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Abstract

How can knowing about some categories help us to dis-

cover new ones in unlabeled images? Unsupervised visual

category discovery is useful to mine for recurring objects

without human supervision, but existing methods assume

no prior information and thus tend to perform poorly for

cluttered scenes with multiple objects. We propose to lever-

age knowledge about previously learned categories to en-

able more accurate discovery. We introduce a novel object-

graph descriptor to encode the layout of object-level co-

occurrence patterns relative to an unfamiliar region, and

show that by using it to model the interaction between

an image’s known and unknown objects we can better de-

tect new visual categories. Rather than mine for all cat-

egories from scratch, our method identifies new objects

while drawing on useful cues from familiar ones. We eval-

uate our approach on benchmark datasets and demonstrate

clear improvements in discovery over conventional purely

appearance-based baselines.

1. Introduction

The goal of unsupervised visual category learning is to

take a completely unlabeled collection of images and dis-

cover those appearance patterns that repeatedly occur in

many examples. Often, these patterns will correspond to

object categories or parts, and the resulting clusters or vi-

sual “themes” are useful to summarize the images’ content,

or to build new models for object recognition using mini-

mal manual supervision [8, 23, 17, 14, 16]. The appeal of

unsupervised methods is three-fold: first, they help reveal

structure in a very large image collection; second, they can

greatly reduce the amount of effort that currently goes into

annotating or tagging images; and third, they mitigate the

biases that inadvertently occur when manually constructing

datasets for recognition. The potential reward for attaining

systems that require little or no supervision is enormous,

given the vast (and ever increasing) unstructured image and

video content currently available—for example in scientific

databases, news photo archives, or on the Web.

Existing unsupervised techniques essentially mine for
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Figure 1. Toy example giving the intuition for context-aware discovery.

First cover (b) and try to discover the common object(s) that appear in the

images for (a). Then look at (b) and do the same. (Hint: the new object re-

sembles an ‘r’.) (a) When all regions in the unlabeled image collection are

unfamiliar, the discovery task can be daunting; appearance patterns alone

may be insufficient. (b) However, the novel visual patterns become more

evident if we can leverage their relationship to things that are familiar (i.e.,

the circles, squares, triangles). We propose to discover visual categories

within unlabeled natural images by modeling interactions between the un-

familiar regions and familiar objects.

frequently recurring appearance patterns, typically employ-

ing a clustering algorithm to group local features across im-

ages according to their texture, color, shape, etc. Unfor-

tunately, learning multiple visual categories simultaneously

from unlabeled images remains understandably difficult, es-

pecially in the presence of substantial clutter and scenes

with multiple objects. While appearance is a fundamen-

tal cue for recognition, it can often be too weak of a signal

to reliably detect visual themes in unlabeled, unsegmented

images. In particular, appearance alone can be insufficient

for discovery in the face of occluded objects, large intra-

category variations, or low-resolution data.

In this work, we propose to discover novel categories

that occur amidst known objects within un-annotated im-

ages. How could visual discovery benefit from familiar ob-

jects? The idea is that the relative layout of familiar visual

objects surrounding less familiar image regions can help to

detect patterns whose correct grouping may be too ambigu-

ous if relying on appearance alone (see Figure 1). Specif-

ically, we propose to model the interaction between a set

of detected categories and the unknown to-be-discovered

categories, and show how a grouping algorithm can yield

more accurate discovery if it exploits both object-level con-

text cues as well as appearance descriptors.

As the toy example in Figure 1 illustrates, novel recur-

ring visual patterns ought to be more reliably detected in
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Figure 2. We want to encode the layout of known categories relative to

an unknown object. In this example, the unknown region is the mailbox.

Our goal is to form clusters on the basis of the similarity of the unknown

regions’ appearance, as well as the similarity between the graphs implied

by surrounding familiar objects.

the presence of familiar objects. Studies in perception con-

firm that humans use contextual cues from familiar objects

to learn entirely new categories [12]. The use of familiar

things as context applies even for non-vision tasks. For ex-

ample, take natural language learning: when we encounter

unfamiliar words, their definition can often be inferred us-

ing the contextual meaning of the surrounding text [30].

To implement this idea, we introduce a context-aware

discovery algorithm. Our method first learns category mod-

els for some set of known categories. Given a new set of

completely unlabeled images, it predicts occurrences of the

known classes in each image (if any), and then uses those

predictions as well as the image features to mine for com-

mon visual patterns. For each image in the unlabeled in-

put set, we generate multiple segmentations in order to ob-

tain a pool of regions likely to contain some full objects.

We classify each region as known (if it belongs to one of

the learned categories) or unknown (if it does not strongly

support any of the category models). We then group the

unknown regions based on their appearance similarity and

their relationship to the surrounding known regions. To

model the inter-category interactions, we propose a novel

object-graph descriptor that encodes the layout of the pre-

dicted classes (see Figure 2). The output of the method is

a set of discovered categories—that is, a partitioning of the

unfamiliar regions into coherent groups.

The proposed method strikes a useful balance between

recognition strategies at either end of the supervision spec-

trum. The norm for supervised image labeling methods is

forced-choice classification, with the assumption that the

training and test sets are comprised of objects from the same

pool of categories. On the other hand, the norm for unsuper-

vised recognition is to mine for all possible categories from

scratch [23, 17, 8, 14, 16]. In our approach, the system need

not know how to label every image region, but instead can

draw on useful cues from familiar objects to better detect

novel ones. Ultimately we envision a system that would

continually expand its set of known categories—alternating

between detecting what’s familiar, mining among what’s

not, and then presenting discovered clusters to an annota-

tor who can choose to feed the samples back as additional

labeled data for new or existing categories.

Our main contribution is the idea of context-aware un-

supervised visual discovery; our technique introduces (1)

a method to determine whether regions from multiple seg-

mentations are known or unknown, as well as (2) a new

object-graph descriptor to encode object-level context. Un-

like existing approaches, our method allows the interaction

between known and unknown objects to influence the dis-

covery. We evaluate our approach on four datasets, and

show that it leads to significant improvements in category

discovery compared to strictly appearance-based baselines.

2. Related Work

Existing unsupervised methods analyze appearance to

discover object categories, often using bag-of-words rep-

resentations and local patch features. Some methods lever-

age topic models, such as Latent Semantic Analysis, to dis-

cover visual themes [23, 17]. Others partition the image

collection using spectral clustering [8, 14, 16]. Our moti-

vation is similar to these methods: to decompose large un-

annotated image collections into their common visual pat-

terns or categories. However, while all previous methods

assume no prior knowledge, the proposed approach allows

inter-category interaction between familiar and unfamiliar

regions to influence the groupings.

The idea of transferring knowledge obtained from one

domain to a disjoint but similar domain is explored for ob-

ject recognition in [4, 2]; the authors devise a prior based on

previously learned categories, thereby learning with fewer

labeled examples. In contrast, we directly model the inter-

action between the learned objects and the unknown to-be-

discovered objects, thereby obtaining more reliable groups

from unlabeled examples.

For supervised methods that learn from labeled images,

several types of context have been proposed. Global im-

age features [27] and 3D scene layout [11] help to model

the relationship between objects and scenes. Spatial con-

text can be modeled with neighboring inter-region interac-

tions [9, 25, 10, 18]. The benefit of high-level semantic con-

text based on objects’ co-occurrence and relative locations

has also been demonstrated [5, 21, 28, 7].

Our method exploits high-level semantic context for un-

supervised category discovery. Unlike the above supervised

methods, we do not learn about inter-category interactions

from a labeled training set, nor do we aim to improve the de-

tection of familiar objects via context relationships. Instead,

we identify contextual information in a data-driven manner,
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Figure 3. An example image, its ground-truth known/unknown label image, and our method’s predicted entropy maps for each of its 10 segmentations. For

the ground-truth, black regions denote known classes (sky, road), and white regions denote unknown classes (building, tree). (Gray pixels are “void” regions

that were not labeled in the MSRC-v2 ground-truth). In the entropy maps, lighter/darker colors indicate higher/lower entropy, which signals higher/lower

uncertainty according to the known category models. Note that the regions with highest uncertainty (whitest) correspond correctly to unknown objects, while

those with the lowest uncertainty (darkest) are known. Regions that are comprised of both known and unknown objects are typically scored in between

(gray). By considering confidence rates among multiple segmentations, we can identify the regions that are least strongly “claimed” by any known model.

by detecting patterns in the relative layout of known and un-

known object regions within unlabeled images. The method

in [15] recovers contextual information on-the-fly from the

test images by exploiting the data’s statistical redundancy.

However, in contrast to our approach, that method learns

the context surrounding familiar object instances to improve

their classification, whereas our approach discovers object-

level context surrounding unfamiliar object regions to im-

prove their grouping (discovery of new objects).

3. Approach

There are three main steps to our approach: (1) detecting

instances of known objects in each image while isolating

regions that are likely to be unknown; (2) extracting object-

level context descriptions for the unknown regions; and (3)

clustering the unfamiliar regions based on these cues. In the

following, we describe each step in turn.

3.1. Identifying Unknown Objects

Any image in the unlabeled collection may contain mul-

tiple objects, and may have a mixture of familiar and unfa-

miliar regions. In order to describe the interaction of known

and unknown objects, first we must predict which regions

are likely instances of the previously learned categories1.

Ideally, an image would first be segmented such that each

region corresponds to an object; then we could classify each

region and take only those with the most confident out-

puts as “knowns”. In practice, due to the non-homogeneity

of many objects’ appearance, bottom-up segmentation al-

gorithms (e.g. Normalized Cuts [24]) cannot produce such

complete regions. Therefore, following [23], we generate

multiple segmentations per image, with the expectation that

although some regions will fail to agree with object bound-

aries, some will be good segments that correspond to coher-

ent objects. Each segmentation is the result of varying the

parameters to the segmentation algorithm (i.e., number of

regions, image scale). As in previous work, each segment

goes into the pool of instances that will be processed by the

1The problem of distinguishing known regions from unknown regions

has not directly been addressed in the recognition literature, to our knowl-

edge, as most methods aim to either classify the image as a whole, label

every pixel with a category, or localize a particular object.

algorithm, which means segments that overlap in the same

original image are treated as separate instances.

We first compute the confidence that any of these re-

gions correspond to a previously learned category. As-

suming reliable classifiers, we will see the highest certainty

for the “good” regions that are from known objects, lower

responses on regions containing a mix of known and un-

known objects, and the lowest certainty for regions com-

prised entirely of unknown objects (see Figure 3). Using

this information to sort the regions, we can then determine

which need to be sent to the grouping stage as candidate

unknowns, and which should be used to construct the sur-

rounding object-level cues.

We use a labeled training set to learn classifiers for N

categories, C = {c1, . . . , cN}. The classifiers must ac-

cept an image region as input and provide a confidence of

class membership as output. We combine texture, color, and

shape features using the multiple kernel learning (MKL)

framework of [1] and obtain posterior probabilities for any

region with an SVM classifier; i.e., the probability that a

segment s belongs to class ci, P(ci|s). (Details on the fea-

tures we use in our results are given in Section 4.)

The familiarity of a region is captured by the list of these

posterior probabilities for each class. Segments that look

like a learned category ci will have a high value for P(ci|s),
and low values for P(cj |s), ∀j 6= i. These are the known

objects. Unknown objects will have more evenly distributed

values among the posteriors. To measure the degree of

uncertainty, we compute the entropy E for a segment s,

E(s) = −
∑N

i=1 P(ci|s) · log2 P(ci|s). The lower the en-

tropy, the higher the confidence that the segment belongs to

one of the known categories; correspondingly, we consider

a region with a high entropy score to be a likely “unknown”.

This gives us a means to separate each image into known

and unknown regions. Entropy ranges from 0 to log2(N);
we simply select a cutoff threshold equal to the midpoint

in this range, and treat regions above the threshold as un-

known and those below as known. Figure 3 shows entropy

maps for the multiple segmentations from a representative

example image. Note the agreement between the highest

uncertainty ratings and the true object boundaries.



3.2. ObjectGraphs: Modeling the Topology of Cat
egory Predictions

Given the unknown regions identified above, we would

like to model their surrounding contextual information in

the form of object interactions. Specifically, we want to

build a graph that encodes the topology of adjacent regions

relative to an unknown region (see Figure 2). Save the un-

known regions, the nodes are named objects, and edges con-

nect adjacent objects. With this representation, one could

then match any two such graphs to determine how well the

object-level context agreed for two candidate regions that

might be grouped. Regions with similar surrounding con-

text would have similar graphs; those with dissimilar con-

text would generate dissimilar graphs.

If we could rely on perfect segmentation, classification,

and separation of known and unknown regions, this is ex-

actly the kind of graph we would construct—we could sim-

ply count the number and type of known objects and record

their relative layout. In practice, we are limited by the ac-

curacy and confidence values produced by our classifier as

well as the possible segments. While we cannot rectify mis-

labeled known/unknown regions, we can be more robust

to misclassified known regions (e.g., sky that could almost

look like water) by incorporating the uncertainty into the

surrounding object context description.

We propose an object-graph descriptor that encodes the

likely categories within the neighboring segments and their

proximity to the unknown base segment. Rather than form

nodes solely based on a region’s class label with the maxi-

mum posterior probability, we create a histogram that forms

localized counts of object presence weighted according to

each class’s posterior. For each segment, we compute a dis-

tribution that averages the probability values of each known

class that occurs within that segment’s r spatially near-

est neighboring segments (where nearness is measured by

distance between segment centroids), incremented over in-

creasing values of r (see Figure 4).

Specifically, for each unknown segment s, we compute a

series of histograms using the posteriors computed within

its neighboring superpixels. Each component histogram

Hr(s) accumulates the average probability of occurrences

of each class type ci within s’s r spatially nearest segments

for each of two orientations, above and below the segment.

We concatenate the component histograms for r = 0, . . . , R

to produce the final object-graph descriptor:

g(s) = [H0(s), H1(s), . . . , HR(s)], (1)

where H0(s) contains the posteriors computed within s’s

central superpixel. The result is an ((R + 1) · 2N)-
dimensional vector, where N denotes the number of famil-

iar classes. Note that higher values of r produce a com-

ponent Hr(s) covering a larger region, and the descriptor

0

2a

1a

3a

3b

b t s r

above below

H1(s)

b t s rb t s r

H0(s)

self

g(s) = [                ,        ,     ,            ]                

HR(s)

b t s r b t s r

above below

b t s r

self

2b
1b

S

Figure 4. Schematic of the proposed object-graph descriptor. The base

segment is s. The numbers indicate each region’s rank order of spatial

proximity to s for two orientations, above and below. The circles denote

each segment’s centroid. In this example, there are four known classes:

building (b), tree (t), sky (s), and road (r). Each histogram Hr(s) encodes

the average posteriors for the r neighboring segments surrounding s from

above or below, where 0 ≤ r ≤ R. (Here, R = 3, and bars denote pos-

terior values.) Taken together, g(s) serves as a soft encoding of the likely

classes that occur relative to s, from near to far, and at two orientations.

softly encodes the surrounding objects present in increas-

ingly further spatial extents. Our representation can detect

partial context matches (i.e., partially agreeing spatial lay-

outs), since the matching score between two regions is pro-

portional to how much their context agrees. Due to the cu-

mulative construction, discrepancies in more distant regions

have less influence.

There are a couple of implementation details that will

help ensure that similar object topologies produce similar

object-graph descriptors. First, we need to maintain con-

sistency in the size and relative displacement of nodes (re-

gions) across different object-graphs; to do this, we use su-

perpixel segments as nodes (typically about 50 per image).

Their fairly regular size and shape tessellates the image sur-

rounding the unknown region well, which in turn makes a

centroid-based distance between nodes reliable.2 As usual,

the superpixels may break non-homogeneous objects into

multiple regions, but as long as the oversegmentation ef-

fect is fairly consistent in different images (e.g., the dark

roof and light wall on the building are often in different su-

perpixels), the object-graph will avoid misleading double-

counting effects. Empirically, we have observed that this

consistency holds.

Second, we need to obtain robust estimates of the known

objects’ posterior probabilities, and avoid predicting class

memberships on regions that are too local (small). For

this we exploit the multiple segmentations: we estimate the

2Note that our descriptor assumes images have similar scene depth, and

thus that the relative placement of surrounding objects depends only on

the scale of the object under consideration (as do most existing recognition

methods using object co-occurrence context, e.g. [25, 10]).



class posteriors for each segment, then for each image, we

stack its segmentation maps, and compute a per-pixel aver-

age for each of the N posterior probabilities. Finally, we

compute the posteriors for each superpixel node by averag-

ing the N -vector of probabilities attached to each of its pix-

els. Note that this allows us to estimate the known classes’

presence from larger regions, but then summarize the results

in the smaller superpixel nodes.

We select a value of R large enough to typically include

all surrounding regions in the image. We limit the orienta-

tions to above and below (as opposed to also using left and

right) since we expect this relative placement to have more

semantic significance; objects that appear side-by-side can

often be interchanged from left-to-right (e.g., see the mail-

box example in Figure 2). For images that contain multiple

unknown objects, we do not exclude the class-probability

distributions of the unknown regions present in another un-

known region’s object-graph. Even though the probabili-

ties are specific to known objects, their distributions still

give weak information about the appearance of unknown

objects. The probabilities cannot denote which class the un-

known region should belong to (since all possible answers

would be incorrect), but we will get similar distributions

for similar-looking unknown regions. As long as the un-

known objects consistently appear in similar surrounding

displacements throughout the dataset (e.g, unfamiliar cows

appearing near other unfamiliar cows), it should only aid

the contextual description.

Previous methods have been proposed to encode the ap-

pearance of nearby regions or patches [25, 10, 29, 16], how-

ever our object-graph is unique in that it describes the region

neighborhood based on object-level information, and ex-

plicitly reflects the layout of previously learned categories.

(In Section 4 we demonstrate the comparative value for the

discovery task.) Relative to existing graph kernels from the

machine learning literature [6, 13], our approach allows us

to represent object topology without requiring hard deci-

sions on object names and idealized segmentations.

3.3. Category Discovery Amidst Familiar Objects

Now that we have a means to compute object-level con-

text, we can combine this information with region-based

appearance to form homogeneous groups from our collec-

tion of unknown regions. We define a similarity function

between two regions sm and sn that includes both region

appearance and known-object context:

K(sm, sn) =
1

|u|

∑

u

Kχ2 (au(sm), au(sn))+Kχ2 (g(sm), g(sn)) ,

where g(sm) and g(sn) are the object-graph descriptors as

defined in Eqn. 1, and each au(sm) and au(sn) denotes an

appearance-based feature histogram extracted from the re-

spective region (which will be defined in Section 4). Each

Input: Set of classifiers for N known category models, set of novel

unlabeled images, and k.

Output: Set of k discovered categories (clusters).

1. Obtain multiple segmentations for each image.

2. Compute posteriors for each region. (Sec. 3.1)

3. Compute the entropy for each region to classify as “known” or

“unknown”. (Sec. 3.1)

4. Construct an object-graph for each unknown region. (Sec. 3.2)

5. Compute affinities between unknown regions with the

object-graph and appearance features, and cluster to discover

categories. (Sec. 3.3)

Algorithm 1: The context-aware discovery algorithm

Kχ2(·, ·) denotes a χ2 kernel function for two histogram in-

puts: Kχ2(x, y) = exp(− 1
2

∑
i

(xi−yi)
2

xi+yi

), where i indexes

the histogram bins.

We compute affinities between all pairs of unknown re-

gions to generate an affinity matrix, which is then given as

input to a clustering algorithm to group the regions. We use

the spectral clustering method developed in [20]. Because

we use multiple segmentations, if at least one “good” seg-

ment of an unknown object comes out of an image, then

it may be matched and clustered with others that belong to

the same category. Since our unknown/known separation

for novel images may be imperfect, some discovered groups

may contain objects that actually belong to a known class.

Importantly, since affinity can be boosted by either similar

appearance or similar context of known objects, we expect

to be able to discover objects with more diverse appearance.

We summarize the steps of our algorithm in Alg. 1.

4. Results

In this section, we (1) evaluate our method’s discov-

ery performance and compare against two appearance-only

baselines, (2) analyze our entropy-based known-unknown

separation measure, and (3) compare the object-graph with

an appearance-based context baseline.

We validate our approach with four datasets: MSRC-v0,

MSRC-v2, PASCAL VOC 2008, and Corel. The MSRC-v0

has 21-classes (3,457 images), the MSRC-v2 has 21-classes

(591 images), the PASCAL has 20-classes (1,023 images;

we use the trainval set from the segmentation challenge),

and the Corel has 7-classes (100 images). Our dataset se-

lection is based on the requirements that the images have

pixel-level ground truth and multiple objects from multiple

categories. We evaluate on all sets, and focus additional

analysis on the MSRC-v2 since it has the largest number of

categories, and ground-truth labeling [19] for all objects.

We want to evaluate how sensitive our method is w.r.t.

which classes are considered familiar (or unfamiliar), and

how many (or few) objects are in the “known” set of mod-

els. Thus for each dataset, we form multiple splits of

known/unknown classes, for multiple settings of both the

number of knowns (N ) and the number of true unknowns

present. Please see the supplementary file for a detailed
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Figure 5. Discovery accuracy results. (a) through (d): Purity rates for all four datasets as a function of k. Higher curves are better. We compare our

approach (Object-Graph) with appearance-only baselines. The discovered categories are more accurate using the proposed approach, as the familiar objects

nearby help us to detect region similarity even when their appearance features may only partially agree. (e): Performance attainable were we able to perfectly

separate segments according to whether they are known or unknown.

breakdown of the category names in each split. We learn

the known classes on 60% of the data and run our discovery

algorithm on the other 40%.

Implementation Details: We use Normalized Cuts [24]

for segmentation, and vary the number of segments from 3

to 12 to obtain 10 segmentations (75 segments) per image.

To form each appearance descriptor au(s) for a region s,

we use several types of bag-of-features histograms: Texton

Histograms (TH), Color Histograms (CH), and pyramid of

HOG (pHOG) [3]. For TH, we use a filter bank with 18

bar and edge filters (6 orientations and 3 scales for each),

1 Gaussian, and 1 Laplacian-of-Gaussian filters. We quan-

tize to 400 textons via k-means. For CH, we use Lab color

space, with 23 bins per channel. For pHOG, we use 3 pyra-

mid levels with 8 bins. We normalize each au(s) and g(s)
to sum to 1. To compute class probabilities, we use one-

vs-all SVM classifiers trained using MKL, and obtain pos-

teriors using [22]. For the object-graphs, we generate an

over-segmentation with roughly 50 superpixels per image,

and fix R = 20.

Evaluation Metrics: We use both purity [26] and mean

Average Precision (mAP) to quantify accuracy. The for-

mer rates the coherency of the clusters discovered, while the

latter reflects how well we have captured the affinities be-

tween intra-class versus inter-class instances (independent

of the clustering algorithm). We only consider regions with

ground-truth labels (i.e., no “voids” from MSRC). To score

an arbitrary segment, we consider its ground truth label to

be that which the majority of its pixels belong to.

These metrics reward discovery of object parts as well

as full objects (e.g., we would get credit for discovering

cow heads and cow legs as separate entities). This seems

reasonable for the unsupervised category discovery prob-

lem setting, given that the part/object division is inherently

ambiguous without external human supervision. We report

purity values as a function of the number of clusters, since

we cannot assume prior knowledge on the number of novel

categories. Since the spectral clustering step [20] uses a

random initialization, we average all results over 10 runs.

Unsupervised Discovery Accuracy: To support our

claim that the detection of familiar objects should aid in cat-

egory discovery, we evaluate how much accuracy improves

when we form groups using appearance together with the

object-graph, versus when we form groups using appear-

ance alone. We thus generate two separate curves for pu-

rity scores: (1) an appearance-only baseline where we clus-

ter unknown regions using only appearance features (App.

only), and (2) our approach, where we cluster using both

appearance and contextual information (Object-Graph).

Since our evaluation scenario necessarily differs from

earlier work in unsupervised discovery, it is not possible to

directly compare the output of our method with previously

reported numbers: our method assumes some background

knowledge about a subset of the classes, whereas existing

discovery methods assume none. However, our appearance-

only baseline is intended to show the limits of what can

be discovered using conventional approaches for this data,

since previous unsupervised methods all rely solely on ap-

pearance [23, 8, 14, 16]. Furthermore, we also generate

comparisons with the state-of-the-art LDA-based discovery

method of Russell et al. [23] using the authors’ publicly

available code. To our knowledge, theirs is the only other

current unsupervised method that tests with datasets con-

taining multiple objects per image, making it the most suit-

able method for comparison. In all results, our method and

the baselines are applied to the same pool of segments (i.e.,

those our method identifies as unknown).

Figure 5 (a-d) shows the results for all of the datasets.

Our model significantly outperforms the appearance-only

baselines. These results confirm that the appearance and

object-level contextual information complement each other



Building Tree Cow Airplane Bicycle

Our full model 0.32 0.36 0.41 0.36 0.21

App. only 0.27 0.33 0.20 0.21 0.10

Obj-Graph only 0.32 0.27 0.37 0.32 0.24

Table 1. Mean Average Precision (mAP) on MSRC-v2 set1 unknowns.

to produce high quality clusters.3 Parts (a) and (b) illustrate

our method’s consistency with respect to various random

splits of unknown/known category pools.

To directly evaluate how accurately our object-graph

affinities compare the regions, we analyze the mean Aver-

age Precision (see Table 1). Our full model noticeably out-

performs the appearance-only baseline in all categories. In

fact, the object-graph descriptor alone (with no appearance

information) performs almost as well as our full model. For

bicycles, the affinities obtained using only appearance infor-

mation are weak, and thus the full model actually performs

slightly worse than the object-graph descriptor in isolation.

Our model’s largest improvement occurs for the cow class

(high appearance variance), whereas it is smaller for trees

(low appearance variance).

Impact of Known/Unknown Decisions: Figure 7 (left)

shows the precision-recall curve for our known-unknown

decisions on the MSRC-v2. For this, we treat the known

classes as positive, and the unknown classes as negative,

and sort the regions by their entropy scores. The red star in-

dicates the precision-recall value at 1
2 maxE(s). With this

(arbitrary) threshold, the regions considered for discovery

are almost all true unknowns (and vice versa), at some ex-

pense of misclassifying unknown and known regions. Ad-

justing the “knob” on the threshold produces a tradeoff be-

tween the number of true unknowns considered for discov-

ery versus the number of true knowns treated as unknowns.

Learning the “optimal” threshold depends on the applica-

tion, and for our problem setting, 1
2 max E(s) suffices.

How much better could we do with more reliable

predictions of what is unknown? Figure 5 (e) shows the

results for the MSRC-v2 if we replace our known-unknown

predictions with perfect separation (note the vertical

axis scale change). Again our model outperforms the

appearance-only baseline. All purity rates are notably

higher here compared to when the known/unknown sep-

aration is computed automatically, likely because the

discovery problem has become much simpler: instead of

having regions that could belong to one of 21 categories

(total number of known and unknown categories), we only

need to group the true unknowns. This implies that there

is room for better initial classification (i.e., better label

predictions and confidences), with which we can expect

higher cluster purity rates.

3To ensure that the improvement over [23] on the MSRC-v2 is not a

result of stronger appearance features, we repeated the experiment using

the same features for all methods, letting a(s) be a SIFT bag of words as

in [23]; our method again outperforms the baseline (see supp. file).

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

recall

p
re

c
is

io
n

MSRC−v2 set1 Precision / Recall

0 10 20 30
0.1

0.2

0.3

0.4

0.5

# of clusters

P
u

ri
ty

MSRC−v2 set1

 

 

Object−Graph Context−only

Baseline Appearance Context

Figure 7. (left:) Precision-recall curve for known vs. unknown decisions

on the MSRC-v2 set1; the star denotes the cutoff (half of the maximum

possible entropy value). (right:) Comparison of the Object-Graph de-

scriptor to a “raw” appearance-based context descriptor.

Comparing Splits: Upon examining the relative perfor-

mance on different known/unknown splits, we found that

discovery performance depends to a limited extent on which

categories are known, and how many. For example, both

our method and the baseline have stronger discovery per-

formance on MSRC-v2 set2 than on set1 (see plots for set2

in supplementary file). This can be attributed to the fact that

the unknowns in set2 are grass, sky, water, road, and dog,

which have strong appearance features and can be discov-

ered reliably without much contextual information. When

the ratio between the number of unknown categories to

known categories increases (from left to right in Figure 5 (a)

and (b)), there is a decrease in the information provided by

the known object-level context, and consequently we find

that our improvements over the baseline eventually have a

smaller margin (see rightmost curves in (a) and (b), where

only 5 or 6 objects are known). Overall, however, we find

that the improvements are quite stable: across the 12 ran-

dom splits tested for the MSRC and PASCAL, our method

never detracts from the accuracy of the baseline.

Impact of the Object-Graph Descriptor: We next

evaluate how our object-graph descriptor compares to a

simpler alternative that directly encodes the surrounding

appearance features. Since part of our descriptor’s nov-

elty rests on its use of object-level information, this is an

important distinction to study empirically. We substitute

class probability counts in the object-graph with raw fea-

ture histogram counts. Figure 7 (right) shows the result on

the MSRC-v2. Our object-graph performs noticeably better

than the baseline, confirming that directly modeling class-

interactions instead of surrounding appearance cues can im-

prove discovery.

In addition to improved accuracy, our descriptor also has

the advantage of lower dimensionality. The object-graph

requires only R ·2N -dimensional vectors for each unknown

region, whereas the appearance baseline requires R · 2Q-

dimensional vectors, for Q texton + color + pHOG bins. In

this case, our object-graph is ∼ 70 times more compact.

Qualitative Examples of Discovered Objects: Figure 6

shows examples of discovered categories from the 3,457

MSRC-v0 images using our approach, for k = 30. The

cluster images are sorted by their degree as computed by

the affinity matrix: D(sm) =
∑

l∈L K(sm, sl), where L



Figure 6. Examples of discovered categories for the MSRC-v0. See text for details. (Best viewed on pdf.)

denotes the cluster containing segment sm. We show the

top 30 regions for each cluster, removing overlapping re-

gions and limiting to only one region per image. The result-

ing groups show good semantic consistency (here, we see

windows, cars, bicycles and trees). Notably, our clusters

tend to be more inclusive of intra-class appearance varia-

tion than those that could be found with appearance alone.

For example, note the presence of both side views and rear

views in the car cluster (top left), and the distinct types of

windows that get grouped together (top right).

Conclusions: We developed an algorithm that models

the interaction between familiar categories and unknown

regions to discover novel categories in unlabeled images.

We would like to extend the system to be used in a semi-

automatic loop, where an annotator labels the meaningful

discovered clusters, which would then become the familiar

objects for training a classifier. We plan to next investigate

ways of providing more robust known/unknown decisions.
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