than annotating an
image from scratch.

In particular, the ImageNet dataset [Deng et al., 2009] contains
14,197,122 annotated images organized using the semantic hierarchy of
WordNet and annotated with the help of the crowd Mechanical Turk
workforce using the following pipeline. Proposed images are obtained
from a variety of search engines using query expansion and then man-
ually verified through consensus; Deng et al. [2009], Russakovsky et al.
[2015a] provide a detailed overview of the design decisions. The Places
dataset [Zhou et al., 2014] uses a similar strategy for annotating more
than 7 million images with 476 scene categories. Images are proposed
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using search engines and then verified in two rounds to ensure quality:
first, workers are asked to select the positive images for a given scene
category, then from among the selected images other workers are asked
to select the negative images. The second verification round filters out
any false positive images that may have been erroneously selected by
workers in the first round.

Image classification is not necessarily a straight-forward annotation
task: e.g., determining if the object in the image is indeed a “violin”
and not a “viola” may require detailed domain knowledge. Annotations
that require distinguishing fine-grained categories [Deng et al., 2009,
Krause et al., 2013, Wah et al., 2011b] require an additional worker
training/evaluation step to ensure that workers are qualified to perform
the annotation.

2.1.2 Object detection

Designing computer vision models that are able to identify a single
concept label per image is an important task; however, it is useful to
develop systems that are able to provide a more detailed understanding
of the image as well. To address this demand, tasks such as object
detection were created. In object detection, algorithms are required to
localize every instance of an object class with an axis-aligned bounding
box.

Multiple datasets provide axis-aligned bounding boxes around all
instances of target objects. PASCAL VOC’s scale of 20 target object
classes and 21,738 images (training and validation set in year 2012)
allowed the annotations to be done by a small group of in-house anno-
tators [Everingham et al., 2010, 2014]. Similarly, SUN09’s scale of 200
object classes and 12,000 annotated images allowed the annotations to
be done by a single person [Xiao et al., 2010].

In contrast, the scale of ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) object detection [Russakovsky et al., 2015a] makes
it impossible to annotate in-house. ILSVRC annotates 1 target class in
573,966 (training and validation localization set in year 2012) and 200
target classes in 80,779 images (training and validation detection set
in year 2014). An iterative crowdsourcing workflow for bounding box
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annotation was developed [Su et al., 2012, Russakovsky et al., 2015a],
which alternated between three steps: (1) a worker draws a bounding
box around a single object instance; (2) another worker verifies the
drawn box; and (3) a third worker determines if there are additional
instances of the object class that need to be annotated [Su et al., 2012].
This system was demonstrated to be significantly more efficient than
majority voting-based annotation, where multiple workers would be
asked to draw a bounding box around the same object instance and
their drawings would be reconciled into a single average bounding box.
This is due to the fact that drawing an accurate bounding box around
an object instance is several times more expensive than verifying a
bounding box annotation: thus, asking one worker to draw and a few
others to verify is cheaper than asking even just two workers to draw
independently.

Objects are fundamental building blocks of scenes. Designing pro-
cedures for efficiently annotating objects in large collections of images
enables the collection of large-scale object detection datasets, which in
turn provide benchmarks for developing and evaluating algorithms for
automatic decomposition of scenes into constituent objects.

2.1.3 Pixel-level image segmentation

An additional level of complexity arises when bounding boxes are
not sufficient and detailed pixel-level annotations are needed. There
are roughly two types of segmentation annotations: instance-level seg-
mentation and semantic segmentation, shown in Figure 2.2. Instance-
level segmentation datasets provide a pixel-level outline of every in-
stance of the target objects. Semantic segmentation datasets provide
an outline around contiguous regions sharing a similar semantic prop-
erty. Instance-level segmentation is commonly used when annotating
“things” (e.g., cars). Semantic segmentation is used both for annotating
“things” (e.g., cars without distinguishing between different instances)
as well as “stuff” (e.g., trees, sky).

Some examples of instance-level segmentation datasets include La-
belMe [Russell et al., 2007], PASCAL VOC [Everingham et al., 2010,
2014] and MS-COCO [Lin et al., 2014]. LabelMe [Russell et al., 2007]
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Figure 2.2: (Left) Instance segmentation, where each instance of “pretzel” is anno-
tated separately. (Right) Semantic segmentation, where all pixels belonging to any
“pretzel” are annotated with a single label.

recruits volunteers to draw polygons around object instances. However,
object names and the level of detail of annotation on each image are not
standardized, leading to issues with using this data to train computer
vision models. PASCAL VOC [Everingham et al., 2010, 2014] uses in-
house annotators to label 20 object classes in 6929 images; the Semantic
Boundaries Dataset extends the annotations to five times more images
from the PASCAL VOC classification and detection sets [Hariharan
et al., 2011]. The Berkeley Segmentation dataset [Arbelaez et al., 2011]
contains 500 images annotated with object boundaries. The proprietary
LotusHill dataset [Yao et al., 2007] contains detailed annotations of ob-
jects in 636,748 images and video frames. Among the largest instance-
level image segmentation dataset to date is the COCO dataset [Lin
et al., 2014] with more than 328,000 images with 2.5 million object
instances manually segmented.

Semantic segmentation datasets do not annotate individual object
instances but do provide semantic labels for every pixel in the image.
For example, SIFT Flow [Liu et al., 2011] has 2,688 images labeled using
the LabelMe annotation interface. Other datasets that provide pixel-
level semantic segmentations include MSRC [Criminisi, 2004] with 591
images and 23 classes, Stanford Background Dataset [Gould et al., 2009]
with 715 images and 8 classes, and the PASCAL-context dataset [Mot-
taghi et al., 2014] which annotates the PASCAL VOC 2010 images
with 520 additional classes, providing a semantic label for every pixel
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in the image. The original PASCAL VOC 20-class instance-level seg-
mentation dataset has also been used to evaluate semantic segmenta-
tion as well (including a 21st “background” class). In addition, datasets
such as Weizmann Horses [Borenstein and Ullman, 2002], CMU-Cornell
iCoseg [Batra et al., 2010] or the MIT object discovery dataset [Rubin-
stein et al., 2013] contain semantic figure-ground segmentations of a
single target concept per image.

To add even more detail to the segmentations, works such as [Bell
et al., 2013, 2014, 2015, Sharan et al., 2009] additionally segment and
annotate material properties of images. OpenSurfaces [Bell et al., 2013]
provides 22,214 scenes accurately labeled with segmentations, named
materials, named objects, rectified textures, reflectance judgements,
and other properties. Intrinsic Images in the Wild [Bell et al., 2014] fol-
lows up by annotating millions of crowdsourced pairwise comparisons
of material properties. Materials in Context Database [Bell et al., 2015]
uses a three-stage Mechanical Turk pipeline to annotate three million
material samples, significantly scaling up over the previous Flickr Ma-
terial Dataset [Sharan et al., 2009] benchmark. These datasets enable
research into deeper pixel-level image understanding.

Providing pixel-level segmentations is very time-consuming, and
thus collecting segmentation datasets is particularly expensive. How-
ever, such detailed annotations enable the development and evaluation
of computer vision algorithms that are able to understand the image
on a much finer level than what is possible with just simple binary
image-level annotations or with rough bounding box-level localization
of object instances.

2.1.4 Object parts

Besides annotating just the presence or location of objects in images,
researchers have additionally looked at annotating parts of objects.
While part recognition can be evaluated as a computer vision task in
its own right, more often part annotations have served to help train ob-
ject recognition models by providing correspondences between different
instances of the same object class.

Multiple efforts exist to collect semantic part annotations. Chen



188 What annotations to collect

et al. [2014] and Azizpour and Laptev [2012] expand the PASCAL
VOC dataset of [Everingham et al., 2010, 2014] by using in-house an-
notators to label parts of objects such as “tail of aeroplane,” ”beak of
bird,” or “right eye of cow.” Further, annotating parts or keypoints on
people has been particularly popular. Bourdev and Malik [2009] cre-
ate a large-scale H3D dataset of human part annotations in images by
designing an annotation interface that allows users to mark keypoints
and displays the 3D pose in real time. These keypoints are used to dis-
cover poselets, or groups of image patches tightly clustered in both 3D
joint configuration space as well as 2D image appearance space, often
corresponding to semantic parts. Follow-up work by Maji et al. [2011]
deploys the interface on Mechanical Turk and collects human keypoint
annotations on the PASCAL VOC 2010 action dataset [Everingham
et al., 2014]. Andriluka et al. [2014] annotate position of body joints,
full 3D torso and head orientation, occlusion labels for joints and body
parts, and activity labels, on more than 40,522 images of people. They
use pre-selected qualified Mechanical Turk workers to maintain data
quality, followed by manual inspection.

Part annotations provide correspondences between different in-
stances of the same object class. However, such correspondences do
not necessarily need to be semantic. Patterson and Hays [2012], Deng
et al. [2013] and Maji and Shakhnarovich [2013] use Mechanical Turk
to directly annotate spatial correspondences rather than focusing on
“nameable” parts. Maji and Shakhnarovich [2013] present subjects with
pairs of images and ask them to click on pairs of matching points in the
two instances of the category. These points may correspond to semantic
structures but not necessarily. Patterson and Hays [2012] use Mechani-
cal Turk workers to identify clusters of image patches with strong visual
and semantic similarity, providing a diverse dictionary of scene parts.
Ahmed et al. [2014] follow a similar strategy to obtain a dictionary of
object parts. Deng et al. [2013, 2016] annotate discriminative image
regions that can be used for fine-grained image classification. They do
so through a “Bubbles” game, where Mechanical Turk workers have to
classify a blurred image into one of two object categories, by revealing
only a few small circular image regions (“bubbles”).
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Part annotations allow us to go beyond naming and localizing ob-
jects to understanding their spatial configuration. Localizing the parts
of a bird and looking up their appearance in a field guide helps infer the
bird species; understanding human pose helps infer the action the hu-
man is performing. Obtaining large-scale part annotations allows the
development of computer vision models that are able to learn about
and effectively utilize information about the object configuration.

2.1.5 Attributes

Much of the research we have described thus far models where differ-
ent objects are located, but now how they look. As computer vision
progressed, researchers proposed a more descriptive approach to recog-
nition, which allows visual content to be examined at a finer level than
the object category level allows. Semantic visual attributes [Lampert
et al., 2009, Farhadi et al., 2009] were proposed as a method for de-
scribing the visual properties (often adjectives) of objects. For example,
the same category, e.g. “chair,” can have different category labels: one
chair might be red and metallic, while another is green and wooden.

Collecting attribute annotations is challenging because in contrast
to object categories, attributes might be perceived differently by differ-
ent annotators. Further, it is not trivial to say whether an attribute is
definitely present or definitely not present in the image.

While originally attributes were modeled as binary categories [Fer-
rari and Zisserman, 2007, Lampert et al., 2009, Farhadi et al., 2009,
Russakovsky and Fei-Fei, 2010, Wang and Mori, 2010], Parikh and
Grauman [2011b] proposed to model them as relative properties, where
one image has the attribute more than another. This allows the au-
thors to obtain more reliable annotations, since for many attributes, it
is more natural for a human annotator to judge an image relative to
some other image, rather than in absolute terms. For example, a per-
son who is smiling a little (hence not definitively smiling/not smiling)
might be more smiling than another person, but less than a third per-
son. In [Parikh and Grauman, 2011b], a single annotator was asked to
define an ordering on the categories of images with respect to some at-
tribute. For example, the annotator declared that Clive Owen is more
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masculine-looking than Hugh Laurie, who is more masculine-looking
than Alex Rodriguez, etc. Kovashka et al. [2012, 2015] expanded on
this idea by collecting image-level annotations in the form of pairs of
images where one image has the attribute more than the other. The
authors show this enables more accurate attribute models because it
captures the variability within each category (e.g Hugh Laurie might be
smiling more than Clive Owen in some images, but less in others). Yu
and Grauman [2014] also collect instance-level comparisons from the
crowd, but focus on very fine differences (e.g., the relative sportiness
of two images which are both sporty, e.g. running shoes). Examples of
attribute annotations are shown in Figure 2.1.

While collecting attribute annotations in a relative way eliminates
the need to make binary decisions about attribute presence or absence,
it does not solve the problem of attribute subjectivity. For example,
Farhadi et al. [2009] observe noticeable disagreement between annota-
tors over attribute presence labels. Kovashka and Grauman [2013a] find
disagreement over relative labels, and propose to explicitly account for
this disagreement by building individual attribute models for annota-
tors, via adaptation from a “generic” model trained on data collected
from the crowd. In a follow-up work, Kovashka and Grauman [2015]
discover the “shades of meaning” of the attributes by mining the un-
derlying latent factors behind the different label values that annotators
provide. To gain more in-depth understanding of why annotators dis-
agree over the labels, and as a measure of quality control, they also
collect justifications from the annotators as to why they provided a
particular label. For example, when asked why he/she labeled a shoe
image as being “ornate,” a user wrote: “The flowerprint pattern is un-
orthodox for a rubber boot and really stands out against the jet black
background.” Another user labeled a very similar image as “not or-
nate,” and justified it with: “Ornate means decorated with extra items
not inherent in the making of the object. This boot has a camo print
as part of the object, but no additional items put on it.” By account-
ing for the distinct attribute interpretations annotators employ when
annotating an image, the system can build attribute models that more
closely align with the internal human “models.”
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Before attribute-based applications can be developed, e.g., for ob-
ject recognition [Farhadi et al., 2009, Branson et al., 2010] or image
retrieval [Kovashka et al., 2012, Siddiquie et al., 2011], an attribute
vocabulary needs to be devised, i.e., a list of attribute terms for which
models will be trained. Patterson and Hays [2012] use an offline crowd-
sourcing approach, where they show annotators pairs of images and ask
them to list words that distinguish one image from the other. These
words are then aggregated to create the attribute vocabulary. Maji
[2012] also discovers a vocabulary of attributes by asking annotators
to list differences between images. Parikh and Grauman [2011a] adopt
an interactive approach to find attribute terms that are both discrimi-
native for the machine and nameable for humans. Their method auto-
matically proposes splits in visual space, which are then visualized for
humans. Annotators are asked to provide a name for the split, or to
state that the split is not nameable. The method then learns a model
for “nameability,” which is used in selecting the future splits shown to
humans for annotation. Only the terms labeled as “nameable” become
part of the final vocabulary. Regardless of the exact strategy used to
generate attribute vocabularies, a human should be employed during
some phase of the vocabulary generation process since each attribute
word should be understandable by humans, if it is to be used in human-
facing applications.

Endres et al. [2010] discuss the challenges of collecting annotations
beyond object labels, such as attribute labels, polygons, and segmen-
tations. They discuss issues involving the phrasing of tasks, annotator
attention and how to simplify the tasks, misunderstandings by foreign
language speakers, imperfect human visual processing, etc. Overall, re-
search on attributes shows that attribute annotations are beneficial for
many tasks (e.g., object recognition or image retrieval) but they require
special attention as they can be ambiguous.

2.2 Actions and interactions

So far we discussed research into annotating the constituent compo-
nents of an image: the scene label, the names and locations of objects,
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Actions classification Video understanding Cartoons

Figure 2.3: Computer vision tasks and annotation types which shed light on the vi-
sual actions and interactions. We describe strategies for collecting the corresponding
annotations in Section 2.2.

the spatial configuration of object parts, and the object descriptions
using attributes. However, simply knowing the name and location of
the different components is not enough; computer vision research aims
to go deeper and understand the actions and interactions between the
different building blocks. In this section, we focus on annotating the
actions and interactions that occur in images (Section 2.2.1) and videos
(Section 2.2.2). These types of annotations may be difficult to obtain
on real-world data, so we conclude by discussing a recent line of work
on using abstractions and cartoons to study interactions within a scene
(Section 2.2.3). Figure 2.3 summarizes the tasks.

2.2.1 Actions and interactions in images

Annotating the actions and interactions between objects in images pro-
vides a more comprehensive view of the story beyond just the ob-
ject/part locations. Earlier efforts such as Gupta et al. [2009], Ever-
ingham et al. [2010], Yao and Fei-Fei [2010], Yao et al. [2011], Le et al.
[2013] used in-house annotators to label 6-89 human actions (such as
“reading,” “riding a bike,” “playing guitar,” or “holding a guitar”).

Larger-scale efforts of detailed annotation of human actions heavily
utilize crowdsourcing. The TUHOI dataset [Le et al., 2014] contains
58,808 instances of humans interacting with one or more of 200
object classes, annotated on 10,805 images from the ILSVRC object
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detection dataset [Russakovsky et al., 2015a] using the CrowdFlower1
service. The UT Interactee dataset [Chen and Grauman, 2014,
2016] spans more than 10,000 images from SUN [Xiao et al., 2010],
PASCAL [Everingham et al., 2010], and COCO [Lin et al., 2014],
and contains bounding box annotations for the object (or another
person) that each person in the image is interacting with. Chao et al.
[2015] used Mechanical Turk to create the Humans Interacting with
Common Objects (HICO) dataset, containing 47,774 images covering
600 categories of human-object interactions (e.g., “ride a bike”) over
117 common actions (e.g., “ride,” “feed”) performed on 80 common
objects (e.g., “bike,” “bear”). Johnson et al. [2015] crowdsources
annotation of 5,000 scene graphs which encode objects (e.g., “girl”),
attributes (e.g., “girl is blonde”) and relationships between objects
(e.g., “girl is holding a racket”), each grounded to regions of the image
represented using bounding boxes. Krishna et al. [2016] expand this
effort to annotate a large-scale Visual Genome dataset, consisting
of 33,877 object categories, 68,111 attribute categories, and 42,374
relationship categories annotated across 108,077 images. Figure 2.4
shows an example of dense image annotation with objects, attributes
and relationships.

Some efforts go beyond simply naming human actions into devel-
oping creative ways to describe or explain human behavior. Vondrick
et al. [2016] instruct Mechanical Turk workers to annotate PASCAL
VOC 2012 [Everingham et al., 2014] and MS-COCO [Lin et al., 2014]
images with motivations of actions, e.g., why is the person sitting on
the couch: Is she waiting for an appointment? Watching TV? Working
on her laptop? These types of annotations of detailed interactions be-
tween different components of an image allow computer vision research
to progress beyond simply localizing the people or objects towards un-
derstanding why they are in a certain configuration in the scene.

1http://www.crowdflower.com

http://www.crowdflower.com
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Figure 2.4: Image annotation with objects, attributes and relationships along
with spatial grounding. Visualization courtesy of https://visualgenome.org. The
dataset is available from [Krishna et al., 2016].

2.2.2 Detailed video annotation

The best testbed for understanding the effects of actions and inter-
actions is in the video domain rather than static images. However,
annotating videos brings a unique set of crowdsourcing challenges. The
scale of even a small video dataset can be quite large compared to im-
ages: just 10 minutes of video contains between 18K-36K frames (at
30-60 frames per second). Obtaining just video-level labels (such as
“this is a basketball video”) may only require watching a small frac-
tion of the frames and is less expensive, but exhaustive annotation of
spatio-temporal localization of objects or human actions quickly be-
comes prohibitively expensive.

There is a lot of temporal redundancy between subsequent frames,
allowing for obtaining annotations only on key frames and interpo-
lating in between. Efforts such as LabelMe for video [Yuen et al.,
2009], VATIC (Video Annotation Tool from Irvine, California) [Von-
drick et al., 2013] or the work of Vijayanarasimhan and Grauman [2012]
exploit temporal redundancy and present cost-effective frameworks for
annotating objects in videos. The authors design interfaces for work-
ers to label objects in a sparse set of key frames in videos, combined
with either linear interpolation (in LabelMe [Yuen et al., 2009]) or non-
linear tracking (in e.g., Vondrick et al. [2013], Vijayanarasimhan and

https://visualgenome.org
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Grauman [2012]). The approaches of Vondrick and Ramanan [2011],
Vijayanarasimhan and Grauman [2012], Fathi et al. [2011] and others
additionally incorporate active learning, where the annotation inter-
faces learns to query frames that, if annotated, would produce the
largest expected change in the estimated object track.

Despite these innovations, object annotation in video remains costly
and scarce. The available datasets include YouTube-Objects [Prest
et al., 2012] with 10 object classes annotated with 6,975 bounding boxes
(in version 2.2), SegTrack [Tsai et al., 2010, Li et al., 2013] with 24 ob-
ject classes annotated with pixel-level segmentations across 976 frames
total, and the ILSVRC video dataset [Liu et al., 2015] with bound-
ing boxes annotated around all instances of 30 object classes in 5354
short video snippets (by a professional annotation company using the
VATIC [Vondrick et al., 2013] toolbox). These spatio-temporal object
tracks allow studying the physical interactions between objects and the
behavior of animate objects as they move around the scene.

The dynamic nature of videos makes them particularly well-suited
for studying actions, and thus much work has focused on annotating
human actions (rather than objects) in videos. However, using crowd-
sourcing for large-scale video annotation remains challenging due to
the size of the data and the difficulty of designing efficient interfaces.
Bandla and Grauman [2013] propose an active learning-based interface
for efficient action annotation but have not utilized it for crowdsourcing.
Some existing large-scale action datasets such as EventNet [Ye et al.,
2015] or Sports-1M [Karpathy et al., 2014] rely on web tags to provide
noisy video-level labels; others, like THUMOS [Gorban et al., 2015] or
MultiTHUMOS [Yeung et al., 2015], employ professional annotators
rather than crowdsourcing to label the temporal extent of actions.

Nevertheless, two recent large-scale video annotation efforts have
successfully utilized crowdsourcing. First, ActivityNet [Heilbron et al.,
2015] uses a proposal/verification framework similar to that of Ima-
geNet [Deng et al., 2009] where they define a target set of actions,
query for proposal videos of those actions, and then manually clean up
the results. They annotate a large dataset of 27,801 untrimmed videos
with 203 human activities classes along with their temporal extent.
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Second, Hollywood in Homes [Sigurdsson et al., 2016a,b] entirely
crowdsources the creation of a video dataset, including scripting, film-
ing and annotating videos. An Mechanical Turk worker is first in-
structed to write a script for a 30-second video containing a few target
objects and a few target actions, and another worker is then instructed
to act out the script and film the video. This method has been used to
create the Charades dataset of 9,850 videos showing activities of 267
workers from three continents. The dataset is then labeled with video
descriptions, temporally localized actions, and object classes.

The attention of the computer vision community is slowly shifting
from understanding images towards understanding videos, and from
understanding individual visual entities to understanding their actions
and interactions. Going forward, efficient crowdsourcing strategies for
large-scale video annotation will be critical for collecting the necessary
benchmarks to advance these directions.

2.2.3 Abstraction and cartoons

A recent idea for learning about high-level visual concepts (e.g., in-
teractions between objects) is to abstract away low-level visual details
using non-photorealistic “abstract art” or cartoons. This is helpful as
it allows researchers to safely ignore the non-semantic variability of vi-
sual categories (e.g., differences in the viewpoint, size, or orientation
in which an object is portrayed, or missing parts of an object due to
other objects occluding it), and to focus on the semantic differences
between categories and concepts. Zitnick and Parikh [2013] collect a
dataset of over ten thousand “clipart” scenes illustrating over a thou-
sand language-based descriptions of what is happening in a scene. To
create these clipart scenes, they ask annotators on Mechanical Turk to
“create an illustration for a children’s story book by creating a realistic
scene from the clipart below.” Annotators had 80 clipart items at their
disposal. They were also asked to provide a written description of the
scene they created, and then other annotators were asked to provide
additional illustrations for the same description. Figure 2.5 shows an
example. From this data, Zitnick and Parikh [2013] then learn what at-
tributes people might have, what objects often co-occur, what spatial



2.2. Actions and interactions 197

Figure 2.5: An example from the abstract dataset of Zitnick and Parikh [2013].
These scenes were created from 80 clipart items by Mechanical Turk workers to
illustrate the same visual scenario: “Mike and Jenny are startled as a snake tries to
get into their tent. A helicopter above is there to help.”

configurations people and objects corresponding to particular actions
obey, etc.

Since some actions may be difficult to name but easy to visualize,
Antol et al. [2014] design an interface to create cartoon depictions of
actions. They crowdsource the data collection on Mechanical Turk and
create INTERACT, a dataset of 3,172 images that contain two people
interacting, along with additional 3,000 cartoon illustrations depicting
the same 60 fine-grained actions.

Taking recognition one step further towards understanding visual
content at a human-like level, Chandrasekaran et al. [2016] collect a
dataset of “funny” scenes, in an attempt to computationally model hu-
mor. They gather a dataset of over three thousand scenes by asking
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Events/Stories Aesthetics Similarity

Figure 2.6: Computer vision tasks related to visual story-telling and modeling
subjective perception of the image. We describe strategies for collecting the corre-
sponding annotations in Section 2.3.

Mechanical Turk workers to create scenes that will be perceived by
others as funny, from a richer set of clipart pieces. For each created
scene, they also ask ten other annotators to score its degree of funni-
ness. Further, they collect a separate dataset which is the “unfunny”
counterpart to the first one. For each scene in the “funny” dataset, they
ask five annotators to replace objects in the original scene in order to
make it less funny. They verify that the resulting scenes are indeed less
funny by again collecting funniness ratings.

2.3 Visual story-telling

We have thus far discussed how to allow a computer vision system to
describe the visual content that it perceives in an image. This is done in
a fairly “documentary” style, without any creativity or generally with-
out room for subjectivity. However, images often tell entire stories, and
it is useful to be able to model or replicate the creativity involved
in story-telling, with computer vision techniques. In this section, we
overview some initial steps to story-telling involving answering ques-
tions about images (Section 2.3.1) and modeling subjectivity (Section
2.3.2) and perceptual similarity (Section 2.3.3). Figure 2.6 summarizes
these tasks.
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Figure 2.7: Some example visual questions that can be asked about an image. The
expected answer can be free-form text, a region in the image, or a multiple choice
selection.

2.3.1 Visual question answering

A recent task in computer vision is visual question answering. The
input to the system at test time is an image and a question about this
image, e.g. “Is the person in this image expecting company?” or “Is the
person in this image near-sighted?” [Malinowski and Fritz, 2014, Antol
et al., 2015, Geman et al., 2015]. Figure 2.7 illustrates this idea with
an example. This task is interesting because it is “AI-complete,” in the
sense that it requires collaboration from several fields within artificial
intelligence (AI). In order to answer the example questions above, a
computer vision systems needs to also use and represent knowledge,
perform inference, and employ natural language.

Antol et al. [2015] collect a large dataset of challenging visual ques-
tions. They show images to workers on Mechanical Turk, and ask them
to write questions about the image that would be difficult for a “smart
robot” to answer. The phrasing of the task, “Your task is to stump
this smart robot,” likely made the annotation process interesting for
the workers and helped in obtaining high-quality data [Mao et al.,
2013]. The authors separately gather ten answers per question (from
ten annotators). The performance of computational models for predict-
ing answers to questions is then evaluated based on agreement with the
human-given answers.
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[Tapaswi et al., 2016] collect questions and answers about movies.
They encourage annotators to ask high-level questions by not showing
them the movies and instead showing only text-based summaries of
each movie. In this particular data collection, workers were paid by the
hour, supposedly motivating workers to provide higher-quality data.
[Zhu et al., 2016] collect journalism-style “wh” questions, ask human
workers to provide pairs of questions and answers, and ask other work-
ers to rate the quality of the question-answer pairs. [Yu et al., 2015]
collect answers that can be used to fill blanks in descriptions of images.

In all cases, the researchers need to collect such questions that are
challenging and truly evaluate the system’s ability to respond con-
cretely to a question. Since workers might wish to optimize their mon-
etary gain per minute, they might contribute trivial questions that
either ask about unimportant visual details, or on the other extreme,
do not relate tightly to the image. While the above-mentioned works
use different strategies to obtain high-quality questions and answers
(e.g., by engaging the user, using plot summaries, or focusing on a par-
ticular type of questions) they all aim to obtain interesting questions
and accurate question-answer pairs.

In the realm of a related problem, producing image descriptions,
[Vedantam et al., 2015] develop a new metric for evaluating automated
descriptions for images, which is based on human consensus over the n-
grams to be included in the answer. They collect a large dataset with an
impressive 50 reference descriptions (sentences) per image, since eval-
uating consistency is more reliable when human knowledge is captured
via many samples.

2.3.2 Subjective human perception of images

While attributes shifted the focus of recognition towards more fine-
grained descriptions of the visual world, they still focus on describing
objects. However, there is an aspect of visual perception that goes be-
yond the pure physical content of images. For example, when looking at
photographs, people might react to the style or the emotions portrayed
in the image. Several recent approaches take a first step in analyzing
these aspects of the visual world.
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One subjective aspect of visual content is the perceived aesthetics
and artistic quality of this content. Luo et al. [2011] collect a database
of artistic photographs from professional and amateur authors. The
photographs are divided into seven content categories. The authors
ask ten annotators to label each image with its quality (high or low),
and a final aesthetic quality on the image is assigned if at least eight
of the ten annotators provided the same label. Simo-Serra et al. [2015]
collect a dataset where the measure of clothing aesthetics is obtained
from the reactions (“likes,” “favorites,” etc.) on a social network. Mon-
tagnini et al. [2012] collect the “favorites” of users on Flickr, and use
this data to build models that can identify users based on their pref-
erences. Fan et al. [2014] propose a dataset used to learn whether a
photograph is realistic or is heavily manipulated or synthetically con-
structed (“computer graphics” or “CG”). The authors collect data from
about five thousand Mechanical Turk participants in total. Each image
is annotated by around 30 annotators, an unusually high “redundancy
factor” for crowdsourced data. Fan et al. [2014] also ask the annotators
to answer 40 questions about the images, as well as to describe their
background in terms of familiarity with computer games and graphic
design. This allows the researchers to examine trends in how workers
coming from different backgrounds label the images.

We have discussed methods that analyze what images portray, but
it is also important how viewers react to them. Deza and Parikh [2015]
model the popularity or “virality” of images, and conduct a study to
determine how well humans can predict if a photograph will be popu-
lar, by having 20 annotators judge each image. Peng et al. [2015] collect
a dataset of emotions evoked by images. They ask annotators to rate
emotions on a scale, as well as to provide keywords that describe the
evoked emotions. They apply some basic form of consistency control.
Christie et al. [2014] model the user’s reactions to the outputs of auto-
mated visual tasks. In particular, they wish to develop systems whose
mistakes are not too annoying to human users. To train annoyance
models, they show annotators on Mechanical Turk triples of images,
and ask them whether they would be more annoyed if the system re-
turned images of the categories in B as opposed to in C, upon being
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queried with image A. They also ask annotators for justifications of
their labels.

A novel task just beginning to be explored in the computer vi-
sion literature is judging the implicit messages of content in visual me-
dia. Joo et al. [2014] collect annotations that capture how photographs
of politicians are perceived by viewers. Some photographs show the
subjects in a more positive light (e.g., as “competent,” “trustworthy,”
“comforting,” etc.) and others in a more negative light (as “less com-
petent,” etc.) The annotations are pairs of images, with only a single
person portrayed in both images in the pair, and a judgement from
annotators denoting which of the photographs portrays the person as
having a quality to a larger extent. The rationale for only providing
annotations on images of the same person is to avoid any personal or
political bias the annotators might have.

Collecting subjective judgements is challenging because unlike
many other types of annotations, one cannot rely on a majority vote
among annotators to prune noisy data. One common strategy used in
the above work is to simply collect labels on the same images from
many annotators, in the hope of capturing the large variability in how
humans perceive and react to visual content with respect to aesthetics,
emotion, etc. Another strategy is to actively avoid annotator bias (e.g.,
when collecting annotations regarding the portrayal of a politician),
and to focus the annotators’ effort on providing data that can be used
to learn how any human would perceive some content, i.e., to build
human-like visual understanding for machines.

2.3.3 Perceptual and concept embeddings

Rather than label images with having or not having some particular
property, some researchers model perceptual similarity in images. Un-
like previous work, where the annotator was asked to say whether an
image has some property, e.g. “naturalness” or “aesthetics,” here the
goal is to say whether (or to what degree) two images are similar.
Tamuz et al. [2011] learn a kernel matrix that captures all pairwise
similarities between objects (like one that would be used by an SVM
classifier). They learn this matrix from the crowd, by asking annotators
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which of two samples, B or C, is more similar to a query sample A.
They iteratively refine their estimated kernel, from adaptively selected
queries for the annotators. They ensure high quality of the annotations
by capping the number of tasks a user can do, and including “test”
questions with known answers (“gold standard” questions).

Wah et al. [2014] also ask the user to compare similarity, by mark-
ing which of a set of images is most similar to the query image. Wah
et al. [2015] request similarity comparisons on localized image patches
of bird species. They first select discriminative regions, then model the
probability that particular images show these regions, so they can de-
termine which images to display to the user. Wilber et al. [2015] obtain
an intuitive concept embedding by jointly optimizing an automatic low-
dimensional embedding objective, as well as maximizing the probability
of satisfying a set of human-given similarity triplet constraints.

Gomes et al. [2011] use individual users’ notions of similarity to dis-
cover object categories. Their method labels a large set of images with
newly discovered categories, from user-given similarity/dissimilarity
constraints (obtained from clustering). Each annotator only examines
a small set of images. Janssens [2010] also integrate judgement on only
a small set of images into a global judgement. They ask annotators to
rank a small subset of images with respect to a certain attribute, then
show how to aggregate a ranking of the full set of images from different
users by generating a preference matrix.

Wilson et al. [2015] model how humans perform machine tasks, like
extrapolating from function plots and finding the best fit to the data.
They make interesting observations: for example, humans pick the same
best fit as maximum likelihood, but also are at risk of “underfitting”
because they strive towards simpler solutions.

In all of these works, the goal is to learn how humans conceptu-
ally group visual content, so that the machine can also use a similar
grouping at test time. Similarly to judging attribute presence (Section
2.1.5), it is challenging to judge whether two images are similar, so sev-
eral researchers collect data for relative similarity. Much like subjective
judgements on aesthetics (Section 2.3.2), visual similarity is difficult to
explain in words, so it is best captured with examples.
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2.4 Annotating data at different levels

Usually researchers collect data that precisely matches the task they
wish to “teach” their system. For example, if the system’s task is to pre-
dict object labels in images, researchers collect human-provided object
labels on a large image dataset. However, researchers have shown that
using an auxiliary type of data could help learn the main task. Donahue
and Grauman [2011] collect “annotator rationales” which are explana-
tions about why a certain label is present in an image. For example, if
an annotator declares that a person in an image is “attractive,” they
are also asked to draw a polygon over the image to mark which parts
of the face make the person attractive. Donahue and Grauman [2011]
then create artificial training examples with that marked part removed,
and add a new SVM constraint forcing the original positive image to be
scored higher for “attractiveness” than the image with the “rationale”
region removed. The authors show that auxiliary information boosts
the accuracy of classification because the system understands a little
better what makes the category present in the image, hence can capture
the relevant features.

Since annotation at different levels could be helpful for different
tasks, Branson et al. [2014] show how to automatically “translate”
between different annotation types, e.g., between segmentations and
object part locations. Their translation involves a human in the loop:
when the system has an estimated new annotation that it translated
from another type of annotation, it presents that estimated annotation
to a human for verification.

As we showed, there is a vast number of tasks for which we need to
collect annotated data from humans. Each type of data comes with its
own challenges, and different (albeit related) techniques are required
to ensure the quality of the data. As research in crowdsourcing for
computer vision evolves, we hope the community finds a set of robust
and commonly agreed-upon strategies for how to collect data. The next
section specifically discusses approaches for data collection and quality
assurance. We also hope researchers find mechanisms through which
data for different tasks can be adapted for novel tasks, so that we can
make the most effective and efficient use of captured human knowledge.
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How to collect annotations

Having built an understanding of what annotations we may need to
collect in the computer vision community, we now turn our attention
to how these annotations should be collected. The annotation budget
is always limited. Formulating an efficient and effective crowdsourcing
framework can easily make the difference between being able to an-
notate a useful large-scale dataset that fuels computer vision research
progress, and being able to only label a small handful of images. In this
section, we describe insights derived both from the computer vision and
the human computation literature.

3.1 Interfaces for crowdsourcing and task managers

Deploying and managing annotation tasks on a crowdsourcing platform
may be a daunting job, requiring extensive UI design and backend
system management to collect the results of the annotation. While
Mechanical Turk provides a simple framework for task management,
it is often insufficient for more complex labeling tasks, such as those
requiring an iterative pipeline, e.g., one worker annotates an object
instance, another verifies it, a third determines if more instances need

205
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to be annotated, and if so, the process repeats [Su et al., 2012]. Further,
different research groups may need similar annotation interfaces which
are not always provided by Mechanical Turk and other crowdsourcing
platforms.

One of the first open-source efforts to standardize computer vision
annotation on Mechanical Turk is the toolkit of Sorokin and Forsyth
[2008]1. It provides Flash tools and a Django web-based task man-
agement server, along with an integration with the Robotics Operat-
ing System (ROS) and annotation protocols for image segmentation
and keypoint labeling. Other workflow management systems include
TurKit [Little et al., 2010]2, CLOWDER that uses decision-theoretic
optimization to dynamically control the workflow [Weld et al., 2011],
Turkomatic [Kulkarni et al., 2012], a cloud service tool from [Matera
et al., 2014], and a recent light-weight task management system Sim-
pleAMT3.

Recent efforts in workflow management have focused on tighter
feedback loops between crowd workers and the requester’s goals. NEXT
is a platform for facilitating active learning research that closely couples
annotation with re-training machine learning models [Jamieson et al.,
2015]. Glance [Lasecki et al., 2014] allows researchers to rapidly query,
sample, and analyze large video datasets through crowdsourcing: it
temporally segments the video, distributes the annotation assignments
to workers to perform in parallel, and aggregates the results within a
few minutes. Glance relies on LegionTools4, an open-source framework
to recruit and route workers from Mechanical Turk to synchronous
real-time tasks.

Besides workflow management, several interfaces for labeling visual
data are available. The LabelMe annotation tool provides an effective
interface for labeling objects in images with polygons [Russell et al.,
2007]5. Little et al. [2012] develop an interactive tool for annotating
pixel-tight contours of objects. Russakovsky et al. [2015b] and Bearman

1Available at http://vision.cs.uiuc.edu/annotation/.
2Available at http://groups.csail.mit.edu/uid/turkit/.
3Available at https://github.com/jcjohnson/simple-amt.
4Available at http://rochci.github.io/LegionTools/
5Available at http://labelme.csail.mit.edu/.

http://vision.cs.uiuc.edu/annotation/
http://groups.csail.mit.edu/uid/turkit/
https://github.com/jcjohnson/simple-amt
http://rochci.github.io/LegionTools/
http://labelme.csail.mit.edu/


3.2. Labeling task design 207

et al. [2016]6 released Javascript interfaces for multiple image labeling
tasks which integrate easily with the SimpleAMT task management
framework. Figure 3.1 illustrates some of the annotation interfaces that
are available.

In the video domain, the Janelia Automatic Animal Behavior Anno-
tator (JAABA) [Kabra et al., 2013]7 provides an open-source graphical
interface along with an interactive active learning backend for annotat-
ing animal behavior. VATIC [Vondrick et al., 2013]8 (whose use we dis-
cuss in Section 2.2.2) is a popular open-source tool for labeling objects
in video. It provides a framework for labeling objects with bounding
boxes in a sparse set of frames, and automatically tracks them over
time. iVideoSeg [Nagaraja et al., 2015] is a recent toolbox for segment-
ing objects in video at minimal human cost. Its intuitive user interface
asks annotators to provide only rough strokes rather that tight bound-
ing boxes or precise outlines, and automatically infers the extent of the
object using visual cues.

Unfortunately, often the needs of each research project are so unique
that researchers end up having to design their own unique workflow
management systems and/or annotation interfaces. However, these and
others tools can serve as good building blocks in the design.

3.2 Labeling task design

Structuring the task to optimize labeling accuracy while minimizing
worker time and effort is critical in crowdsourcing. Suboptimal design
decisions can quickly lead to very costly annotation workflows.

3.2.1 Effective grouping

Annotating a large-scale dataset can often benefit from grouping con-
cepts together, and recent literature on cost-effective annotation has
extensively explored this type of savings. Deng et al. [2014] demonstrate
that using a semantic hierarchy of concepts to exhaustively annotate

6Available at https://github.com/orussakovsky/annotation-UIs.
7Available at http://jaaba.sourceforge.net/.
8Available at http://web.mit.edu/vondrick/vatic/.

https://github.com/orussakovsky/annotation-UIs
http://jaaba.sourceforge.net/
http://web.mit.edu/vondrick/vatic/
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Figure 3.1: Sample JavaScript interfaces for image labeling [Russakovsky et al.,
2015b] available from https://github.com/orussakovsky/annotation-UIs.

https://github.com/orussakovsky/annotation-UIs
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images can yield significant time savings. Concretely, rather than ask-
ing workers individually about a concept that appears in the image,
they propose asking first high-level questions such as “is there an ani-
mal in the image?” and only after a positive answer asking about the
presence or absence of specific animals. If an image does not contain
the high-level concept (e.g., an animal) then a negative answer to this
single question automatically provides a negative answer to all the more
specific questions (e.g., “is there a cat?”). Chilton et al. [2013] provide
a way to automatically construct a hierarchical organizational strategy
that can be used in this framework. Their proposed Cascade framework
achieves 80−90% of the accuracy of human experts in a fraction of the
time, through effective parallelization across the crowd workforce.

Using the idea of grouping concepts in a different way, Boyko and
Funkhouser [2014] develop an interactive approach to labeling small
objects in dense 3D LiDAR scans of a city. The system selects a group
of objects, predicts a semantic label for it, and highlights it in an inter-
active display. The user can then confirm the label, re-label the group,
or state that the objects do not belong to the same semantic class.
The main technical challenge is developing an algorithm for selecting
groups with many objects of the same label type, arranged in patterns
that are quick for humans to recognize.

Grouping together multiple images into a single labeling task can
be similarly effective as grouping concepts. Wilber et al. [2014] demon-
strate that collecting annotations of image similarity can be signifi-
cantly more effective with a redesigned interface. Their UI shows mul-
tiple images at a time and asks workers to select two images out of
six options that are most similar to a single query image, rather than
existing UIs which ask workers to select the single best among two can-
didates. Similarly, Wigness et al. [2015] avoid labeling individual images
and instead solicit labels for a cluster of images. They first hierarchi-
cally cluster the images and then introduce a technique that searches
for structural changes in the hierarchically clustered data as the label-
ing progresses. This eliminates the latency that otherwise is inherent
in alternating between human labeling and image re-clustering [Biswas
and Jacobs, 2012, Gilbert and Bowden, 2011, Xiong et al., 2012].
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3.2.2 Gamification

Creating a game out of an annotation task can be a compelling
way to eliminate or significantly reduce the cost of crowdsourcing.
Two-player consensus-based games have been particularly popular.
The ESP game [von Ahn and Dabbish, 2005] names objects in im-
ages, Peekaboom [von Ahn et al., 2006b] segments objects, Ver-
bosity [von Ahn et al., 2006a] collects common-sense knowledge, Refer-
ItGame [Kazemzadeh et al., 2014] labels expressions referring to objects
in images, and BubbleBank [Deng et al., 2013] annotates discrimina-
tive object regions. These games usually pair crowd workers up and ask
them to collaborate on a task.

For example, in the ESP game [von Ahn and Dabbish, 2005] the
workers are both shown the same image and each asked to name the
objects they see, without seeing the other person’s responses. They
earn credit for any answers that match their partner’s. In this way,
researchers know that the object annotations are likely (a) correct,
since both workers independently agree that this concept is present in
the image, and (b) basic-level, since the game encourages quick and
simple names that are easy for the partner to guess.

In spatial annotation games such Peekaboom [von Ahn et al.,
2006b], only one worker is shown the image. This worker is also given
a target visual concept in the image (such as an object of type “cat”),
and is asked to reveal small parts of the image to their partner un-
til the partner is able to correctly guess the concept. The researchers
know that the resulting spatial annotations are likely (a) correct, since
the partner was able to correctly guess the target concept, and (b) lo-
cally discriminative, since the game encourages revealing as little of the
image as possible. This is illustrated in Figure 3.2.

However, designing, deploying and maintaining a game can also be
expensive. For example, large-scale annotation games such as EyeWire9
(an online community of players who work together to segment out
all neurons in the brain) is developed and maintained by professional
engineers.

9Available at http://eyewire.org/.

http://eyewire.org/
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Figure 3.2: A schematic illustration of Peekaboom [von Ahn et al., 2006b], a two-
player game for annotating object locations.

3.3 Evaluating and ensuring quality

An important consideration when crowdsourcing annotations is ensur-
ing the quality of the results. The three basic quality control strategies
were first described by Sorokin and Forsyth [2008]: (1) build a gold
standard, i.e., a collection of images with trusted annotations that are
secretly injected into the task and used to verify the work; (2) design a
grading task, i.e., ask workers to grade each other’s work; or (3) collect
multiple annotations for every input.

Strategy (1) of collecting a gold standard set requires preliminary
annotation by an expert which may not always be feasible due to the
added cost. In addition, the collection of a gold standard set where
workers are expected to obtain perfect accuracy may not be possible
when the visual recognition task is too difficult (e.g., fine-grained clas-
sification of bird breeds). Larlus et al. [2014] investigate how to design
gold standard questions in this setting, such that these questions are
not so easy that they are easily spotted by workers, but not so difficult
that they are poor indicators of worker motivation.

Strategy (2) of grading by other workers is particularly effective for
more complex annotation, such as bounding box or image segmenta-
tion, and has been effectively utilized by Su et al. [2012], Russakovsky
et al. [2015a] and Lin et al. [2014]. Since the original task is time-
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consuming and difficult to evaluate automatically, it is most effective
to ask one worker to perform the task and multiple others to quickly
grade the work, usually using a simple binary succeed-or-fail evalua-
tion. Efforts such as [Russell et al., 2007, Vittayakorn and Hays, 2011]
have additionally investigated automatic grading procedures to esti-
mate annotation quality in a complex task: for example, counting the
number of vertices in an annotated polygon around an object instance
can serve as a proxy of segmentation quality. Shah and Zhou [2014]
propose a monetary incentive to crowd workers to only perform tasks
on which they are confident, thereby encouraging self-grading.

Strategy (3), collecting multiple annotations per image, is the easi-
est to implement and thus has become the most popular. We focus on
it for the rest of this section.

3.3.1 Reconciling multiple annotators

Asking multiple workers to annotate the same input is a proven way
to obtain high-quality labels and to remove individual worker bias. We
describe multiple lines of research focusing on optimally reconciling
annotations obtained from multiple workers.

Sheng et al. [2008] present repeated labeling strategies of increasing
complexity, e.g., majority voting with uniform or variable worker qual-
ity estimates, round-robin strategies, and selective repeated labeling.
They demonstrate that when annotators are not perfect, as expected in
a crowdsourcing setting, selective acquisition of multiple labels followed
by majority voting according to estimated worker quality is highly effec-
tive. Later work proposed a max-margin formulation to further improve
the accuracy of majority voting [Tian and Zhu, 2015].

In research that tries to algorithmically evaluate the quality of the
annotation work, Welinder and Perona [2010], Welinder et al. [2010],
Long et al. [2013], and Wang et al. [2013] jointly model the labels
and the annotators: i.e., they estimate the quality of each label after
accumulating input from multiple annotators, and simultaneously es-
timate the quality of an annotator after comparing their labels to the
labels provided by other workers. The method of [Welinder and Perona,
2010] is applicable generally to binary, multi-valued, and even continu-
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ous annotations such as bounding boxes. Welinder et al. [2010] are able
to discover and represent groups of annotators that have different sets
of skills and knowledge, as well as groups of images that are different
qualitatively. Long et al. [2013] learn a Gaussian process to derive the
estimate of both the global label noise and the expertise of each indi-
vidual labeler. Wang et al. [2013] further propose quality-based pricing
for crowdsourced workers after estimating the amount of information
contributed by each.

Estimating worker quality can be used not only to improve the esti-
mation of the final label, but also for actively filtering the bad workers
or selecting the best ones. Efforts such as [Hua et al., 2013, Long et al.,
2013] and [Long and Hua, 2015] focus on collaborative multi-annotator
active learning (discussed further in Section 4.1). They simultaneously
predict the next sample to label as well as the next worker to solicit
for this label, based on estimated worker quality and bias. Hua et al.
[2013] explore active learning with multiple oracles (perfect workers)
in a collaborative setting, in contrast to most prior active learning ef-
forts that assume a single perfect human oracle annotator. Long and
Hua [2015] use a reinforcement learning formulation to trade off be-
tween exploration and exploitation in actively selecting both the most
informative samples and the highest-quality annotators.

Sometimes worker quality is known apriori, e.g., when having access
to both expert annotators and crowd workers. Zhang and Chaudhuri
[2015] investigate combining weak (crowd) and strong (expert) labelers.
They propose an active learning algorithm which uses the weak annota-
tors to reduce the number of label queries made to the strong annotator.
Gurari et al. [2015] provide practical guidance on how to collect and
fuse biomedical image segmentations from experts, crowdsourced non-
experts, and algorithms. Patterson et al. [2015] demonstrate that just
a single expert-annotated exemplar of a challenging object category
(e.g., a specific breed of bird) is enough to reliably use crowd workers
to annotate additional exemplars.

In this section, we have discussed how to design the data collection
process, as well as how to measure and account for different annotator
expertise and bias. In the next section, we will discuss how to optimize
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the time of the annotator, and how to most optimally involve them in
interactive learning or prediction.



4
Which data to annotate

So far, we have discussed what type of annotations to collect (i.e., ones
that benefit different computer vision tasks), and how to collect them
in a way that encourages quality and efficiency. However, even within
the same type of annotation, there are decisions to be made about
which particular data instances to label with those annotations. In
other words, we need to actively or interactively select data for labeling.

4.1 Active learning

Active learning is the task of deciding which data should be labeled so
that the classifier learns the desired concept as fast as possible. Rather
than select a random batch of unlabeled data to show an annotator for
labeling, an active learning system intelligently chooses the data that
would be most informative to the learning system. Active learning sys-
tems are usually iterative, and at each iteration, select a single sample
or a batch of samples to present to a human labeler (or an oracle). The
selection for labeling at iteration n + 1 is based on the classifier(s) at
iteration n.
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(a) Uncertainty sampling
e.g. [Tong and Koller, 2002; 
Kapoor et al., 2010]

(b) Query by committee
e.g. [Seung et al., 1992; 
Loy et al., 2012]

(c) Sampling from dense region
e.g. [Li and Guo, 2013]

Figure 4.1: Three selection criteria used in active learning methods.

4.1.1 Selection criteria

One common criterion for selecting data to label is the uncertainty of
the current classifier. The system might select that sample for labeling
for which the current classifier has the highest uncertainty over the class
label [Tong and Koller, 2002, Kapoor et al., 2010] or has the smallest
“peak” in the probability distribution over the class labels [Jain and
Kapoor, 2009]. Uncertainty sampling is illustrated in Figure 4.1 (a).
While uncertainty-based techniques are efficient, labeling an image that
is uncertain does not guarantee that this label will improve certainty on
all images. Thus, another strategy is to add all unlabeled images one at
a time to the training set, and measure the expected entropy [Kovashka
et al., 2011, Kovashka and Grauman, 2013b] or misclassification risk
[Vijayanarasimhan and Grauman, 2009] of the updated classifier over
all dataset images. This entropy is expected because we do not know the
true label of any image candidate for labeling, so we must weigh any
entropy score by how likely it is that this image receives any particular
label value [Branson et al., 2010].

Other active selection methods choose to have those instances la-
beled that lead to the largest expected model change for Gaussian
processes [Freytag et al., 2014] or conditional random fields [Vezhn-
evets et al., 2012], or the largest expected change in the classifier’s
confidence in the estimated labels [Wang et al., 2012]. Alternatively,
the system might employ an ensemble of classifiers, and query those
samples over whose labels the ensemble members most disagree [Seung



4.1. Active learning 217
A

cc
u

ra
cy

Iterations

Passive

Active

A
cc

u
ra

cy
Iterations

“What is this object?”

“Is it furry/spotty/wooden?”
“Segment and label the objects.”

A
cc

u
ra

cy

User effort (seconds)

Passive

Vanilla active

Effort-aware active

(a) A method that actively 
selects queries learns faster 
than a passive method.

(b) A method that requests labels at multiple levels 
learns faster than one which requests a single 
annotation type.

(c) A method should model the effort 
required from an annotator, to make 
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Figure 4.2: Three ways to measure the learning benefit that an active learning
method grants.

et al., 1992], as illustrated in Figure 4.1 (b). Loy et al. [2012] apply
query-by-committee to streaming data, by querying those instances
that two randomly sampled hypotheses disagree over (or that at least
one hypothesis places in an unknown class). Li and Guo [2013] propose
to request labels on images that are both uncertain and lie in a dense
feature region, i.e. have high mutual information to other unlabeled
samples, as illustrated in Figure 4.1 (c).

While many active selection methods are concerned with binary la-
beling tasks, Joshi et al. [2010] enable annotators to provide multi-class
labels in a way that is efficient both in terms of user time (by break-
ing down the multi-class questions into questions with binary answers)
and system selection time (developing an approximation for the selec-
tion formulation). This approximation relies on making an “optimistic”
[Guo and Greiner, 2007] assumption and only considers a small set of
possible label values for the unlabeled instances, instead of computing
the entropy that would result from adding the unlabeled instance to
the training set with every possible label value. They also subsample
the candidate set for labeling by clustering and only evaluating mis-
classification risk (which in turn is used to determine which images to
label) on the set of cluster representatives.

The goal of active selection is to make machine learning and com-
puter vision methods learn faster the categories at hand. This is illus-
trated in Figure 4.2 (a), where as labels are iteratively provided, the
active learning method achieves higher accuracy than a passive method
which does not actively solicit labels.
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4.1.2 Actively selecting between different types of annotations

As discussed in Section 2.4, sometimes annotations of a different type
than that which the system models can be useful for the learning task.
If so, the system needs to select both which images to label, as well
as at what level to label them. Vijayanarasimhan and Grauman [2009,
2011a] consider three types of annotations: providing object labels for
the image as a whole, without labeling which region contains the object;
labeling segments in an over-segmented image with an object label; or
fully segmenting the image and labeling all regions. They show that
their active multi-level label requests allow the system to learn more
efficiently than when active single-level or random label requests are
used. Efficiency is measured as the manual effort exerted by annota-
tors. Similarly, Kovashka et al. [2011] request labels at both the object
and attribute (see Sec. 2.1.5) levels. They use Wang and Mori [2010]’s
method which makes predictions about object labels but also mod-
els object-attribute and attribute-attribute relations. Kovashka et al.
[2011] show that requesting a single attribute label is more useful to the
system than requesting a single object label, because attribute labels af-
fect multiple object models. The conclusion drawn in Vijayanarasimhan
and Grauman [2009] and Kovashka et al. [2011] is illustrated in Fig-
ure 4.2 (b), where a method that can request among multiple types of
annotations learns faster than a single-level active learning method.

Vijayanarasimhan and Grauman [2009, 2011a] further model how
much time it would take a user to provide any of these types of la-
bels on any image. Their method is based on timing data collected on
Mechanical Turk. Their active selection formulation then incorporates
both the risk that the current classifier might misclassify the fully la-
beled, partially labeled, and unlabeled data, and the cost of obtaining
the labeled data. Figure 4.2 (c) shows that an active learning method
that does not model the user effort required might underperform a
passive method due to the expensive annotations requested, but if user
effort is modeled, active learning retains its benefit.

Several other object recognition methods also request annotations
at multiple levels. Siddiquie and Gupta [2010] also request labels at
multiple levels, and consider three types of annotations: region labels
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and two types of questions that capture context and 3D relationships,
such as “What is above water?” (the answer being “boat”) and “What is
the relationship between water and boat?” (the answer being “above”).
While they select between two label modalities in each iteration, Li and
Guo [2014] propose to only select within a single modality in each iter-
ation, then adaptively choose which modality to examine. Parkash and
Parikh [2012] propose a new efficient attribute-based active learning
approach. The system presents its predictions to the human annotator,
and if the prediction is incorrect, the annotator can provide attribute-
based feedback, e.g., “This is not a giraffe because its neck is too short.”
The system then learns that all images with even weaker “long neck”
attribute strength are also not giraffes. Biswas and Parikh [2013] use a
related approach to learn object and attribute models simultaneously.

Beyond object recognition, active learning has also been used for
3D modeling methods. Kowdle et al. [2011] develop an active learn-
ing method for 3D reconstruction, by asking annotators to perform
simpler tasks than previous methods require. In particular, annota-
tors draw scribbles of different colors to mark that regions are co-
planar/connected/occluding. Also on 3D data, Konyushkova et al.
[2015] model uncertainty based on geometric constraints as well as the
traditional feature-based uncertainty.

4.1.3 Practical concerns and selecting batches of labels

An active learning system might request a single image or multiple im-
ages to label at the same time, i.e. perform so-called batch active learn-
ing. In the latter case, the simplest approach to select the k images to
label is to just sort all unlabeled images by their estimated informa-
tiveness, and take the top k as the batch to label. However, this might
result in “myopic” active selection, so Vijayanarasimhan et al. [2010]
formulate the problem of selecting a batch to label as a “far-sighted”
continuous optimization problem. To solve this problem, they alternate
between fixing the model parameters and the set of images to label. In
the context of relative attribute annotations and learning relative at-
tribute models, Liang and Grauman [2014] show that asking humans
to fully order sets of 4 images, rather than to provide annotations on
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pairs of images, allows the system to learn relative attribute models
faster. Further, the cost of obtaining the full ordering on the 4 images
is about the same as on ordering just 2 images. Ordering the set of 4
implicitly provides 6 ordered pairs of images, but the decision to ask
for an ordering on 4 allows the annotations to be collected much more
efficiently than if 6 pairs were explicitly labeled.

While the benefits of many active learning techniques are demon-
strated in constrained, “sandbox” scenarios, Vijayanarasimhan and
Grauman [2011b, 2014] consider “live” active learning where they sup-
ply their method with just the name of an object category to learn, and
it uses the crowd and a scalable active selection method [Jain et al.,
2010, Vijayanarasimhan et al., 2014] to independently learn a detector
for this category.

In order to model the annotation interaction between human and
machine in realistic fashion, Kading et al. [2015] examine the situations
when a user might refuse to provide a label because the region whose
label is requested does not show a valid object, or the object cannot be
recognized. Similarly, Haines and Xiang [2011] model the probability
that a sample belongs to a new class.

While most of the work discussed here selects instances that will
help the computer vision system learn fast, Anirudh and Turaga [2014]
intelligently select samples to present to the user that will allow the
most efficient evaluation of the current classifier.

4.1.4 Related methods

Just like active learning, the goal of transfer learning is to make learning
efficient with respect to the annotation effort exerted. Transfer learning
attempts to reuse existing models in learning new models that may be
related to the existing ones. Gavves et al. [2015] combine active and
transfer learning, by considering a scenario where no data is available
from a new category and proposing to use zero-shot classifiers as pri-
ors for this new unseen category. They only obtain new samples from
this new category that are selected by an active learning formulation
which samples from different feature space regions defined by the SVM
decision boundary.
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In active learning, a human is the teacher, and the system is the
learner. Johns et al. [2015] flip this framework around, by employing ac-
tive learning to enable the system to teach a human user about difficult
visual concepts. Their system selects which image examples to show to
the human student, and monitors the student’s learning progress and
ability, much like an active learning system would model what the
computer has learned about visual concepts through the probability of
different classes given the image. To model the human student’s ability,
the computer teacher shows an image only, and asks the student for
a label, before revealing the true label. The goal of the teacher is to
minimize the discrepancy between the student’s idea of the distribution
of class labels for an image, and the true distribution. Many ideas that
Johns et al. [2015] use resemble active learning strategies. However, as
the visual concepts that computer vision study become more and more
specific, such that even humans cannot easily provide the labels (e.g.,
breeds of dogs or types of plants and fish), machine teaching strategies
will likely evolve in ways distinct from typical active learning.

4.2 Interactive annotation

The goal of active learning is to train the most accurate computer vision
model for as little annotation cost as possible. In this section, we focus
on a different but related task of interactive annotation and recogni-
tion. The goal is to build a collaborative human-computer system that
is able to perform a given task better than either humans or comput-
ers could when working alone. Interactive systems are most useful for
tasks which are apriori time-consuming or particularly difficult for the
average crowd worker.

4.2.1 Interactively reducing annotation time

Crowdsourcing at a large scale can quickly get very expensive, but the
cost can be significantly reduced through the use of intelligent inter-
active methods. For example, exhaustively annotating all objects with
bounding boxes and class names can be a very time-consuming task,
particularly on cluttered images. The goal of interactive annotation is
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to simplify this annotation process by utilizing computer vision models
or contextual information to interactively propose object hypotheses
that can then be quickly verified by humans. Yao et al. [2012] present
an iterative framework consisting of four steps: (1) object hypotheses
are generated via a Hough Forest-based object detector, (2) the hy-
potheses are corrected by the user, (3) the detector is incrementally
updated using the new labels, and (4) new hypotheses are generated
on the fly. The authors demonstrate the effectiveness of this framework
in several domains including surveillance, TV data, and cell microscopy.

Similarly, Russakovsky et al. [2015b] introduce a principled frame-
work for interactively annotating objects in an image given a set of
annotation constraints: desired precision (or accuracy of labeling), de-
sired utility (loosely corresponding to number of objects annotated),
and/or human cost of labeling. The annotation system incorporates
seven types of human tasks, e.g., questions such as “is there a fan in
the image?” or “is this a bed?” (referring to a particular bounding
box). Human task selection is formulated as a Markov Decision Pro-
cess, which automatically trades off between the expected increase in
annotation quality and the human time required to answer the ques-
tion.

Pixel-level segmentation is similarly a notoriously time-consuming
task for humans. Rubinstein et al. [2012] and Jain and Grauman [2016]
introduce active image segmentation systems for semantically segment-
ing a large set of related images. The proposed systems actively solicit
human annotations for images which are likely to be most useful in
propagating segmentations to other images. Nagaraja et al. [2015] use
motion feature cues to effectively segment objects in large-scale videos.

Jain and Grauman [2013] observe that while drawing detailed ob-
ject segmentations is always very slow for humans, sometimes this is
unnecessary. On particularly simple images, a computer vision model
may be able to accurately segment out the target object given just a
bounding box (which is much faster to draw) or a sloppy object contour
from a human. Given image(s) that need to be segmented as quickly
as possible, the proposed framework uses image features to predict
the easiest annotation modality that will be sufficiently strong to yield
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high-quality segmentations. Extending this method, Gurari et al. [2016]
develop a system for automatically predicting the segmentation qual-
ity, allowing for more informed decisions about whether a computer
segmentation suffices or human feedback is needed.

Further, the time-consuming effort of annotating object parts or
keypoints can be alleviated by automatically exploiting the spatial re-
lationships between object parts. Branson et al. [2011] present a system
for iterative labeling and online learning of part models, which updates
and displays in real time.

In addition to object recognition and segmentation, active selection
has also been used for image retrieval. Kovashka and Grauman [2013b]
extend Kovashka et al. [2012]’s method for attribute-based relevance
feedback, by engaging the user in a visual relative 20-questions game.
The goal of the game is for the system to guess which image the user
is looking for. The relative questions are composed of an image and an
attribute, like “Is the shoe you are looking for more or less shiny than
this image?” This is illustrated in Figure 4.3 (a).

Kovashka and Grauman [2013b]’s active selection method works
in real time, which is necessary for an image search application. To
accomplish this, rather than consider all possible image-attribute ques-
tions, the systems pairs each attribute with a single image and only
considers as many questions as there are attributes. The image associ-
ated with an attribute is that image which currently best exemplifies
the system’s guess about the desired attribute strength. Kovashka and
Grauman [2013b] demonstrate that this question-answering approach
allows the user to find the image they are looking for with smaller user
effort compared to providing free-form feedback as in Kovashka et al.
[2012].

4.2.2 Interactively improving annotation accuracy

In addition to reducing annotation time, interactive methods can also
enable average crowd workers to perform tasks that are typically chal-
lenging for non-domain experts.

For example, accurate domain-specific fine-grained recognition, e.g.,
determining the breed of bird depicted in the image, is nearly impos-
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(a) Actively selecting the questions that improve the 
system’s knowledge about all database images, in the 
case of search [Kovashka and Grauman, 2013b]. 

(b) Interactively requesting those labels that will 
most quickly enable the system to classify a 
particular image [Branson et al., 2010].

Figure 4.3: Two methods that use active selection.

sible for an untrained worker. Branson et al. [2010] use an interactive
framework combining attribute-based human feedback with a computer
vision classifier to perform this task. While humans may not be able to
identify the type of bird depicted, they are able to accurately answer
attribute-based questions such as “Is the bird’s belly black?” or “Is the
bill hooked?” The (imperfect) computer vision classifier is combined
with (potentially noisy) human responses by making two assumptions:
(1) human error rates are independent of image appearance, and (2) hu-
man answers are independent of each other. The method is illustrated
in Figure 4.3 (b).
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Expanding upon this work, Mensink et al. [2011] learn a hierarchical
structure model over the attributes, to ask more informative questions
and enable faster and more accurate classification. Wah et al. [2011a]
additionally incorporate object part locations, where the user is addi-
tionally asked to click on an object part instead of answering a binary
attribute question. Wah and Belongie [2013] further extend this frame-
work to enable zero-shot recognition, where computer vision classifiers
are trained to recognize the attributes rather than the target classes.

Attribute-based feedback has also been used for interactive cluster-
ing, where the goal is not to name the object present in the image but
rather to cluster a large collection of images in a meaningful way [Lad
and Parikh, 2014].

However, in some recognition domains such as fine-grained tree clas-
sification, it is difficult for humans not only to provide the class label
but even to provide semantic attribute labels. Instead, Lee and Cran-
dall [2014] develop a system for tree identification that solicits humans
for similarity feedback (which trees appear similar to a query tree)
rather than attribute-based feedback. This feedback is used to learn a
new computer vision distance metric that can then quickly recognize
similar trees across multiple images.

Such interactive methods can be effectively used to utilize crowd
workers to perform complex image annotation that otherwise would
not be possible without extensive training.



5
Conclusions

In this survey, we described the computer vision tasks that have bene-
fited from crowdsourcing annotations, i.e., from inexpensively obtaining
massive datasets by distributing the labeling effort among non-expert
human annotators. We described the common strategies for making the
data collection efficient for both the researchers requesting the labels,
and the annotators providing them. We also discussed how the quality
of annotations and the skill of annotators can be evaluated, and how
annotators can be encouraged to provide high-quality data. Finally, we
discussed how to make the learning of computer vision models data-
efficient, by intelligently selecting on which data to request labels, and
by enabling vision systems to learn with interactive help from a human.

The extensive body of literature summarized in this survey pro-
vides a solid starting block for designing a data collection strategy
for a new computer vision task. Researchers have adopted some com-
mon approaches for preventing noisy data from entering the annotation
pool (e.g., by including gold standard questions or reconciling labels
from multiple annotators), and these approaches work reasonably well.
However, with small exceptions, computer vision methods have not ac-
counted for the large number of “human factors” that might affect the
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quality of the data that humans provide, such as attention, fatigue,
miscommunication, etc. Further, researchers have not yet found a way
to truly capture the vast human knowledge in a way that does not
reduce this knowledge to a set of labels. We suspect that as computer
vision methods become more integrated with respect to different fields
of (artificial) intelligence like knowledge representation and language
processing and generation, so the crowdsourcing efforts in computer
vision will capture a more integrated notion of human intelligence.



References

E. Ahmed, S. Maji, G. Shakhnarovich, and L. S. Davis. Using human knowl-
edge to judge part goodness: Interactive part selection. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshop:
Computer Vision and Human Computation, 2014.

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose esti-
mation: New benchmark and state of the art analysis. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2014.

R. Anirudh and P. Turaga. Interactively test driving an object detector:
Estimating performance on unlabeled data. In IEEE Winter Conference
on Applications of Computer Vision (WACV), 2014.

S. Antol, C. L. Zitnick, and D. Parikh. Zero-shot learning via visual abstrac-
tion. In European Conference on Computer Vision (ECCV). 2014.

S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick,
and D. Parikh. VQA: Visual Question Answering. In IEEE International
Conference on Computer Vision (ICCV), 2015.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and
hierarchical image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 33(5), 2011.

H. Azizpour and I. Laptev. Object detection using strongly-supervised
deformable part models. In European Conference on Computer Vision
(ECCV), 2012.

228



References 229

S. Bandla and K. Grauman. Active learning of an action detector from
untrimmed videos. In IEEE International Conference on Computer Vi-
sion (ICCV), 2013.

D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg: Interactive
co-segmentation with intelligent scribble guidance. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010.

A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What’s the point:
Semantic segmentation with point supervision. In European Conference on
Computer Vision (ECCV), 2016.

S. Bell, P. Upchurch, N. Snavely, and K. Bala. OpenSurfaces: A richly an-
notated catalog of surface appearance. ACM Transactions on Graphics
(SIGGRAPH), 32(4), 2013.

S. Bell, K. Bala, and N. Snavely. Intrinsic images in the wild. ACM Transac-
tion on Graphics (SIGGRAPH), 33(4), 2014.

S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material recognition in the wild
with the materials in context database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

A. Biswas and D. Jacobs. Active image clustering: Seeking constraints from
humans to complement algorithms. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2012.

A. Biswas and D. Parikh. Simultaneous active learning of classifiers and
attributes via relative feedback. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013.

E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In Eu-
ropean Conference on Computer Vision (ECCV), 2002.

L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d
human pose annotations. In IEEE International Conference on Computer
Vision (ICCV), 2009.

A. Boyko and T. Funkhouser. Cheaper by the dozen: Group annotation of
3D data. In ACM Symposium on User Interface Software and Technology
(UIST), 2014.

S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Perona, and
S. Belongie. Visual Recognition with Humans in the Loop. In European
Conference on Computer Vision (ECCV), 2010.

S. Branson, P. Perona, and S. Belongie. Strong supervision from weak annota-
tion: Interactive training of deformable part models. In IEEE International
Conference on Computer Vision (ICCV), 2011.



230 References

S. Branson, K. Eldjarn Hjorleifsson, and P. Perona. Active annotation trans-
lation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

A. Chandrasekaran, A. Kalyan, S. Antol, M. Bansal, D. Batra, C. L. Zitnick,
and D. Parikh. We are humor beings: Understanding and predicting visual
humor. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Y.-W. Chao, Z. Wang, Y. He, J. Wang, and J. Deng. Hico: A benchmark for
recognizing human-object interactions in images. In IEEE International
Conference on Computer Vision (ICCV), 2015.

C.-Y. Chen and K. Grauman. Predicting the location of “interactees” in
novel human-object interactions. In Asian Conference on Computer Vision
(ACCV), 2014.

C.-Y. Chen and K. Grauman. Subjects and their objects: Localizing inter-
actees for a person-centric view of importance. Computing Research Repos-
itory (CoRR), abs/1604.04842, 2016.

X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect
what you can: Detecting and representing objects using holistic models
and body parts. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

L. B. Chilton, G. Little, D. Edge, D. S. Weld, and J. A. Landay. Cascade:
Crowdsourcing taxonomy creation. In SIGCHI Conference on Human Fac-
tors in Computing Systems, 2013.

G. Christie, A. Parkash, U. Krothapalli, and D. Parikh. Predicting user an-
noyance using visual attributes. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

A. Criminisi. Microsoft Research Cambridge (MSRC) object recognition im-
age database (version 2.0). http://research.microsoft.com/vision/
cambridge/recognition, 2004.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: a
large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained
recognition. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2013.

J. Deng, O. Russakovsky, J. Krause, M. Bernstein, A. C. Berg, and L. Fei-Fei.
Scalable multi-label annotation. In SIGCHI Conference on Human Factors
in Computing Systems, 2014.

http://research.microsoft.com/vision/cambridge/recognition
http://research.microsoft.com/vision/cambridge/recognition


References 231

J. Deng, J. Krause, M. Stark, and L. Fei-Fei. Leveraging the wisdom of the
crowd for fine-grained recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 38(4), April 2016.

A. Deza and D. Parikh. Understanding image virality. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

J. Donahue and K. Grauman. Annotator rationales for visual recognition. In
IEEE International Conference on Computer Vision (ICCV), 2011.

I. Endres, A. Farhadi, D. Hoiem, and D. A. Forsyth. The benefits and chal-
lenges of collecting richer object annotations. In IEEE Computer Vision
and Pattern Recognition (CVPR) Workshops, 2010.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The Pascal Visual Object Classes (VOC) challenge. International Journal
of Computer Vision (IJCV), 88(2), June 2010.

M. Everingham, , S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The Pascal Visual Object Classes (VOC) challenge - a
Retrospective. International Journal of Computer Vision (IJCV), 2014.

S. Fan, T.-T. Ng, J. S. Herberg, B. L. Koenig, C. Y.-C. Tan, and R. Wang. An
automated estimator of image visual realism based on human cognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth. Describing Objects by
Their Attributes. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining self training
and active learning for video segmentation. In British Machine Vision
Conference (BMVC), 2011.

L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural
scene categories. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2005.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from
few examples: an incremental bayesian approach tested on 101 object cat-
egories. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2004.

V. Ferrari and A. Zisserman. Learning visual attributes. In Advances in
Neural Information Processing Systems (NIPS), 2007.

A. Freytag, E. Rodner, and J. Denzler. Selecting influential examples: Active
learning with expected model output changes. In European Conference on
Computer Vision (ECCV). 2014.



232 References

E. Gavves, T. Mensink, T. Tommasi, C. G. M. Snoek, and T. Tuytelaars.
Active transfer learning with zero-shot priors: Reusing past datasets for fu-
ture tasks. In IEEE International Conference on Computer Vision (ICCV),
2015.

D. Geman, S. Geman, N. Hallonquist, and L. Younes. Visual turing test for
computer vision systems. Proceedings of the National Academy of Sciences,
112(12), 2015.

A. Gilbert and R. Bowden. igroup: Weakly supervised image and video group-
ing. In IEEE International Conference on Computer Vision (ICCV), 2011.

R. G. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering. In
Advances in Neural Information Processing Systems (NIPS), 2011.

A. Gorban, H. Idrees, Y.-G. Jiang, A. Roshan Zamir, I. Laptev, M. Shah,
and R. Sukthankar. THUMOS challenge: Action recognition with a large
number of classes. http://www.thumos.info/, 2015.

S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric
and semantically consistent regions. In IEEE International Conference on
Computer Vision (ICCV), 2009.

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset.
Technical Report 7694, Caltech, 2007.

Y. Guo and R. Greiner. Optimistic active-learning using mutual information.
In International Joint Conference on Artificial Intelligence (IJCAI), 2007.

A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-object inter-
actions: Using spatial and functional compatibility for recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 31
(10), Oct 2009.

D. Gurari, D. H. Theriault, M. Sameki, B. Isenberg, T. A. Pham, A. Pur-
wada, P. Solski, M. L. Walker, C. Zhang, J. Y. Wong, and M. Betke. How
to collect segmentations for biomedical images? a benchmark evaluating
the performance of experts, crowdsourced non-experts, and algorithms. In
IEEE Winter Conference on Applications of Computer Vision (WACV),
2015.

D. Gurari, S. D. Jain, M. Betke, and K. Grauman. Pull the plug? predicting
if computers or humans should segment images. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

T. S. Haines and T. Xiang. Active learning using dirichlet processes for rare
class discovery and classification. In British Machine Vision Conference
(BMVC), 2011.

http://www.thumos.info/


References 233

B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik. Semantic con-
tours from inverse detectors. In IEEE International Conference on Com-
puter Vision (ICCV), 2011.

F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles. ActivityNet: A
Large-Scale Video Benchmark for Human Activity Understanding. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

G. Hua, C. Long, M. Yang, and Y. Gao. Collaborative active learning of a
kernel machine ensemble for recognition. In IEEE International Conference
on Computer Vision (ICCV), 2013.

P. Jain and A. Kapoor. Active learning for large multi-class problems. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

P. Jain, S. Vijayanarasimhan, and K. Grauman. Hashing hyperplane queries
to near points with applications to large-scale active learning. In Advances
in Neural Information Processing Systems (NIPS), 2010.

S. D. Jain and K. Grauman. Predicting sufficient annotation strength for
interactive foreground segmentation. In IEEE International Conference on
Computer Vision (ICCV), 2013.

S. D. Jain and K. Grauman. Active image segmentation propagation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

K. G. Jamieson, L. Jain, C. Fernandez, N. J. Glattard, and R. Nowak. Next:
A system for real-world development, evaluation, and application of active
learning. In Advances in Neural Information Processing Systems (NIPS).
2015.

J. H. Janssens. Ranking images on semantic attributes using human com-
putation. In Advances in Neural Information Processing Systems (NIPS)
Workshops, 2010.

E. Johns, O. Mac Aodha, and G. J. Brostow. Becoming the expert - interactive
multi-class machine teaching. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. A. Shamma, M. Bernstein,
and L. Fei-Fei. Image retrieval using scene graphs. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

J. Joo, W. Li, F. F. Steen, and S.-C. Zhu. Visual persuasion: Inferring com-
municative intents of images. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.



234 References

A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Breaking the interactive
bottleneck in multi-class classification with active selection and binary feed-
back. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2010.

M. Kabra, A. A. Robie, M. Rivera-Alba, S. Branson, and K. Branson. JAABA:
interactive machine learning for automatic annotation of animal behavior.
Nature Methods, 10(1), 2013.

C. Kading, A. Freytag, E. Rodner, P. Bodesheim, and J. Denzler. Active
learning and discovery of object categories in the presence of unnameable
instances. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015.

A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Gaussian processes for
object categorization. International Journal of Computer Vision (IJCV),
88(2), 2010.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classification with convolutional neural networks. In
CVPR, 2014.

S. Kazemzadeh, V. Ordonez, M. Matten, and T. L. Berg. Referit game:
Referring to objects in photographs of natural scenes. In Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014.

K. Konyushkova, R. Sznitman, and P. Fua. Introducing geometry in active
learning for image segmentation. In IEEE International Conference on
Computer Vision (ICCV), 2015.

A. Kovashka and K. Grauman. Attribute adaptation for personalized image
search. In IEEE International Conference on Computer Vision (ICCV),
2013a.

A. Kovashka and K. Grauman. Attribute pivots for guiding relevance feedback
in image search. In IEEE International Conference on Computer Vision
(ICCV), 2013b.

A. Kovashka and K. Grauman. Discovering attribute shades of meaning with
the crowd. International Journal of Computer Vision (IJCV), 114(1), 2015.

A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively selecting an-
notations among objects and attributes. In IEEE International Conference
on Computer Vision (ICCV), 2011.

A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch: Image search with
relative attribute feedback. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.



References 235

A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch: Interactive image
search with relative attribute feedback. International Journal of Computer
Vision (IJCV), 115(2), 2015.

A. Kowdle, Y.-J. Chang, A. Gallagher, and T. Chen. Active learning for piece-
wise planar 3d reconstruction. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

J. Krause, J. Deng, M. Stark, and L. Fei-Fei. Collecting a large-scale dataset
of fine-grained cars. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshop: Fine-Grained Visual Categorization, 2013.

R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L.-J. Li, D. A. Shamma, M. Bernstein, and L. Fei-Fei. Visual
genome: Connecting language and vision using crowdsourced dense image
annotations. International Journal of Computer Vision (IJCV), 2016.

A. Krizhevsky. Learning multiple layers of features from tiny images. https:
//www.cs.toronto.edu/~kriz/cifar.html, 2009.

A. Kulkarni, M. Can, and B. Hartmann. Collaboratively crowdsourcing work-
flows with turkomatic. In Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work (CSCW), 2012.

S. Lad and D. Parikh. Interactively Guiding Semi-Supervised Clustering via
Attribute-based Explanations. In European Conference on Computer Vi-
sion (ECCV), 2014.

C. Lampert, H. Nickisch, and S. Harmeling. Learning to Detect Unseen Ob-
ject Classes By Between-Class Attribute Transfer. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

D. Larlus, F. Perronnin, P. Kompalli, and V. Mishra. Generating gold ques-
tions for difficult visual recognition tasks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshop: Computer Vision and
Human Computation, 2014.

W. Lasecki, M. Gordon, D. Koutra, M. Jung, S. Dow, and J. Bigham. Glance:
Rapidly coding behavioral video with the crowd. In ACM Symposium on
User Interface Software and Technology (UIST), 2014.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial Pyra-
mid Matching for recognizing natural scene categories. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2006.

D. Le, R. Bernardi, and J. Uijlings. TUHOI: Trento Universal Human Object
Interaction Dataset. In Conference on Computational Linguistics (COL-
ING) Workshop: Vision and Language, 2014.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


236 References

D.-T. Le, J. Uijlings, and R. Bernardi. Exploiting language models for vi-
sual recognition. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2013.

S. Lee and D. Crandall. Learning to identify local flora with human feedback.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshop: Computer Vision and Human Computation, 2014.

F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video segmentation by
tracking many figure-ground segments. In IEEE International Conference
on Computer Vision (ICCV), 2013.

X. Li and Y. Guo. Adaptive active learning for image classification. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

X. Li and Y. Guo. Multi-level adaptive active learning for scene classification.
In European Conference on Computer Vision (ECCV). 2014.

L. Liang and K. Grauman. Beyond comparing image pairs: Setwise active
learning for relative attributes. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. DollÃąr,
and C. L. Zitnick. Microsoft COCO: Common Objects in Context. In
European Conference on Computer Vision (ECCV), 2014.

G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit: Human
computation algorithms on mechanical turk. In ACM Symposium on User
Interface Software and Technology (UIST), 2010.

J. Little, A. Abrams, and R. Pless. Tools for richer crowd source image
annotations. In IEEE Winter Conference on Applications of Computer
Vision (WACV), 2012.

C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label trans-
fer. Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
33(12), 2011.

W. Liu, O. Russakovsky, J. Deng, L. Fei-Fei, and A. Berg. ImageNet Large
Scale Visual Recognition Challenge – object detection from video track.
http://image-net.org/challenges/LSVRC/2015/, 2015.

C. Long and G. Hua. Multi-class multi-annotator active learning with robust
gaussian process for visual recognition. In IEEE International Conference
on Computer Vision (ICCV), 2015.

C. Long, G. Hua, and A. Kapoor. Active visual recognition with expertise es-
timation in crowdsourcing. In IEEE International Conference on Computer
Vision (ICCV), 2013.

http://image-net.org/challenges/LSVRC/2015/


References 237

C. C. Loy, T. M. Hospedales, T. Xiang, and S. Gong. Stream-based joint
exploration-exploitation active learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

W. Luo, X. Wang, and X. Tang. Content-based photo quality assessment. In
IEEE International Conference on Computer Vision (ICCV), 2011.

S. Maji. Discovering a lexicon of parts and attributes. In European Conference
on Computer Vision (ECCV) Workshops, 2012.

S. Maji and G. Shakhnarovich. Part discovery from partial correspondence. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2013.

S. Maji, L. Bourdev, and J. Malik. Action recognition using a distributed
representation of pose and appearance. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011.

M. Malinowski and M. Fritz. A multi-world approach to question answering
about real-world scenes based on uncertain input. In Advances in Neural
Information Processing Systems (NIPS), 2014.

A. Mao, E. Kamar, and E. Horvitz. Why stop now? predicting worker en-
gagement in online crowdsourcing. In AAAI Conference on Human Com-
putation and Crowdsourcing (HCOMP), 2013.

T. Matera, J. Jakes, M. Cheng, and S. Belongie. A user friendly crowdsourc-
ing task manager. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshop: Computer Vision and Human Computa-
tion, 2014.

T. Mensink, J. Verbeek, and G. Csurka. Learning structured prediction mod-
els for interactive image labeling. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

A. Montagnini, M. Bicego, and M. Cristani. Tell me what you like and I’ll tell
you what you are: discriminating visual preferences on flickr data. analysis,
10, 2012.

R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urta-
sun, and A. Yuille. The role of context for object detection and semantic
segmentation in the wild. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

N. S. Nagaraja, F. R. Schmidt, and T. Brox. Video segmentation with just
a few strokes. In IEEE International Conference on Computer Vision
(ICCV), 2015.



238 References

A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope. International Journal of Computer Vision
(IJCV), 2001.

D. Parikh and K. Grauman. Interactively building a discriminative vocabu-
lary of nameable attributes. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2011a.

D. Parikh and K. Grauman. Relative attributes. In IEEE International
Conference on Computer Vision (ICCV), 2011b.

A. Parkash and D. Parikh. Attributes for classifier feedback. In European
Conference on Computer Vision (ECCV). Springer, 2012.

G. Patterson and J. Hays. SUN Attribute Database: Discovering, Annotat-
ing, and Recognizing Scene Attributes. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

G. Patterson, G. V. Horn, S. Belongie, P. Perona, and J. Hays. Tropel: Crowd-
sourcing detectors with minimal training. In AAAI Conference on Human
Computation and Crowdsourcing (HCOMP), 2015.

K.-C. Peng, T. Chen, A. Sadovnik, and A. C. Gallagher. A mixed bag of
emotions: Model, predict, and transfer emotion distributions. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning ob-
ject class detectors from weakly annotated video. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

M. Rubinstein, C. Liu, and W. Freeman. Annotation propagation: Automatic
annotation of large image databases via dense image correspondence. In
ECCV, 2012.

M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised joint object
discovery and segmentation in internet images. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

O. Russakovsky and L. Fei-Fei. Attribute learning in large-scale datasets. In
European Conference of Computer Vision (ECCV) Workshop: Parts and
Attributes, 2010.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3), 2015a. .

O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds: human-machine
collaboration for object annotation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015b.



References 239

B. Russell, A. Torralba, K. Murphy, and W. T. Freeman. LabelMe: a database
and web-based tool for image annotation. International Journal of Com-
puter Vision (IJCV), 2007.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Con-
ference on Learning Theory (COLT) Workshops. ACM, 1992.

N. B. Shah and D. Zhou. Double or nothing: Multiplicative incentive mech-
anisms for crowdsourcing. In Advances in Neural Information Processing
Systems (NIPS), 2014.

L. Sharan, R. Rosenholtz, and E. Adelson. Material perception: What can
you see in a brief glance? Journal of Vision, 9(8), 2009.

V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? improving data
quality and data mining using multiple, noisy labelers. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2008.

B. Siddiquie and A. Gupta. Beyond active noun tagging: Modeling contex-
tual interactions for multi-class active learning. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010.

B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking and retrieval based
on multi-attribute queries. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2011.

G. A. Sigurdsson, O. Russakovsky, A. Farhadi, I. Laptev, and A. Gupta.
Much ado about time: Exhaustive annotation of temporal data. In AAAI
Conference on Human Computation and Crowdsourcing (HCOMP), 2016a.

G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta.
Hollywood in homes: Crowdsourcing data collection for activity under-
standing. In European Conference of Computer Vision (ECCV), 2016b.

E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and R. Urtasun. Neuroaesthetics
in fashion: Modeling the perception of fashionability. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

A. Sorokin and D. Forsyth. Utility data annotation with Amazon Mechanical
Turk. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2008.

H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations for visual object
detection. In AAAI Conference on Artificial Intelligence Workshop: Human
Computation (HCOMP), 2012.

O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai. Adaptively
learning the crowd kernel. In International Machine Learning Conference
(ICML), 2011.



240 References

M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler.
Movieqa: Understanding stories in movies through question-answering. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

T. Tian and J. Zhu. Max-margin majority voting for learning from crowds.
In Advances in Neural Information Processing Systems (NIPS), 2015.

S. Tong and D. Koller. Support vector machine active learning with applica-
tions to text classification. The Journal of Machine Learning Research, 2,
2002.

D. Tsai, M. Flagg, and J. Rehg. Motion coherent tracking with multi-label
MRF optimization. In British Machine Vision Conference (BMVC), 2010.

R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider: Consensus-based
image description evaluation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

A. Vezhnevets, J. M. Buhmann, and V. Ferrari. Active learning for semantic
segmentation with expected change. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

S. Vijayanarasimhan and K. Grauman. What’s it going to cost you?: Predict-
ing effort vs. informativeness for multi-label image annotations. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

S. Vijayanarasimhan and K. Grauman. Cost-sensitive active visual category
learning. International Journal of Computer Vision (IJCV), 91(1), 2011a.

S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Train-
ing object detectors with crawled data and crowds. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2011b.

S. Vijayanarasimhan and K. Grauman. Active frame selection for label prop-
agation in videos. In European Conference on Computer Vision (ECCV),
2012.

S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Train-
ing object detectors with crawled data and crowds. International Journal
of Computer Vision (IJCV), 108(1-2), 2014.

S. Vijayanarasimhan, P. Jain, and K. Grauman. Far-sighted active learning
on a budget for image and video recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010.

S. Vijayanarasimhan, P. Jain, and K. Grauman. Hashing hyperplane queries
to near points with applications to large-scale active learning. Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 36(2), 2014.



References 241

S. Vittayakorn and J. Hays. Quality assessment for crowdsourced object an-
notations. In British Machine Vision Conference (BMVC), 2011.

L. von Ahn and L. Dabbish. Esp: Labeling images with a computer game. In
AAAI Spring Symposium: Knowledge Collection from Volunteer Contribu-
tors, 2005.

L. von Ahn, M. Kedia, and M. Blum. Verbosity: A game for collecting
common-sense facts. In SIGCHI Conference on Human Factors in Com-
puting Systems, 2006a.

L. von Ahn, R. Liu, and M. Blum. Peekaboom: A game for locating objects in
images. In SIGCHI Conference on Human Factors in Computing Systems,
2006b.

C. Vondrick and D. Ramanan. Video Annotation and Tracking with Active
Learning. In Advances in Neural Information Processing Systems (NIPS),
2011.

C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scaling up crowd-
sourced video annotation. International Journal of Computer Vision
(IJCV), 101(1), 2013.

C. Vondrick, D. Oktay, H. Pirsiavash, and A. Torralba. Predicting the mo-
tivations behind actions. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

C. Wah and S. Belongie. Attribute-Based Detection of Unfamiliar Classes
with Humans in the Loop. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2013.

C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and
part localization with humans in the loop. In IEEE International Confer-
ence on Computer Vision (ICCV), 2011a.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology, 2011b.

C. Wah, G. Van Horn, S. Branson, S. Maji, P. Perona, and S. Belongie. Sim-
ilarity comparisons for interactive fine-grained categorization. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

C. Wah, S. Maji, and S. Belongie. Learning localized perceptual similarity
metrics for interactive categorization. In IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), 2015.

D. Wang, C. Yan, S. Shan, and X. Chen. Active learning for interactive
segmentation with expected confidence change. In Asian Conference on
Computer Vision (ACCV). 2012.



242 References

J. Wang, P. G. Ipeirotis, and F. Provost. Quality-based pricing for crowd-
sourced workers. NYU-CBA Working Paper CBA-13-06, 2013.

Y. Wang and G. Mori. A discriminative latent model of object classes and
attributes. In European Conference on Computer Vision (ECCV). Springer,
2010.

D. S. Weld, Mausam, and P. Dai. Human intelligence needs artificial intel-
ligence. In AAAI Conference on Human Computation and Crowdsourcing
(HCOMP), 2011.

P. Welinder and P. Perona. Online crowdsourcing: rating annotators and
obtaining cost-effective labels. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, 2010.

P. Welinder, S. Branson, S. Belongie, and P. Perona. The multidimensional
wisdom of crowds. In Advances in Neural Information Processing Systems
(NIPS), 2010.

M. Wigness, B. A. Draper, and J. R. Beveridge. Efficient label collection for
unlabeled image datasets. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

M. J. Wilber, I. S. Kwak, and S. J. Belongie. Cost-effective hits for relative
similarity comparisons. In AAAI Conference on Human Computation and
Crowdsourcing (HCOMP), 2014.

M. J. Wilber, I. S. Kwak, D. Kriegman, and S. Belongie. Learning concept em-
beddings with combined human-machine expertise. In IEEE International
Conference on Computer Vision (ICCV), 2015.

A. G. Wilson, C. Dann, C. Lucas, and E. P. Xing. The human kernel. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems (NIPS). 2015.

J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-
scale scene recognition from Abbey to Zoo. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010.

C. Xiong, D. M. Johnson, and J. J. Corso. Spectral active clustering via
purification of the k-nearest neighbor graph. In Proceedings of European
Conference on Data Mining, 2012.

A. Yao, J. Gall, C. Leistner, and L. V. Gool. Interactive object detection. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

B. Yao and L. Fei-Fei. Grouplet: A structured image representation for rec-
ognizing human and object interactions. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010.



References 243

B. Yao, X. Yang, and S.-C. Zhu. Introduction to a large scale general purpose
ground truth dataset: methodology, annotation tool, and benchmarks. In
International Conference on Energy Minimization Methods in Computer
Vision and Pattern Recognition (EMMCVPR), 2007.

B. Yao, X. Jiang, A. Khosla, A. Lin, L. Guibas, and L. Fei-Fei. Human
action recognition by learning bases of action attributes and parts. In
IEEE International Conference on Computer Vision (ICCV), 2011.

G. Ye, Y. Li, H. Xu, D. Liu, and S.-F. Chang. Eventnet: A large scale struc-
tured concept library for complex event detection in video. In ACM Inter-
national Conference on Multimedia, 2015.

S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei.
Every moment counts: Dense detailed labeling of actions in complex videos.
Computing Research Repository (CoRR), abs/1507.05738, 2015.

A. Yu and K. Grauman. Fine-grained visual comparisons with local learning.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

L. Yu, E. Park, A. C. Berg, and T. L. Berg. Visual madlibs: Fill in the blank
description generation and question answering. In IEEE International Con-
ference on Computer Vision (ICCV), 2015.

J. Yuen, B. Russell, C. Liu, and A. Torralba. Labelme video: Building a video
database with human annotations. In IEEE International Conference on
Computer Vision (ICCV), 2009.

C. Zhang and K. Chaudhuri. Active learning from weak and strong labelers.
In Advances in Neural Information Processing Systems (NIPS), 2015.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep
features for scene recognition using places database. Advances in Neural
Information Processing Systems (NIPS), 2014.

Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7w: Grounded question
answering in images. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

C. L. Zitnick and D. Parikh. Bringing semantics into focus using visual ab-
straction. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2013.


	Introduction
	What annotations to collect
	Visual building blocks
	Actions and interactions
	Visual story-telling
	Annotating data at different levels

	How to collect annotations
	Interfaces for crowdsourcing and task managers
	Labeling task design
	Evaluating and ensuring quality

	Which data to annotate
	Active learning
	Interactive annotation

	Conclusions
	References

