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Abstract

Can we discover common object shapes within unlabeled
multi-category collections of images? While often a critical
cue at the category-level, contour matches can be difficult
to isolate reliably from edge clutter—even within labeled
images from a known class, let alone unlabeled examples.
We propose a shape discovery method in which local ap-
pearance (patch) matches serve to anchor the surrounding
edge fragments, yielding a more reliable affinity function
for images that accounts for both shape and appearance.
Spectral clustering from the initial affinities provides can-
didate object clusters. Then, we compute the within-cluster
match patterns to discern foreground edges from clutter, at-
tributing higher weight to edges more likely to belong to
a common object. In addition to discovering the object
contours in each image, we show how to summarize what
is found with prototypical shapes. Our results on bench-
mark datasets demonstrate the approach can successfully
discover shapes from unlabeled images.

1. Introduction

Shape can be a powerful cue for object recognition, due
to its invariance to lighting conditions and relative stabil-
ity compared to intra-category appearance variations. At
least for human perception, shape alone can often provide
enough information for successful generic object catego-
rization [3]—in fact, some classes are better defined by their
shape than their appearance, e.g., bottles, lamps, birds, etc.
The success of recently developed shape matching algo-
rithms and advances in shape descriptors [1, 2, 25, 10, 21, 7]
are promising signs for using shape to recognize and detect
objects. However, current algorithms rely on manually an-
notated training images to learn the target object shape to
be detected in new images. Furthermore, many methods as-
sume access to extracted silhouettes or contour point sets,
which are notoriously difficult to pick out from a muddle
of broken edge fragments, and are simply not available in
unlabeled images of different categories.

In this work we consider the problem of discovering
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Figure 1. Goal: given unlabeled images, discover common shapes.

common object shapes within unlabeled, multi-category
collections of images. An unsupervised method to dis-
cover shapes would be valuable to find interesting objects
within unstructured image collections, and eventually to de-
tect those objects in new images.

Unsupervised methods for object discovery have begun
to be explored using distributions of local region features
(i.e., bags-of-words or patches) [26, 24, 11, 17, 5, 15, 12].
Their key insight is that the frequently recurring appearance
patterns in an image collection will correlate with objects of
interest. Such representations are quite reliable for classes
defined by repeated textures, but unfortunately by definition
are insufficient to capture underlying shape or contours.'

What challenges are unique to shape discovery? Some of
the most effective known descriptors based on histograms
of oriented gradients (e.g. [18]) are purposefully insensitive
to local changes. While this provides a (usually desirable)
invariance to minor changes in the pixel-level data, the loss
in the structure of the underlying gradients means it is gen-
erally too coarse to accurately describe contour-level detail.

Similarly, if a patch feature is extracted on an object
boundary, the image portions on or off the foreground will
contribute equally, which means that many matches will be
missed on an object’s shape-defining boundaries if it is sur-
rounded by clutter. Interest point detectors can identify dis-
tinctive and repeatable regions, but textureless objects will
largely lack patches on and/or within their boundaries. At

! Throughout, we use shape to mean an object’s outer and internal con-
tours; we use appearance to refer to texture and photometric properties,
captured for example with local patch features like SIFT.



the same time, without good context or initialization, an av-
erage edge fragment is non-distinct and can match well with
all sorts of structures within a cluttered image.

We introduce an algorithm that analyzes a collection of
unlabeled images containing multiple categories of objects,
and returns both a set of proposed prototypical shape mod-
els, as well as a list of edge fragments per input image
weighted according to their confidence of belonging to the
primary foreground class (see Fig. 1). The main idea is to
use local features to anchor the edge fragments that sur-
round them, and to learn which edges to emphasize as fore-
ground based on their joint correspondences across image
examples.

Our main contribution is a method to perform unsu-
pervised shape discovery from unlabeled images—to our
knowledge, the first approach proposed for this problem.
Unlike existing unsupervised patch-based methods, shape
discovery has the potential to mine for categories best de-
fined by their overall shape; even for objects with partial
textures in common, it stands to extract models that are
more complete in their spatial extent. We demonstrate our
approach using benchmark datasets and show that linking
shape to sparse appearance agreement leads to better unsu-
pervised discovery than when either cue is used alone.

2. Related Work

In this section we briefly review relevant work in unsu-
pervised category learning, foreground segmentation from
labeled images, and object detection using edge fragments.

Unsupervised category learning methods can largely be
divided into two groups. The first group considers ways
to discover latent visual topics using models developed for
text, such as pLSA and LDA [23, 6, 24, 17]. The sec-
ond group of methods treats the task as a hard-assignment
clustering problem; graph-based algorithms using spec-
tral clustering [11, 12, 15] and message-passing [5] have
shown good results. However, all previous unsupervised ap-
proaches work solely with appearance (patch) features, and
cannot capture shape. While the authors of [24, 29] first
decompose the input images into segments or random par-
titions, the intent is to increase the specificity of the models
learned; neither learns shape or matches examples accord-
ing to contours.

Weakly-supervised methods can segment out a training
image’s foreground region in cluttered images, with the as-
sumption that each image has the same single prominent
object [28, 13, 27]. Implicitly, this is a form of shape recov-
ery, in that ideally the outer boundary of the object forms
the segment. Recent work shows how to learn explicit
contour-based models from labeled training images cropped
with a bounding box [9, 25]. Our method shares the goal
of extracting object-level regions, although we seek shape-
defining contours rather than figure segmentation. Unlike

any of the above methods, our method is fully unsupervised
and does not use labeled exemplars.

A number of methods consider how to simultaneously
classify and localize objects. Methods using Hough-
style voting with patches [16] or discriminative edge
fragments [21] can backproject segmentation boundaries
learned from labeled training examples to predict new ob-
jects’” outlines. The authors of [8] extend the constellation
model to include curve parts as well as patches. Our dis-
covered models can be used for localization, but again our
framework differs significantly since it forgoes annotated
examples.

The proposed approach is the first to address unsuper-
vised shape discovery. While some steps of this task have
challenges in common with the methods above, the match-
ing and grouping issues demand new strategies once we
have jumbles of edge fragments and no prior knowledge
about which images ought to have some corresponding fea-
tures.

3. Approach

The goal is to identify which foreground contours in each
image can form high quality clusters, and use any intra-
cluster agreement to discover the underlying prototypical
shapes. We expect the discovered shapes to often be repre-
sentative of object categories. Since edge features often lack
distinctiveness, we use patch matches to initialize regions
for shape matching. The intuition is that if two local fea-
tures are a good match in terms of appearance and describe
the same object part, their surrounding regions may have
similar contours (with some local shifts and deformations).
We define an affinity function to cluster images based on
these matches, and then infer a weight per edge fragment
based on how consistently it matches other intra-cluster im-
ages. Finally, a voting-based step computes prototype sum-
maries of the discovered shapes.

The upshot of our combined feature matching is twofold:
first, we are able to eliminate many spurious matches that
would occur if either feature were to be used independently,
and second, we expand the coverage of object-to-object
matches past their sparse repeated textures to include their
neighborhood contours (see Fig. 2). In the following, we de-
scribe the details of our representation, how to distinguish
foreground edges from clutter, and how to build a prototype
shape from the estimated foreground contours.

3.1. Anchoring Edge Fragments to Local Patches

We represent an unlabeled image as a set of semi-local
region features, X = {fi,..., f|x|}, where each f; con-
sists of a local appearance descriptor and all the surround-
ing edge fragments and their weights. Specifically, f; =
{pi,{ei1,wi1),...,{ei 1, w;)}, where p; denotes a patch



Figure 2. Two images, each with three detected patch matches. (a)
There is a limit to how much shape information can be captured
even with accurate patch matches, yet edge fragments can often be
ambiguous to match in cluttered images. (b) By anchoring edge
fragments to patch features, we can select the fragments that agree
and describe the object’s shape.

descriptor, each e; ,, is an associated edge fragment, and [
denotes the total number of edge fragments in the image.
Each edge weight w; ,,, > 0 reflects the emphasis given
to that fragment when computing shape matches with the
combined representation (the details of which will be de-
fined below). Note that each patch maintains a full set of
weights on all [ of the image’s edge fragments. Thus each
fragment has a weight from the “point of view” of a given
local appearance region, and is part of the combined fea-
ture representation exactly | X | times. We extract edge frag-
ments (smooth segments of chained edgels) using [10], and
use the SIFT descriptor [18] to represent patches.

The motivation for this integrated representation is as
follows. When comparing two images, we would like to
use matched edges to determine whether they share a shape,
and thus should be clustered together. However, many
edge fragments are very generic and can produce spurious
matches, which in turn result in unreliable similarity scores.
(For example, an edge fragment extracted from the roof of
a car could match well to the top of a monitor.) While this
ambiguity is also an issue for weakly supervised algorithms,
it is amplified when we lack image labels: for any two im-
ages, there is no guarantee whether some of their contours
should agree or not.

By anchoring the edge fragments to patch descriptors,
we can produce more reliable matches. A detected patch
match serves to initialize the spatial placement of the sur-
rounding edges from one image to the next. If the patch
descriptors have good matches and describe the same ob-
ject part, then some subset of their nearest associated edge
fragments should also match well (see Fig. 2).

Which edge fragments should a given patch anchor most
strongly? When working with unlabeled images, we do not

know the spatial extent of the foreground region. Between
this and the unknown clutter, we cannot immediately de-
termine which edge fragments surrounding a given patch
would produce meaningful (foreground-related) matches.
Initially, we account for this uncertainty by imposing a
Gaussian weighting a priori for all w; ,,, based on the spatial
proximity of fragment e; ,,, to the patch center p;. The width
o; of each 2d Gaussian is set relative to the patch’s scale—
specifically, as three times its semi-major axis. Thus, closer
edges are weighted higher, from the point of view of that
particular patch. This reflects that at first we do not know
which fragments are relevant versus clutter, but expect bet-
ter shape agreement (if any) to be found near places where
we find good appearance agreement. The edge weights
are later updated based on cumulative matching results (see
Sec. 3.3).

3.2. Grouping Cluttered Images with Similar
Shapes

In order to discover common shapes, we first need to
form fairly homogeneous groups from the image collec-
tion such that each group contains a number of images with
similar foregrounds. To do this, we use spectral cluster-
ing with an affinity function that reflects the strongest shape
and appearance correspondences found within two images.
Assuming that frequently recurring objects have some re-
peated visual content, this stage will tend to group images
containing the same category. Note that since each image is
assigned to one cluster, our method discovers objects from
one primary category of interest per image.

The cluster quality will depend heavily on the way affini-
ties are measured. We design a new similarity function be-
tween feature sets X and Y that uses a two-step procedure
to target possible agreement between contours amidst clut-
ter. We first compute region-based edge matches; the local
layout of fragments is more distinctive than are individual
fragments, and can produce a more reliable but coarse as-
signment. Given a matching region, we then compare its
individual fragments, refining the match to discern fore-
ground edges from background edges (see Fig. 3).

In the first step, we find corresponding regions: for a
given feature in X, we find the best matching feature in
Y according to both an appearance-based distance and a
coarse-shape distance (see Fig. 3(a)). Specifically, for each
feature pair f; x, f;y we compute:

e the patch distance, which is the Lo distance between
the descriptors: dpatch (fi,x, f5,v) = |Ipix. )y ]|2-

o the coarse shape distance, as measured by the sym-
metric chamfer distance, denoted dg.4. It is coarse in
that we initially perform no shifting or local search,

2Here fi,x denotes the i-th feature within set X.



Figure 3. (a) A feature from image X and all features from image
Y. (b) The best matching feature in Y is chosen, based on local
appearance and coarse surrounding shape. (¢) X’s edgemap is
aligned with Y’s edgemap at the match point, and each fragment
in X is fitted to the nearest best matching fragment in Y. Dotted
circles represent the initial Gaussian weighting on the fragments.

and consider only inter-edgel distances, not orienta-
tions. The distance term for each edgel in the frag-
ment is weighted (for now) by its Gaussian weighted
distance from its anchor patch.

For each feature f; x in X, we then choose the best

matching feature f;(;)~y in Y, where:
j(i)* = argmin (dpatch(fi,Xa fiv) + dsca(fix, fj,Y))-
1<i<IY]
This matching can be many-to-one if multiple features in X
have a good match with the same feature in Y.

In the second step, we place the edge image for X onto
the edge image for Y according to the position and scale of
a matched patch, for each match in turn.? Essentially, the
distances from the first step determine a candidate rough
alignment for each f; x within Y (see Fig. 3(b)). Then,
given the aligned images (centered at the positions of f; x
and f;(;)~ vy, respectively), we can more precisely evaluate
the agreement of each edge fragment in X to some edge in
Y.

Even if the two matching regions contain the same ob-
ject parts, in general, we can expect there to be some dif-
ferences in shape. Thus, for each edge fragment ¢; ,, in
the shifted version of X, we independently find its best-
matching nearby edge fragment e;(;)« , in Y with the Ori-
ented Chamfer Distance (OCD) [25], which is sensitive
both to nearness in space as well as the gradient orienta-
tion (see Fig. 3(c)). Candidate fragments from Y are those
within a local window relative to e; ,,,’s initial placement in
the matching region. The total shape distance from feature
fi,x to feature f;;y~y is the weighted average of all the
best edge fragment distances

dshape(fl X f_](z) Y

m=1

3Qur current implementation aligns the regions for scale and position;
one could additionally add rotation invariance by rotating the edgemaps
according to the patch’s dominant gradient direction.

Z Wi, m dOCD (61 my j(i)*,n(m)*)a

where [ is the number of edges in X’s image, and subscript
n(m)* denotes the index of the best match for fragment m.
We normalize dpqtcn and dspape to be in [0, 1].

This gives us the feature-to-feature cost. The overall di-
rected patch and shape distance from image X to image Y
is the average over the component feature distances between
each f; x in X and its best matching feature f;(;)- y in Y:

|X]

Dpatch(X Y |X| deatch f’L X7f7 (i)*,Y ) and
\Xl

Dshape(X Y |X| Zd/shape fz X?fj (i)*,Y )

Since the matching is many-to-one, the cost of matching X
to Y is not necessarily equivalent to the cost of matching Y
to X . We obtain a symmetric cost via the sum: D'(X,Y) =
D(X,Y)+ D(Y,X)=D'(Y,X).

Given the distances between all pairs of the /N unlabeled
images, we form an NV x N affinity matrix A, where

1
AT,S = exp <_; patch(XT’ Xs ) * Dshape(XT7X5)> )

forall r,s = 1,..., N. We take the product of the costs to
reward most those images that have high matching scores
in terms of both cues. For each node in A, we retain the
top 101log(N) largest values (as in [12]) in order to form
a sparser affinity matrix. This affinity matrix is the input
to spectral clustering, which groups the images; we use the
method of [20].

3.3. Inferring Foreground Contours

Next we analyze the pattern of the intra-cluster edge
matches. Even within the best image-to-image matches,
some fragments are actually irrelevant to the common ob-
ject. For example, two images containing cows may hap-
pen to have similar spots on their backs, while others have
none. Part of the shape discovery phase must be to empha-
size those contours that repeatedly match the same things
in all intra-cluster images. To do this, we identify frag-
ments with the most consistent correspondences, and in-
crease their weights.

Specifically, to update edge fragment weight w; ,,, within
feature f; of some image, we compute the median of its best
match distances across all other images within the cluster:
U%Zi,m)a

w

Wim = exp(—

where  Z; ., = mediang (dpaten (fi, fity=ve) +
dshape (f’La fj(i)* Yy, ) + docp (ei,mv €5 (i)* ,n(m)* )), Yk
is the k-th image within the cluster, and as before j(i)*
indexes the best region match, and n(m)* indexes the best
fragment match when aligned according to that region.
Thus we weight the contribution of an edge fragment by the



combined matching score of its individual match as well as
its region match. The purpose of the median is to ensure
that high weight goes only to those edge fragments that
produce low matching costs against most cluster members
(versus a very low cost against a few). We compute a single
weight for each fragment by averaging the fragment’s
weights across all the features that contain it. At this point
we have gone from the input set of unlabeled images,
to an output estimating each contour’s strength within
each image, based on the common shapes that have been
discovered (see Fig. 6 (a) and Fig. 7 (a,d) for examples).

3.4. Prototypical Shape Formation

Now that we have found the common foreground con-
tours for each image, we can generalize these shapes to
produce a prototype summarizing each cluster. There are
two important considerations: not all images in a cluster
will necessarily contain an object of the same category, and
not all objects of the same category agree in terms of shape
anyhow. We handle these issues by creating a simple vote
space based on the discovered edge weights, such that the
common shape of the object can be reinforced in the output,
while parts that agree less can be discarded.

Using each cluster’s center image as a target, we match
all other within-cluster images to it using a modified cham-
fer distance, where each edgel’s matching cost is penalized
according to its weight. This way, higher weighted (most
confident) fragments have more influence in the match.
Once aligned, we accumulate the weighted fragments as
votes, for all images in the group (see Fig. 6 (b) and
Fig. 7 (b,e) for examples). The chamfer distance gives us a
straightforward way to coordinate the foreground contours;
more elaborate shape matching algorithms (e.g., allowing
deformations) could also be used in this step and may make
the alignment even more robust.

4. Experiments

We present results to analyze our method’s unsupervised
category and shape discovery. We work with images from
the Caltech-101 [4], ETHZ shape [10], and LabelMe [14]
datasets. The only supervised information is the number of
categories.

Implementation Details: We use the Berkeley edge de-
tector [19], from which we extract fragments using [10]. To
reduce the number of chamfer comparisons when match-
ing regions, we only compute d.q for regions we already
know have good patch matches (in practice, the top 5%). To
extract patch features, we densely sample SIFT descriptors
at every 10 pixels in the image, using small patches with a
radius of 8 pixels. We set o = o, = 0.15.

Datasets: We first test with the Caltech dataset since all
previous unsupervised methods have chosen to test with it.

We use the same categories as [12]: Faces, Airplane, Motor-
bikes, Cars Rear, Watches, Ketches. We compare against the
state-of-the-art methods of [12, 11, 15] because they share
our goal of discovering categories and selecting foreground
features based on commonly reoccurring features.

Since not all the Caltech categories have characteristic
shape, we also experiment with the ETHZ shape dataset,
which consists only of objects well-defined by their shape.
The categories are: Applelogos, Bottles, Giraffes, Mugs,
Swans. This dataset was used in [9] to learn a shape model
for each category using the labeled ground-truth bound-
ing box regions. We experiment with both (1) those same
bounding box regions and (2) expanded regions that en-
close the bounding box (at four times the initial bounding
box area) to learn our models. Following [9], we normal-
ize to maintain the average aspect ratio over all category
instances. Unlike in [9], our algorithm learns five shape
models at once over the entire dataset without knowing the
class labels of the images.

Evaluation Metrics: We use purity to evaluate our
method’s object category discovery. Purity measures the
extent to which a cluster contains images of a single domi-
nant class. Since the datasets have ground truth class labels,
this allows us to quantify the quality of the groups we learn.

Since our method discovers the outer and internal ob-
ject contours, we quantify the extent to which the shapes
we identify per image agree with the true foreground re-
gion using the Bounding Box Hit Rate (BBHR) [22]. The
BBHR measures the percentage of images in the dataset
that have at least h foreground features selected, as a
function of the selection threshold applied to the feature
weights. It is recorded with respect to the False Positive
Rate (FPR), which counts the average number of selected
features falling outside of the bounding box. If our shape
discovery performs well, we expect more coverage of the
object from the discovered features than with patch matches
alone, since the agreement between patches will generally
be sparser than with our anchored edge fragments (even
though patches densely cover the image).

4.1. Unsupervised Category Discovery

To measure category discovery on the Caltech cate-
gories, we follow the same experimental setup proposed
in [11]. In Table 1 (top), we compare the mean purity ob-
tained by our method to [12, 11, 15]. The results show that
our method is comparable or better than related methods.
Upon inspection, we found that most of the misclassified
examples are images that do not have many edges detected
on the foreground (due to shadows or bright illumination),
or objects that do not follow the general shape of the other
objects in its category.

In Table 1 (bottom), we show our method’s mean pu-
rity on the ETHZ dataset. The first row shows results ob-
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A,C.EM 98.03 £ 0.66 87.37 98.55 | 86.00 | 88.82

A,CCEM,W 96.92 £+ 0.63 83.78 97.30 N/A N/A

A,CEM,WK | 96.15 4+ 0.52 83.53 95.42 N/A N/A
[ ETHZ-Categories | Our Method [ Patch-only |

A,B,G,M,S (bbox) 95.85 78.89

A,B,G,M,S (expanded) 76.47 61.25

Table 1. Category discovery accuracies measured by mean purity
for the categories of the Caltech [A: Airplanes, C: Cars, M: Motor-
bikes, W: Watches, K: Ketches] (top) and ETHZ [A: Applelogos,
B: Bottles, G: Giraffes, M: Mugs, S: Swans] (bottom) datasets.

tained using only bounding box regions, and the second row
shows the expanded region results. The decrease in accu-
racy on the expanded region images is mainly due to the
large amount of clutter that is included in those regions.
Still, overall the purity rates are high, such that accurate
contours can be learned per group.

We also compare against a patch-only baseline, in which
we use the same steps as our method, but use only patch fea-
tures (without shape information). Our method significantly
outperforms this baseline on both datasets.

4.2. Foreground Shape Discovery

Foreground Localization: We next evaluate our
method’s foreground localization. We compute a single
weight for each feature by averaging its edge fragment
weights and consider a “hit” if the selected feature’s cen-
ter is within the object’s bounding box. We use h = 5 and
take the top 20% of the highest weighted features in each
image, following [12]. To evaluate how much our patch-
anchored edge fragments contribute to foreground discov-
ery, we again test against the patch-only baseline.

The BBHR-FPR curves are shown in Fig. 4 (ETHZ) and
Fig. 5 (Caltech). Our patch-anchored shape matching sig-
nificantly outperforms the baseline using only patch fea-
tures (note the FPR axes range difference). The reason is
twofold: (1) we can form purer clusters than patches alone;
incorrectly clustered examples will often have the highest
weighted features on the background, and (2) shape infor-
mation leads to more accurate matching, especially for ob-
jects that have less local appearance agreement as in the
ETHZ images.

We also achieve better localization on the Caltech dataset
than the unsupervised baseline [12], an appearance-based
approach that also uses spectral clustering. The comparable
levels of purity by our approach and [12] (see Table 1 (top))
suggest that background contextual features may have con-
tributed to its accuracy. By considering shape information,
our method focuses on the object such that more foreground
features are given highest weight. In Fig. 6 (a) and Fig. 7
(a,d), we show the highest weighted edge fragments for ex-
ample images of each shape discovered by our method.

Prototypical Shape: We generate prototypical shapes
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Figure 4. Bounding box hit rates (BBHR) vs. mean false positive
rates (FPR) for the expanded ETHZ regions. Lower curves are bet-
ter. We compare results using our patch-anchored shape matching
(left) with a baseline using patches only (right).

(as explained in Sec. 3.4) for each of the shapes found by
our method on the Caltech and ETHZ datasets. Fig. 6 (b)
and Fig. 7 (b,e) show the results.

We compare our shape discovery to two baselines: first, a
shape-only baseline in which all edges are weighted equally
when computing image similarities. We cluster the im-
ages with an affinity matrix computed from the symmetric
chamfer distance between their edgemaps. Once the clus-
ters are formed, the prototypical shape is computed in the
same manner as our method. This shape-only baseline is
intended to give a sense of the degree of ambiguity when
matching cluttered edge images. The second baseline is a
sanity check to assure the difficulty of the task: we man-
ually partition the images into the “ideal” clusters, so that
each cluster has 100% purity, and then simply average the
aligned edge images, using the confidence weights given by
the Pb detector [19]. This baseline will indicate the contri-
bution made by our fragment weighting and prototype for-
mation (see Supplementary Material for this result).

Figure 6 (c) shows the prototype shapes found for the
Caltech dataset by the shape-only baseline. It discovers two
Motorbike shapes, one Watch shape, and three that do not
clearly belong to any category. This is due to inaccurate
matches that lead to heterogeneous clusters: the mean pu-
rity is only 55.67%. Among the clusters that do have rela-
tive homogeneity are two comprised mainly of Motorbikes,
and one comprised mainly of Watches. This is reasonable,
since most of the Motorbike and Watch images have little
background clutter and similar shapes throughout.

The prototypical shapes found by our method fairly ac-
curately describe the shapes of the dominant objects. Most
background clutter fragments have been removed. We not
only discover the boundary contours, but also find some in-
ner contours that are unique to each object (e.g., eyes, nose,
and mouth for Faces). We also inevitably discover repeated
curves that do not actually belong to the object (e.g., the
pavement line for Cars Rear, and the horizon for Ketches),
which makes sense, since they too are reoccurring.

The prototype shapes found for the ETHZ data by our
method and the shape-only baseline are shown in Fig. 7
(b,e) and (c,f), respectively. Again these results show that
our method does well to discover shapes illustrating the
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Figure 5. Bounding box hit rates (BBHR) vs. mean false positive rates (FPR) for the Caltech images. Lower curves are better. We compare
results using our patch-anchored shape matching (left), with a baseline using patches only (center), and with those obtained by [12] (right).
The table summarizes the approximate FPR at BBHR=0.5 for the three methods.

(a) Examples of discovered object contours ]

B =

g ’
. By

e

(b) Our prototype shapes

e

(c) Baseline prototype shapes

Figure 6. (a) Examples of Caltech images, with our method’s most confident discovered contours overlayed. (b) Prototypical shapes found
by our method. (c) Prototypical shapes found by the shape-only baseline method (see text for details). Our method produces prototypical
shapes that accurately illustrate the common objects. The baseline method only produces three such shapes (one of them twice) with a lot
more noise. For (b,c), the right images are thresholded images of the left. (Best viewed in color.)

common objects. Most background clutter is removed and
foreground fragments are emphasized. An exception is the
Mug prototype for the expanded region clusters. This may
be due to the low purity rate for that cluster: 63.34% com-
pared to [A: 77.27%, B: 87.27%, G: 76.92%, S: 81.82%].
Many non-Mug edge fragments contributed to the prototype
shape formation. The baseline shows much worse results,
again due to inconsistent feature matches that result in het-
erogeneous clusters: mean purity is 63.32% and 52.94% for
the bounding box and expanded regions, respectively.

For the bounding box regions, the baseline discovers
three shapes that resemble Giraffes (along with an Applel-
ogo and a Bottle shape). This is reasonable considering that
91 of 289 regions are Giraffes, which also have the most tex-
tured regions among the categories (leading to false cham-
fer matches). For the expanded regions, the shape-only
baseline falls apart completely: only one of the discovered
shapes resembles an object (a Giraffe).

4.3. Generalization to Detection in Novel Images

Finally, we test the generality of our method’s discovered
shapes by using them to perform a detection task on images

from the LabelMe dataset [14]. While all previous unsuper-
vised category discovery methods have been evaluated only
on partitions of the same prepared datasets from which they
were learned, this seems like a good challenge to assure that
what was discovered is not purely due to peculiarities of the
dataset.

We created a testset for the Faces (F), Airplane (A), Cars
Rear (C), and Motorbike (M) categories, each having 15
images (see Supplementary Material for details).

We perform object detection by matching our prototyp-
ical shapes to the test images. We measure detection ac-
curacy by the area overlap over the combined area of the
ground-truth bounding box and the detector’s output bound-
ingbox: ag = (BBgNBBg)/(BByUBBy). The average
a, for each category is: [F: 0.47, A: 0.43, M: 0.38, C: 0.31].
Chance detection would be: [F: 0.03, A: 0.02, M: 0.03, C:
0.02]. Even with a weak chamfer matching detector, our
discovered prototypical shapes serve as good templates to
detect objects in novel images.

Conclusions: We have developed an algorithm to dis-
cover common object shapes in unlabeled images. We have
shown the strength of our patch-anchored shape matching



(a) bbox examples (b) Our shapes (c) Baseline shapes

(d) Expanded examples

Y
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Figure 7. Results on the bounding box regions (a-c) and expanded regions (d-f) of the ETHZ dataset. (a,d): Example images with our
method’s most confident discovered contours overlayed. (b,e): Prototypical shapes found by our method. (c.f): Prototypical shapes found
by the shape-only baseline. For (b,c,e,f), the right images are thresholded images of the left. (Best viewed in color.)

by comparing against baseline methods that use each fea-
ture in isolation, as well as against previous unsupervised
learners.
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