
Learning to Look Around:
Intelligently Exploring Unseen Environments for Unknown Tasks

Dinesh Jayaraman
UC Berkeley*

Kristen Grauman
UT Austin

Abstract

It is common to implicitly assume access to intelligently
captured inputs (e.g., photos from a human photographer),
yet autonomously capturing good observations is itself a
major challenge. We address the problem of learning to
look around: if an agent has the ability to voluntarily ac-
quire new views to observe its environment, how can it learn
efficient exploratory behaviors to acquire informative vi-
sual observations? We propose a reinforcement learning
solution, where the agent is rewarded for actions that re-
duce its uncertainty about the unobserved portions of its
environment. Based on this principle, we develop a recur-
rent neural network-based approach to perform active com-
pletion of panoramic natural scenes and 3D object shapes.
Crucially, the learned policies are not tied to any recogni-
tion task nor to the particular semantic content seen during
training. As a result, 1) the learned “look around” behav-
ior is relevant even for new tasks in unseen environments,
and 2) training data acquisition involves no manual label-
ing. Through tests in diverse settings, we demonstrate that
our approach learns useful generic policies that transfer to
new unseen tasks and environments.

1. Introduction

Visual perception requires not only making inferences
from observations, but also making decisions about what to
observe. Individual views of an environment afford only a
small fraction of all information relevant to a visual agent.
For instance, an agent with a view of a television screen
in front of it may not know if it is in a living room or a
bedroom. An agent observing a mug from the side may
have to move to see it from above to know what is inside.
An agent surveying a rescue site may need to explore at the
onset to get its bearings.

In principle, complete certainty in perception is only
achieved by making every possible observation—that is,
looking around in all directions, or systematically examin-
ing all sides of an object—yet observing all aspects is often

*Work done while at UT Austin.

inconvenient if not intractable. In practice, however, not
all views are equally informative. The natural visual world
contains regularities, suggesting not every view needs to be
sampled for near-perfect perception. For instance, humans
rarely need to fully observe an object to understand its 3D
shape [33,58,59], and one can often understand the primary
contents of a room without literally scanning it [63]. Given
a set of past observations, some new views are more useful
than others. This leads us to investigate the question: how
can a learning system make intelligent decisions about how
to acquire new exploratory visual observations?

Today, much of the computer vision literature deals with
inferring visual properties from a fixed observation. For
instance, there are methods to infer shape from multiple
views [24], depth from monocular views [54], or category
labels of objects [37]. The implicit assumption is that the in-
put visual observation is already appropriately captured. We
contend that this assumption neglects a key part of the chal-
lenge: intelligence is often required to obtain proper inputs
in the first place. Arbitrarily framed snapshots of the visual
world are ill-suited both for human perception [16, 49] and
for machine perception [3, 70]. Circumventing the acqui-
sition problem is only viable for passive perception algo-
rithms running on disembodied stationary machines, which
are tasked only with processing human-captured imagery.

In contrast, we are interested in learning to observe
efficiently—a critical yet understudied problem for au-
tonomous embodied visual agents. An agent ought to be
able to enter a new environment or pick up a new object and
intelligently (non-exhaustively) look around. This capabil-
ity would be valuable in both task-driven scenarios (e.g., a
drone searches for signs of a particular activity) as well as
scenarios where the task itself unfolds simultaneously with
the agent’s exploratory actions (e.g., a search-and-rescue
robot enters a burning building and dynamically decides its
mission). While there is interesting recent headway in ac-
tive object recognition [3, 11, 29, 43] and intelligent search
mechanisms for detection [10, 32, 45, 73], such systems are
supervised and task-specific—limited to accelerating a pre-
defined recognition task.

We address the general setting, where exploration is not

1

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 
First appears as arXiv:1709.00507, Sept 2017.



Where to

look next? ?

Figure 1. Looking around efficiently is a complex task requiring the ability to reason about regularities in the visual world using cues like
context and geometry. (Left) An agent that has observed limited portions of its environment can reasonably hallucinate some unobserved
portions (e.g. water near the ship), but is much more uncertain about other portions. Where should it look next? (Right) An agent inspecting
a mug. Having seen a top view and a side view, how must it rotate the mug now to get maximum new information? Critically, we aim to
learn policies that are not specific to a given object or scene, and not even to a specific individual task. Rather, the look-around policies
ought to benefit the agent exploring new, unseen environments and performing tasks unspecified when learning the look-around behavior.

specialized to one task, but should benefit perception tasks
in general. To this end, we formulate an unsupervised learn-
ing objective based on active observation completion: a sys-
tem must intelligently acquire a small set of observations
from which it can hallucinate all other possible observa-
tions. The agent continuously updates its internal model of
a target scene or 3D shape based on all previously observed
views. The goal is not to produce photorealistic predictions,
but rather to represent the agent’s evolving internal state.
Its task is to select actions leading to new views that will
efficiently complete its internal model. Posing the active
view acquisition problem in terms of observation comple-
tion has two key advantages: generality and low cost (label-
free) training data. It is also well-motivated by findings that
infants’ abilities to actively manipulate and inspect objects
correlates with learning to complete 3D shapes [58].

We develop a reinforcement learning approach for active
visual completion. It uses recurrent neural networks to ag-
gregate information over a sequence of views. The agent is
rewarded based on its predictions of unobserved views.

We explore our idea in two settings. See Figure 1. In
the first, the agent scans a scene through its limited field of
view camera; the goal is to select efficient camera motions
so that after a few glimpses, it can model unobserved por-
tions of the scene well. In the second, the agent manipulates
a 3D object to inspect it; the goal is to select efficient ma-
nipulations so that after only a small number of actions, it
has a full model of the object’s 3D shape. In both cases,
the system must learn to leverage visual regularities (shape
primitives, context, etc.) that suggest the likely contents
of unseen views, focusing on portions that are hard to hal-
lucinate. Furthermore, we show our exploratory policies
are generic enough to be transferred to entirely new unseen
tasks and environments.

2. Related work

Saliency and attention: Previous work studies the ques-
tion of “where to look” to prioritize portions of already cap-
tured image/video data, so as to reserve computation for the

most salient regions or block out distractors [1, 5, 8, 23, 41,
47, 52, 62, 71], or to predict the gaze or preference of a hu-
man observer [27,40,61]. In contrast, in our setting, the sys-
tem can never observe a snapshot of its entire environment
at once; its decision is not where to focus within a current
observation, but rather where to look for a new observation.

Optimal sensor placement: The sensor placement litera-
ture studies how to place sensors in a distributed network to
provide maximum coverage [14, 36, 64]. Unlike our active
completion problem, the sensors are static, i.e., their posi-
tions are preset, and their number is fixed. Further, sensor
placement is based on coverage properties of the sensors,
whereas our model must react to past observations.

Active perception: Intelligent control strategies for vi-
sual tasks were pioneered by [2, 6, 7, 65]. Recent work con-
siders tasks such as active object localization [4, 10, 17, 21,
32,45,46,56,77], action detection in video [73], and object
recognition [3,29,31,43] including foveated vision systems
that selectively obtain higher resolution data [9, 20, 53].

Our idea stands out from this body of work in two key as-
pects: (1) Rather than target a pre-defined recognition task,
we aim to learn a data acquisition strategy useful to percep-
tion in general, hence framing it as active “observation com-
pletion”. We show how policies trained on our task are use-
ful for recognition tasks for which the system has not been
trained to optimize its look-around behavior. (2) Rather
than manually labeled data, our method learns from unla-
beled observations. Training good policies usually requires
large amounts of data; our unsupervised objective removes
the substantial burden of manually labeling this data. In-
stead, our approach exploits viewpoint-calibrated observa-
tions as “free” annotations that an agent can acquire through
its own explorations at training time.

Work on intrinsic motivation “pseudorewards” [42] also
reduces the need for external supervision, but focuses on
learning “options” for policies seeking reward signals in a
specific task and fixed environment. Similarly motivated
self-supervised work [50] learns policies to play sparse-
reward video games by augmenting environmental reward



from the game engine with rewards for actions whose out-
comes are unpredictable. Neither work explores problems
with real natural images.

Active visual localization and mapping: Active visual
SLAM aims to limit samples needed to densely reconstruct
a 3D environment using geometric methods [13, 34, 35, 44,
60]. Beyond measuring uncertainty in the current scene,
our learning approach capitalizes on learned context from
previous experiences with different scenes/objects.

Image completion: Completion tasks appear in other
contexts within vision and graphics. Inpainting and texture
synthesis fill small holes (e.g., [18,51]), and large holes can
be filled by pasting in regions or textures from other images
of the same scene or similar-looking scenes [25,55,75]. Re-
cent work explores unsupervised “proxy tasks” to learn rep-
resentations, via various forms of completion like inpaint-
ing and colorization [39, 51, 74]. Our observation comple-
tion setting differs from these in that 1) it requires agent ac-
tion, 2) a much smaller fraction of the overall environment
is observable at a time, 3) our target is a representation of
multimodal beliefs, rather than a photorealistic rendering,
and 4) we use completion to learn exploratory behaviors
rather than features.

Learning to reconstruct: While 3D vision has long been
tackled with geometry and densely sampled views [24],
recent work explores ways to inject learning into recon-
struction and view synthesis [12, 15, 22, 28, 38, 67, 72, 76].
Whereas prior work learns to aggregate and extrapolate
from passively captured views in one shot, our work is the
first to consider active, sequential acquisition of informa-
tive views. Our view synthesis module builds on the one-
shot reconstruction approach of [28], but our contribution
is entirely different. Whereas [28] infers a viewgrid image
from a single input view, our approach learns look-around
behavior to select the sequence of views expected to best
reconstruct all views.

Shortly after our work was first released [30], the
Im2Pano3D project [57] explored scene completion on
360 panoramas given a partial RGB-D view. Both our
work and [57] represent first attempts to i) extrapolate to
omnidirectional panoramas and ii) posit extrapolation as
a scene understanding task beyond graphics. However,
whereas [57] considers completion tasks where about half
of the scene is observed, in our case only about 5% of the
scene is observed at a time. More importantly, our idea is
to learn exploratory, non-myopic policies for how an agent
should direct its camera over time—even in a novel environ-
ment; the output is a policy for how to move. In contrast,
the goal in [57] is to perform one-shot reconstruction of a
given scene’s semantic segmentation and 3D structure; the
output is the panorama itself.

3. Approach

We now present our approach for learning to actively
look around. For ease of presentation, we present the prob-
lem setup as applied to a 3D object understanding task.
With minor modifications (detailed in Sec. 4) our frame-
work applies also to the panoramic scene understanding set-
ting. Both will be tested in results.

3.1. Problem setup and notation

The problem setting is as follows: At timestep t = 1, an
agent is presented with an object X in a random, unknown
pose1. At every timestep, it can perform one action to rotate
the object and observe it from the new viewpoint. Its objec-
tive is to make efficient exploratory rotations to understand
the object’s shape. It maintains an internal representation of
the object shape, which it updates after every new observa-
tion. After a budget of T timesteps of exploration, it should
have learned a model that can produce a view of the object
as seen from any specified new viewing angle.

We discretize the space of all viewpoints into a “view-
grid” V (X), as in [29,31,43]. To do this, we evenly sample
M azimuths from 0° to 360° and N elevations from -90° to
+90° and form all MN possible pairings. Each pairing of
an azimuth and an elevation corresponds to one viewpoint
θi on a viewing sphere focused on the object. Let x(X,θi)
denote the 2D image corresponding to the view of object
X from viewpoint θi. The viewgrid V (X) is the table of
views x(X,θi) for 1 ≤ i ≤ MN . During training, the full
viewgrid of each object is available to the agent as supervi-
sion. During testing, the system must predict the complete
viewgrid, having seen only a few views within it.

At each timestep t, the agent observes a new view xt

and updates its prediction for the viewgrid V̂t(x1, · · · ,xt).
Simplifying notation, the problem now reduces to sequen-
tially exploring the viewgrid V to improve V̂t — in other
words, actively completing the observation of the viewgrid
V (X) of object X . Given the time budget T << MN , the
agent can see a maximum of T views out of all MN views
(maximum because it is allowed to revisit old views).

We explicitly choose to complete the viewgrid in the
pixel-space so as to maintain generality—the full scene/3D
object encompasses all potentially useful information for
any task. Hence, by formulating active observation comple-
tion in the pixel space, our approach avoids committing to
any intermediate semantic representation, in favor of learn-
ing policies that seek generic information useful to many
tasks. That said, our formulation is easily adaptable to more
specialized settings—e.g., if the target task only requires se-
mantic segmentation labels, the predictions could be in the
space of object labels instead.

1We assume the elevation angle alone is known, since this is true of
real-world settings due to gravity.



The active observation completion task poses three ma-
jor challenges. Firstly, to predict unobserved views well,
the agent must learn to understand 3D from very few views.
Classic geometric solutions struggle under these conditions.
Instead, reconstruction must draw on semantic and con-
textual cues. Secondly, intelligent action is critical to this
task. Given a set of past observations, the system must act
based on which new views are likely to be most informa-
tive, i.e., determine which views would most improve its
model of the full viewgrid. We stress that the system will
be faced with objects and scenes it has never encountered
during training, yet still must intelligently choose where it
would be valuable to look next. Finally, the task is highly
underconstrained—after only a few observations, there are
typically many possibilities, and the agent must be able to
handle this multimodality.

3.2. Active observation completion framework

Our solution to these challenges is a recurrent neural net-
work, whose architecture naturally splits into five modules
with distinct functions: SENSE, FUSE, AGGREGATE, DE-
CODE, and ACT. We first present these modules and their
connections; Sec. 3.3 below defines the learning objective
and optimization. Architecture details for all modules are
given in Fig 2.

Encoding to an internal model of the target First we de-
fine the core modules with which the agent encodes its in-
ternal model of the current environment. At each step t, the
agent is presented with a 2D view xt captured from a new
viewpoint θt. We stress that absolute viewpoint coordinates
θt are not fully known, and objects/scenes are not presented
in any canonical orientation. All viewgrids inferred by our
approach treat the first view’s azimuth as the origin. We as-
sume only that the absolute elevation can be sensed using
gravity, and that the agent is aware of the relative motion
from the previous view. Let pt denote this proprioceptive
metadata (elevation, relative motion).

The SENSE module processes these inputs in separate
neural network stacks to produce two vector outputs, which
we jointly denote as st = SENSE(xt,pt) (see Fig 2, top
left). FUSE combines information from both input streams
and embeds it into ft = FUSE(st) (Fig 2, top center).
Then this combined sensory information ft from the cur-
rent observation is fed into AGGREGATE, which is a long
short term memory module (LSTM) [26]. AGGREGATE
maintains an encoded internal model at of the object/scene
under observation to “remember” all relevant information
from past observations. At each timestep, it updates this
code, combining it with the current observation to produce
at = AGGREGATE(f1, · · · ,ft) (Fig 2, top right).

SENSE, FUSE, and AGGREGATE together may be thought
of as performing the function of “encoding” observations
into an internal model. This code at is now fed into two

modules, for producing the output viewgrid and selecting
the action, respectively.

Decoding to the inferred viewgrid DECODE trans-
lates the aggregated code into the predicted viewgrid
V̂t(x1, · · · ,xt) = DECODE(at). To do this, it first reshapes
at into a sequence of small 2D feature maps (Fig 2, bottom
right), before upsampling to the target dimensions using a
series of learned up-convolutions. The final up-convolution
produces MN maps, one for each of the MN views in the
viewgrid. For color images, we produce 3MN maps, one
for each color channel of each view. This is then reshaped
into the target viewgrid (Fig 2, bottom center). Seen views
are pasted directly from memory.

Acting to select the next viewpoint to observe Finally,
ACT processes the aggregate code at to issue a motor com-
mand δt = ACT(at) (Fig 2, middle right). For objects, the
motor commands rotate the object (i.e., agent manipulates
the object or peers around it); for scenes, the motor com-
mands move the camera (i.e., agent turns in the 3D envi-
ronment). Upon execution, the observation’s pose updates
for the next timestep to θt+1 = θt + δt. For t = 1, θ1 is
randomly sampled.

Internally, ACT first produces a distribution over all pos-
sible actions, and then samples δt from this distribution. To
approximate the constraint that motions in the real world
must be continuous, we restrict ACT to select “small” dis-
crete actions (details in Sec 4) at each timestep. Due to
the sampling operation, ACT is a stochastic neural net-
work [48]. Once the new viewpoint θt+1 is set, a new view
is captured and the whole process repeats. This happens
until T timesteps have passed, involving T − 1 actions.

3.3. Objective function and model optimization

All modules are jointly optimized end-to-end to improve
the final reconstructed viewgrid V̂T , which contains pre-
dicted views x̂T (X,θj) for all viewpoints θj , 1 ≤ j ≤
MN .

A simple objective would be to minimize the distance
between predicted and target views at the same viewpoint
coordinate at time T : for each training object X , LT (X) =∑

i d(x̂T (X,θi),x(X,θi)), where d(.) is a distance func-
tion. However, this loss function requires viewpoint coordi-
nates to be registered exactly in the output and target view-
grids, whereas the agent has only partial knowledge of the
object’s pose (known elevation but unknown azimuth) and
thus must output viewgrids assuming the azimuth coordi-
nate of the first view to be the origin. Therefore, output
viewgrids are shifted by an angle ∆0 from the target view-
grid, and ∆0 must be included in the loss function:

LT (X) =
MN∑
i=1

d(x̂T (X,θi +∆0),x(X,θi)). (1)



max-pool

(3x3, stride2)

ReLU

ReLU

avg-pool

(3x3, stride2)

5

5

1 32

32

32

32

15

15

7

7

5

5

256

256

64

3

3

fc 

ReLU
ReLU

avg-pool

(3x3)

5

5

16

image stack

proprioception stack

fc fc

256 256

ReLU ReLU

fusesense

64

4

4

256

8

8

16

16

128

Leaky 

ReLU

Leaky 

ReLU

Leaky 

ReLU

32

32

(M azimuths)x

(N elevations)

Leaky 

ReLU

decode

aggregate

LSTM

act
fc

input

view

In
p

u
t 

v
ie

w

O
u

tp
u

t

v
ie

w
g

r
id

fc
ReLU

fc
SoftMax

sample action

fc
ReLU

actions PMF

output

viewgrid

reshape channels 

to viewgrid

Figure 2. Architecture of our active observation completion system. While the input-output pair shown here is for the case of 360° scenes,
we use the same architecture for the case of 3D objects. In the output viewgrid, solid black portions denote observed views, question marks
denote unobserved views, and transparent black portions denote the system’s uncertain contextual guesses. See Sec. 3.2 for details.

We set d(.) to be the per-pixel squared L2 distance, so the
agent expresses its uncertainty by averaging over the modes
of its beliefs about unseen views. In principle, d(.) could be
replaced with other metrics. In particular, a GAN loss [19]
would force the agent to select one belief mode to produce
a photorealistic viewgrid, but the selected mode might not
match the ground truth. Rather than one plausible photore-
alistic rendering (GAN), we aim to resolve uncertainty over
time to converge to the correct model (L2).

Note that ∆0 is used only at training time and only to
compute the loss. This choice has the effect of making the
setting more realistic and also significantly improving gen-
eralization ability. If the viewpoint were fully known, the
system might minimize the training objective by memoriz-
ing a mapping from <view, viewpoint> to viewgrid, which
would not generalize. Instead, with our unknown viewpoint
setting and training objective (Eq 1), the system is incen-
tivized to learn the harder but more generalizable skill of
mental object rotation to produce the target viewgrids.

To minimize the loss, we employ a combination of
stochastic gradient descent and REINFORCE [66], as
in [47]. Specifically, the gradient of the loss in Eq 1 is
backpropagated via the DECODE, AGGREGATE, FUSE, and
SENSE modules. If ACT were a standard deterministic neu-
ral network module, it could receive gradients from SENSE.
However, ACT is stochastic as it involves a sampling oper-
ation. To handle this, we use the REINFORCE technique:
we compute reward R(X) = −LT (X), and apply it to the
outputs of ACT at all timesteps2, backpropagating to encour-
age ACT behaviors that led to high rewards. To backprop-

2In practice, we reduce the variance of R for stable gradients by sub-
tracting the “baseline” expected reward over the last few iterations.

agate through time (BPTT) to the previous timestep, the
reward gradient from ACT is now passed to AGGREGATE
for the previous timestep. BPTT for the LSTM module in-
side AGGREGATE proceeds normally with incoming gradi-
ents from the various timesteps—namely, the DECODE loss
gradient for t = T , and the ACT reward gradients for previ-
ous timesteps.

In practice, we find it beneficial to penalize errors in the
predicted viewgrid at every timestep, rather than only at t =
T , so that the loss LT (X) of Eq 1 changes to:

L(X) =

T∑
t=1

MN∑
i=1

d(x̂t(X,θi +∆0),x(X,θi)). (2)

Note that this loss L(X) would reduce to the loss LT (X) of
Eq 1 if, instead of the summation over t, t were held fixed at
T . Since there are now incoming loss gradients to DECODE
at every timestep, BPTT involves adding reward gradients
from ACT to per-timestep loss gradients from DECODE be-
fore passing through AGGREGATE. BPTT through AGGRE-
GATE is unaffected. Our approach learns a non-myopic pol-
icy to best utilize the budget T , meaning it can learn be-
haviors more complex than simply choosing the next most
promising observation. Accordingly, we retain the reward
R(X) = −LT (X) for REINFORCE updates to ACT, based
only on the final prediction; per-timestep rewards would in-
duce greedy short-term behavior and disincentivize actions
that yield gains in the long term, but not immediately.

Further, we find it useful to pretrain the entire network
with T = 1, before training AGGREGATE and ACT with
more timesteps, while other modules are frozen at their pre-
trained configurations. This helps avoid poor local minima
and enables much faster convergence.



There are prior methods that use recurrent neural net-
works and REINFORCE to achieve some notion of vi-
sual attention [29, 47, 73]. Following the best practice of
adopting well-honed architectures in the literature, we re-
tain broadly similar architectural choices to these recent in-
stantiations of neural network policy learning where pos-
sible. This also facilitates fair comparisons with [29] for
testing our policy transfer idea (defined below). However,
in addition to all the technical details presented above, our
approach differs significantly in its objective (see Sec. 2).

3.4. Unsupervised policy transfer to unseen tasks

The complete scene or 3D object encompasses all po-
tentially useful information for any task. To capitalize
on this property, we next propose an unsupervised policy
transfer approach. The main idea is to inject our generic
look-around policy into new unseen tasks in unseen en-
vironments. In particular, we consider transferring our
policy—trained without supervision—into a specific recog-
nition task that targets objects unseen by the policy learner.

To do this, we plug in our unsupervised active observa-
tion completion policies into the active categorization sys-
tem of [29]. At training time, we train two models: an end-
to-end model for active categorization using random poli-
cies following [29] (“model A”), and an active observation
completion model (“model B”). Note that our completion
model is, without supervision, trained to look around en-
vironments/objects that have zero overlap with model A’s
target set. Furthermore, even the categories of objects seen
during training may differ from those during testing.

At test time, we run forward passes through both mod-
els A and B simultaneously. At every timestep, both mod-
els observe the same input view. They then communicate
as follows: the observation completion model B selects ac-
tions to complete its internal model of the new environment.
At each timestep, this action is transmitted to model A, in
place of the randomly sampled actions that it was trained
with. Model A now produces the labels from the correct
target label set. If the policy learned in model A is truly
generic, it will intelligently explore to solve the new (un-
seen) categorization task.

4. Experiments

To validate our approach, we examine the effective-
ness of active completion policies for faster reconstruction
(Sec 4.2), as well as their utility for transferring unsuper-
vised look-around policies to a recognition task (Sec 4.2).

4.1. Datasets and experimental setups

For benchmarking and reproducibility, we evaluate ac-
tive settings with two widely used datasets:

On SUN360 [69], our limited field-of-view (45°) agent
attempts to complete an omnidirectional scene. SUN360
has spherical panoramas of diverse categories. We use
the 26-category subset used in [29, 69]. The viewgrid has
32×32 views from 5 camera elevations (-90,-45,. . . ,90°)
and 8 azimuths (45,90,. . . ,360°). At each timestep, the
agent moves within a 3 elevations×5 azimuths neighbor-
hood from the current position. Balancing task difficulty
(harder tasks require more views) and training speed (fewer
views is faster) considerations, we set training episode
length T = 6 a priori.

On ModelNet [68], our agent manipulates a 3D object
to complete its image-based shape model of the object.
ModelNet has two subsets of CAD models: ModelNet-
40 (40 categories) and ModelNet-10 (10 category-subset
of ModelNet-40). To help test our ability to generalize
to previously unseen categories, we train on categories in
ModelNet-40 that are not in ModelNet-10. We then test
both on new instances from the seen categories, and on the
unseen categories from ModelNet-10. The viewgrid has
32x32 views from 7 camera elevations (0,±30,±60,±90)
and 12 azimuths (30,60,. . . ,360°). Per-timestep motions are
allowed within the 5×5 neighboring angles of the current
viewing angle. The training episode length is T = 4.

Baselines We test our active completion approach ours

against a variety of baselines:

• 1-view is our method trained with T = 1. No informa-
tion aggregation or action selection is performed by this
baseline.

• random is identical to our approach, except that the action
selection module is replaced by randomly selected actions
from the pool of all possible actions.

• large-action chooses the largest allowable action re-
peatedly. This tests if “informative” views are just far-
apart views. Since there is no one largest action, we test
all actions along the perimeter of the grid of allowable ac-
tions, and report results for the best-performing action on
the test set.

• peek-saliency moves to the most salient view within
reach at each timestep, using a popular saliency met-
ric [23]. To avoid getting stuck in a local saliency max-
imum, it does not revisit seen views. peek-saliency

tests if salient views are informative for observation com-
pletion. Note that this baseline “peeks” at neighboring
views prior to action selection to measure saliency, giv-
ing it an unfair and impossible advantage over ours and
the other baselines.

These baselines all use the same network architecture as
ours, differing only in the exploration policy which we
seek to evaluate. All results sample every possible starting
position for all methods.



SUN360 scene and ModelNet object observation completion examples
Ground truth viewgrid t = 1 (MSE: 43.28) t = 2 (MSE: 32.51) t = 3 (MSE: 27.29) t = 4 (MSE: 24.92)

Ground truth viewgrid t = 1 (MSE: 8.32) t = 2 (MSE: 4.38) t = 3 (MSE: 4.22) t = 4 (MSE: 4.20)

Figure 3. Best viewed on pdf with zoom. Episodes of active observation completion for a scene (top) and object (bottom). Column 1 shows the ground
truth viewgrid with a red square around the random starting view. Columns 2-5 show our method’s viewgrid completions for t = 1, . . . , 4 with red
squares around selected views. As the model’s beliefs evolve, the space of possibilities grows more constrained, and the shape of the ground truth
viewgrid begins to emerge. Row 1: The system correctly estimates a flat outdoor scene at t = 1, inferring the position of a horizon and even the sun from
just one view of a gradient in the sky. At t = 2, it sees rocks and sand, and updates the viewgrid to begin resembling a beach. It then continues to focus
on the most interesting (and unpredictable) region of the scene containing the rocks and shrubs. Row 2: The first view is overhead, and azimuthally
aligned with one of the sides of an unseen category object (chair). Our agent chooses to move as far from this view as possible at t = 2, instantly forming
a much more chair-like predicted viewgrid, which continues to improve gradually afterwards.

Table 1. Per-pixel mean squared error (MSE×1000) with episode length set to training length T (6 on SUN360, 4 on ModelNet), and
corresponding improvement over 1-view baseline. Lower error and higher improvement is better. RGB (luminance) values in color
(gray) images are normalized to [0,1], so error values are on scale of 0 to 1000.

Dataset→ SUN360 ModelNet (seen classes) ModelNet (unseen classes)

Method↓ — Metric→ MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement

1-view 39.40 - 3.83 - 7.38 -
random 31.88 19.09% 3.46 9.66% 6.22 15.72%
large-action 30.76 21.93% 3.44 10.18% 6.16 16.53%
peek-saliency 27.00 31.47% 3.47 9.40% 6.35 13.96%
ours 23.16 41.22% 3.25 15.14% 5.65 23.44%

4.2. Active observation completion results

Tab 1 shows the scene and object completion mean-
squared error on SUN360 and ModelNet (seen and unseen
classes). For these results, episode lengths are held con-
stant to T timesteps, same as during training. While all
the multi-view methods improve over 1-view, our method
outperforms all baselines by large margins. To isolate
the impact of view selection, we report improvement over
1-view for all methods. Compared to random, ours con-
sistently yields approximately 2x improvement; our gains
over large-action are also substantial in all cases, mean-
ing that simply looking at well-spaced views is not enough.
Both outcomes highlight the major value in learning to in-
telligently look around. Improvements are larger on more
difficult datasets, where errors are larger (SUN360 > Mod-
elNet unseen > ModelNet seen). This is as expected, since
additional views are most critical where one view produces
very poor results. On SUN360, peek-saliency, which
has unfair access to neighboring views for action selection,
is the strongest baseline, but still falls short of ours. On
ModelNet data, peek-saliency performs poorly, likely
because saliency fails to differentiate well between the syn-

thetic CAD model views; what is informative about an ob-
ject’s shape is much more complex than what low-level un-
supervised saliency can measure. Importantly, our advan-
tages hold even for unseen categories (rightmost), empha-
sizing the task-independence of our look-around policies.

Does our approach simply exploit its knowledge of cam-
era elevation to sample useful elevations more than others?
For instance, perhaps views from a horizontal camera posi-
tion (elevation 0°) are more informative than others. Upon
investigation, we find that this is not the case in practice.
In particular, our learned policy samples all elevations uni-
formly on both SUN360 and ModelNet data. Hence, the
ability to sense gravity alone offers no advantage over the
random baseline.

Figure 4 further shows how error drops over time. With
perfect information aggregation, all methods should asymp-
totically approach zero error at high t, which diminishes the
value of intelligent exploration. All methods show consis-
tent improvement, with sharpest error drops for ours.

Fig 3 presents some completion episodes (see Supp for
more). As our system explores, the rough “shape” of the
target scene or object emerges in its viewgrid predictions.



1 2 3 4 5 6

time t

25

30

35

40

p
er

-p
ix

el
M

S
E

(x
10

00
)

SUN360

1 2 3 4

time t

3.4

3.6

3.8

4.0
ModelNet seen classes

1 2 3 4

time t

6.0

6.5

7.0

7.5

ModelNet unseen classes

1-view

random

large-action

peek-saliency

ours

Figure 4. Active observation completion: per-pixel mean-squared error versus time for the three test datasets.

We stress that the goal of our work is not to obtain pho-
torealistic images. Rather, the goal is to learn policies for
looking around that efficiently resolve model uncertainty in
novel environments; the predicted viewgrids visualize the
agent’s beliefs over time. The key product of our method is
a policy, not an image—as the next result emphasizes.

4.3. Unsupervised policy transfer results

Having shown our approach successfully trains unsuper-
vised policies to acquire useful visual observations, we next
test how well this policy transfers to a new task with new
data from unseen categories (cf. Sec 3.4).

We closely follow the active categorization experimental
setups in [29]. Using our method presented in Sec 3.4, we
plug our unsupervised active observation completion poli-
cies into the active categorization system of [29]. The active
categorization model (“model A”) is trained with random
policies—this is the same as the random-policy baseline
below. For ModelNet, we train “model A” on ModelNet-
10 training objects, and the active observation completion
model (“model B”) on ModelNet-30 training objects, dis-
joint from the target ModelNet-10 dataset classes. For
SUN360, both models are trained on SUN360 training data.

Baselines We compare: 1) sup-policy, the full end-to-
end active categorization system trained using the “Looka-
head active RNN” approach [29]; 2) 1-view, a passive
feed-forward neural network which only processes one ran-
domly presented view and predicts its category. Its ar-
chitecture is identical to sup-policy minus the action
selection and information aggregation modules; and 3)
random-policy, an active categorization system trained
on the target classes that selects random actions. It uses the
same core architecture as sup-policy, except for the ac-
tion selection module; in place of learned actions, it selects
random legal motions from the same motion neighborhood
as sup-policy. We also compare 4) large-action and
5) peek-saliency from the last section.

Fig 5 shows the results. For both SUN360 active scene
recognition and ModelNet-10 active object recognition, our
unsupervised policies perform on par with the end-to-end
active categorization policy of [29], easily outperforming
random-policy, 1-view, and large-action. This is
remarkable because our policy is only trained for the sepa-
rate, unsupervised active observation completion task. Fur-

40

45

50

55

60

65

70

1 2 3 4 5 6

Ac
cu

ra
cy

 (%
)

time t

SUN360 active categorization

85

87

89

91

93

1 2 3 4
time t

ModelNet-10 active categorization

1-view
random-policy
sup-policy [29]
large-action
peek-saliency
ours (policy transfer)

Figure 5. Policy transfer: Active categorization accuracy vs. time
on SUN360 scenes (left) and ModelNet-10 objects (right).

ther, in the ModelNet case, it is also trained on data from
disjoint classes. Recall that peek-saliency is not actu-
ally a viable solution; it “cheats” by trying out all moves
and measuring saliency before selecting a move at each
timestep. Still, even this strategy falls short of our method.

These results show the potential of unsupervised ex-
ploratory tasks to facilitate policy learning on massive un-
labeled datasets. Policy learning is famously expensive
in terms of data, computation, and time. Once trained,
exploratory policies like the proposed active completion
framework could be transferred to arbitrary new tasks with
much smaller datasets. Performance may further improve if
instead of directly transferring the policy, the policy could
be finetuned for the new task, analogous to feature finetun-
ing as widely employed in the passive recognition setting.

5. Conclusions
Our work tackles a new problem: how can a visual agent

learn to look around, independent of a recognition task? We
presented a new active observation completion framework
for general exploratory behavior learning. Our reinforce-
ment learning solution demonstrates consistently strong re-
sults across very different settings for realistic scene and
object completion, compared to multiple revealing base-
lines. Our results showing successful application of our
unsupervised exploratory policy for active recognition are
the first demonstration of “policy transfer” between tasks
to our knowledge. These results hold great promise for
task-agnostic exploration, an important step towards au-
tonomous embodied visual agents.
Acknowledgements: This research is supported in part
by a DARPA Lifelong Learning Machines award, an
AWS ML Research Award, and a Samsung Fellow-
ship. We thank TACC for providing computing resources.



References
[1] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.

Frequency-tuned salient region detection. In CVPR, 2009.
2

[2] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vi-
sion. In IJCV, 1988. 2

[3] P. Ammirato, P. Poirson, E. Park, J. Kosecka, and A. C. Berg.
A dataset for developing and benchmarking active vision. In
ICRA, 2017. 1, 2

[4] A. Andreopoulos and J. Tsotsos. 50 years of object recogni-
tion: Directions forward. In CVIU, 2013. 2

[5] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-
nition with visual attention. In ICLR, 2015. 2

[6] R. Bajcsy. Active perception. In Proceedings of the IEEE,
1988. 2

[7] D. Ballard. Animate vision. In Artificial Intelligence, 1991.
2

[8] L. Bazzani, H. Larochelle, V. Murino, J.-A. Ting, and N. d.
Freitas. Learning attentional policies for tracking and recog-
nition in video with deep networks. In ICML, 2011. 2

[9] N. Butko and J. Movellan. Optimal scanning for faster object
detection. In CVPR, 2009. 2

[10] J. Caicedo and S. Lazebnik. Active object localization with
deep reinforcement learning. In ICCV, 2015. 1, 2

[11] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d
model repository. In arXiv preprint arXiv:1512.03012, 2015.
1

[12] C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-
R2N2: A unified approach for single and multi-view 3d ob-
ject reconstrution. In ECCV, 2016. 3

[13] A. J. Davison and D. W. Murray. Simultaneous localization
and map-building using active vision. In TPAMI, 2002. 3

[14] S. S. Dhillon and K. Chakrabarty. Sensor placement for ef-
fective coverage and surveillance in distributed sensor net-
works. In WCNC, 2003. 2

[15] A. Dosovitskiy, J. Springenberg, and T. Brox. Learning
to generate chairs with convolutional neural networks. In
CVPR, 2015. 3

[16] S. Edelman and H. H. Bülthoff. Orientation dependence
in the recognition of familiar and novel views of three-
dimensional objects. In Vision research, 1992. 1

[17] A. G. Garcia, A. Vezhnevets, and V. Ferrari. An active search
strategy for efficient object detection. In CVPR, 2015. 2

[18] L. Gatys, A. Ecker, and M. Bethge. Texture synthesis using
convolutional neural networks. In NIPS, 2015. 3

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, 2014. 5

[20] S. Gould, J. Arfvidsson, A. Kaehler, B. Sapp, M. Messner,
G. Bradski, P. Baumstarck, S. Chung, and A. Ng. Peripheral-
foveal vision for real-time object recognition and tracking in
video. In IJCAI, 2007. 2

[21] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Ma-
lik. Cognitive mapping and planning for visual navigation.
In CVPR, 2017. 2

[22] C. Häne, S. Tulsiani, and J. Malik. Hierarchical surface pre-
diction for 3d object reconstruction. In CVPR, 2017. 3

[23] J. Harel, C. Koch, and P. Perona. Graph-based visual
saliency. In NIPS, 2006. 2, 6

[24] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003. 1, 3

[25] J. Hays and A. A. Efros. Scene completion using millions of
photographs. In ACM Graphics (TOG), 2007. 3

[26] S. Hochreiter and J. Schmidhuber. Long short-term memory.
In Neural computation, 1997. 4

[27] H. Hu, Y. Lin, M. Liu, H. Cheng, Y. Chang, and M. Sun.
Deep 360 pilot: Learning a deep agent for piloting through
360 sports videos. In CVPR, 2017. 2

[28] D. Jayaraman, R. Gao, and K. Grauman. Unsupervised
learning through one-shot image-based shape reconstruction.
In arXiv, 2017. 3

[29] D. Jayaraman and K. Grauman. Look-ahead before you leap:
end-to-end active recognition by forecasting the effect of mo-
tion. In ECCV, 2016. 1, 2, 3, 6, 8

[30] D. Jayaraman and K. Grauman. Learning to look around.
arXiv preprint arXiv:1709.00507, 2017. 3

[31] E. Johns, S. Leutenegger, and A. Davison. Pairwise decom-
position of image sequences for active multi-view recogni-
tion. In CVPR, 2016. 2, 3

[32] S. Karayev, T. Baumgartner, M. Fritz, and T. Darrell. Timely
object recognition. In NIPS, 2012. 1, 2

[33] P. J. Kellman and E. S. Spelke. Perception of partly occluded
objects in infancy. In Cognitive psychology, 1983. 1

[34] A. Kim and R. M. Eustice. Perception-driven navigation:
Active visual slam for robotic area coverage. In ICRA, 2013.
3

[35] T. Kollar and N. Roy. Trajectory optimization using rein-
forcement learning for map exploration. In IJRR, 2008. 3

[36] A. Krause and C. Guestrin. Near-optimal observation selec-
tion using submodular functions. In AAAI, 2007. 2

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 1

[38] T. Kulkarni, W. Whitney, P. Kohli, and J. Tenenbaum. Deep
convolutional inverse graphics network. In NIPS, 2015. 3

[39] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization
as a proxy task for visual understanding. In CVPR, 2017. 3

[40] Y. Li, A. Fathi, and J. M. Rehg. Learning to predict gaze in
egocentric video. In ICCV, 2013. 2

[41] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-
Y. Shum. Learning to detect a salient object. In PAMI, 2011.
2

[42] M. Machado and M. Bowling. Learning purposeful be-
haviour in the absence of rewards. In ICML, 2016. 2

[43] M. Malmir, K. Sikka, D. Forster, J. Movellan, and G. W.
Cottrell. Deep Q-learning for active recognition of GERMS.
In BMVC, 2015. 1, 2, 3

[44] R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A.
Castellanos. Active policy learning for robot planning and
exploration under uncertainty. In RSS, 2007. 3

[45] S. Mathe, A. Pirinen, and C. Sminchisescu. Reinforcement
learning for visual object detection. In CVPR, 2016. 1, 2



[46] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard,
A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,
et al. Learning to navigate in complex environments. In
ICLR, 2017. 2

[47] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recur-
rent models of visual attention. In NIPS, 2014. 2, 5, 6

[48] R. M. Neal. Learning stochastic feedforward networks. In
Tech Report, 1990. 4

[49] S. Palmer, E. Rosch, and P. Chase. Canonical perspective
and the perception of objects. In Attention and performance
IX, 1981. 1

[50] D. Pathak, P. Agrawal, A. Efros, and T. Darrell. Curiosity-
driven exploration by self-supervised prediction. In ICML,
2017. 2

[51] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.
Efros. Context encoders: Feature learning by inpainting. In
CVPR, 2016. 3

[52] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung.
Saliency filters: Contrast based filtering for salient region
detection. In CVPR, 2012. 2

[53] M. Ranzato. On learning where to look. In arXiv preprint
arXiv:1405.5488, 2014. 2

[54] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d
scene structure from a single still image. In TPAMI, 2009. 1

[55] Q. Shan, B. Curless, Y. Furukawa, C. Hernandez, and S. M.
Seitz. Photo uncrop. In ECCV, 2014. 3

[56] S. Soatto. Actionable information in vision. In ICCV, 2009.
2

[57] S. Song, A. Zeng, A. X. Chang, M. Savva, S. Savarese,
and T. Funkhouser. Im2pano3d: Extrapolating 360 struc-
ture and semantics beyond the field of view. arXiv preprint
arXiv:1712.04569 (to appear at CVPR 2018), 2017. 3

[58] K. C. Soska, K. E. Adolph, and S. P. Johnson. Systems
in development: motor skill acquisition facilitates three-
dimensional object completion. In Developmental psychol-
ogy, 2010. 1, 2

[59] K. C. Soska and S. P. Johnson. Development of three-
dimensional object completion in infancy. In Child devel-
opment, 2008. 1

[60] R. Spica, P. R. Giordano, and F. Chaumette. Active struc-
ture from motion: application to point, sphere, and cylinder.
2014. 3

[61] Y.-C. Su, D. Jayaraman, and K. Grauman. Pano2vid: Auto-
matic cinematography for watching 360 videos. In ACCV,
2016. 2

[62] A. Torralba. Neurobiology of attention, chapter contextual
influences on saliency. 2005. 2

[63] A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Hender-
son. Contextual guidance of eye movements and attention
in real-world scenes: the role of global features in object
search. In Psychological review, 2006. 1

[64] B. Wang. Coverage problems in sensor networks: A survey.
In ACM CSUR, 2011. 2

[65] D. Wilkes and J. Tsotsos. Active object recognition. In
CVPR, 1992. 2

[66] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. In Machine
learning, 1992. 5

[67] J. Wu, T. Xue, J. Lim, Y. Tian, J. Tenenbaum, A. Torralba,
and W. Freeman. Single image 3d interpreter network. In
ECCV, 2016. 3

[68] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In CVPR, 2015. 6

[69] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba. Recogniz-
ing scene viewpoint using panoramic place representation.
In CVPR, 2012. 6

[70] B. Xiong and K. Grauman. Detecting snap points in egocen-
tric video with a web photo prior. In ECCV, 2014. 1

[71] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdi-
nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In ICML,
2015. 2

[72] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective
transformer nets: Learning single-view 3d object reconstruc-
tion without 3d supervision. In NIPS, 2016. 3

[73] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-
to-end learning of action detection from frame glimpses in
videos. In CVPR, 2016. 1, 2, 6

[74] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoen-
coders: Unsupervised learning by cross-channel prediction.
In CVPR, 2016. 3

[75] Y. Zhang, J. Xiao, J. Hays, and P. Tan. Framebreak: Dra-
matic image extrapolation by guided shift-maps. In CVPR,
2013. 3

[76] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. Efros. View
synthesis by appearance flow. In ECCV, 2016. 3

[77] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-
Fei, and A. Farhadi. Target-driven visual navigation in in-
door scenes using deep reinforcement learning. In ICRA,
2017. 2




