

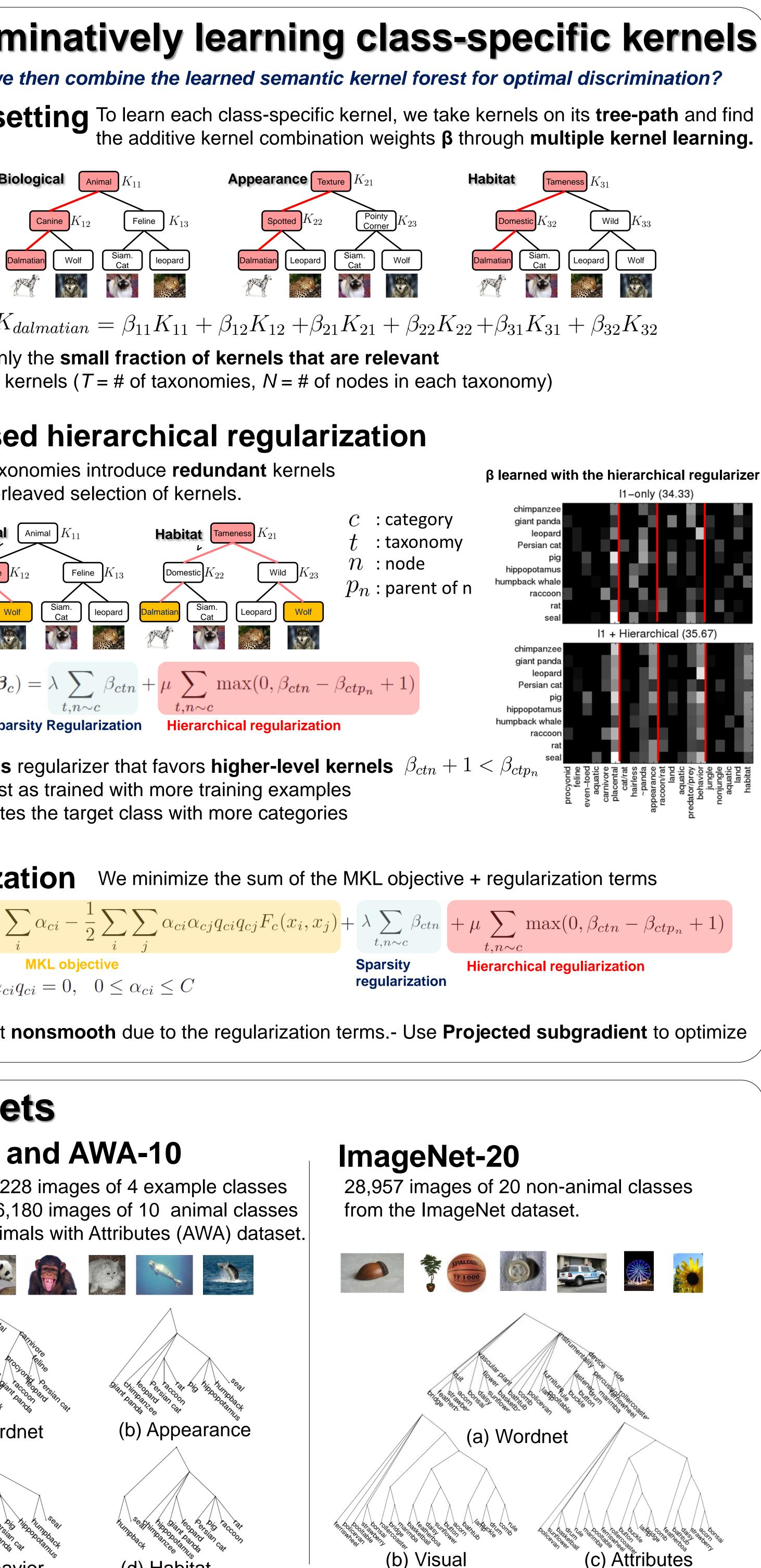
Step 2: Constructing a semantic kernel forest

ToMs on multiple taxonomies \rightarrow **A set of view- and granularity-specific kernels**

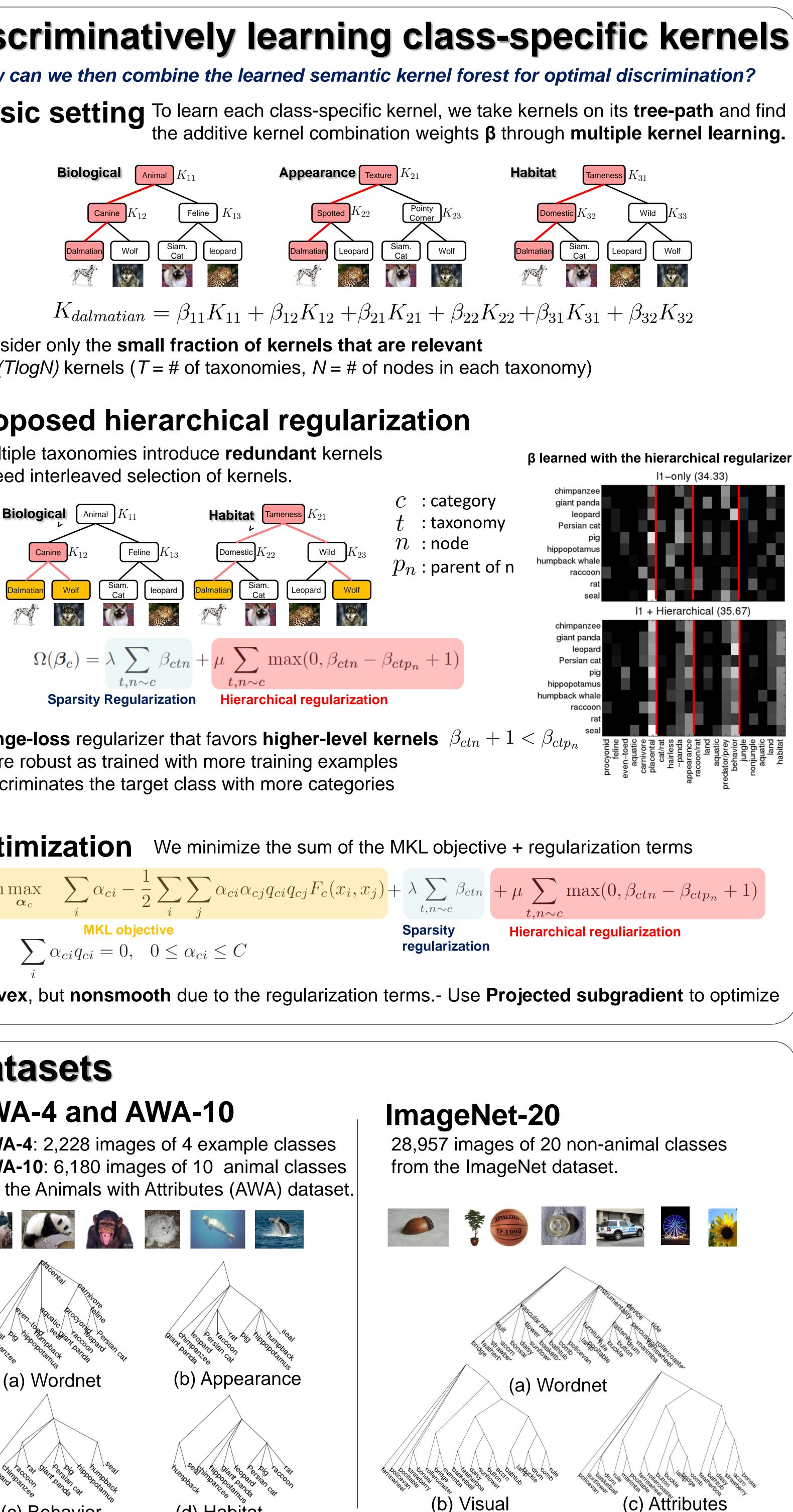
 $K_{tn}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\{-\gamma_{tn} d_{\boldsymbol{M}_{tn}}^2(\boldsymbol{x}_i, \boldsymbol{x}_j)\}$ Mahalanobis kernel

Semantic Kernel Forests from Multiple Taxonomies

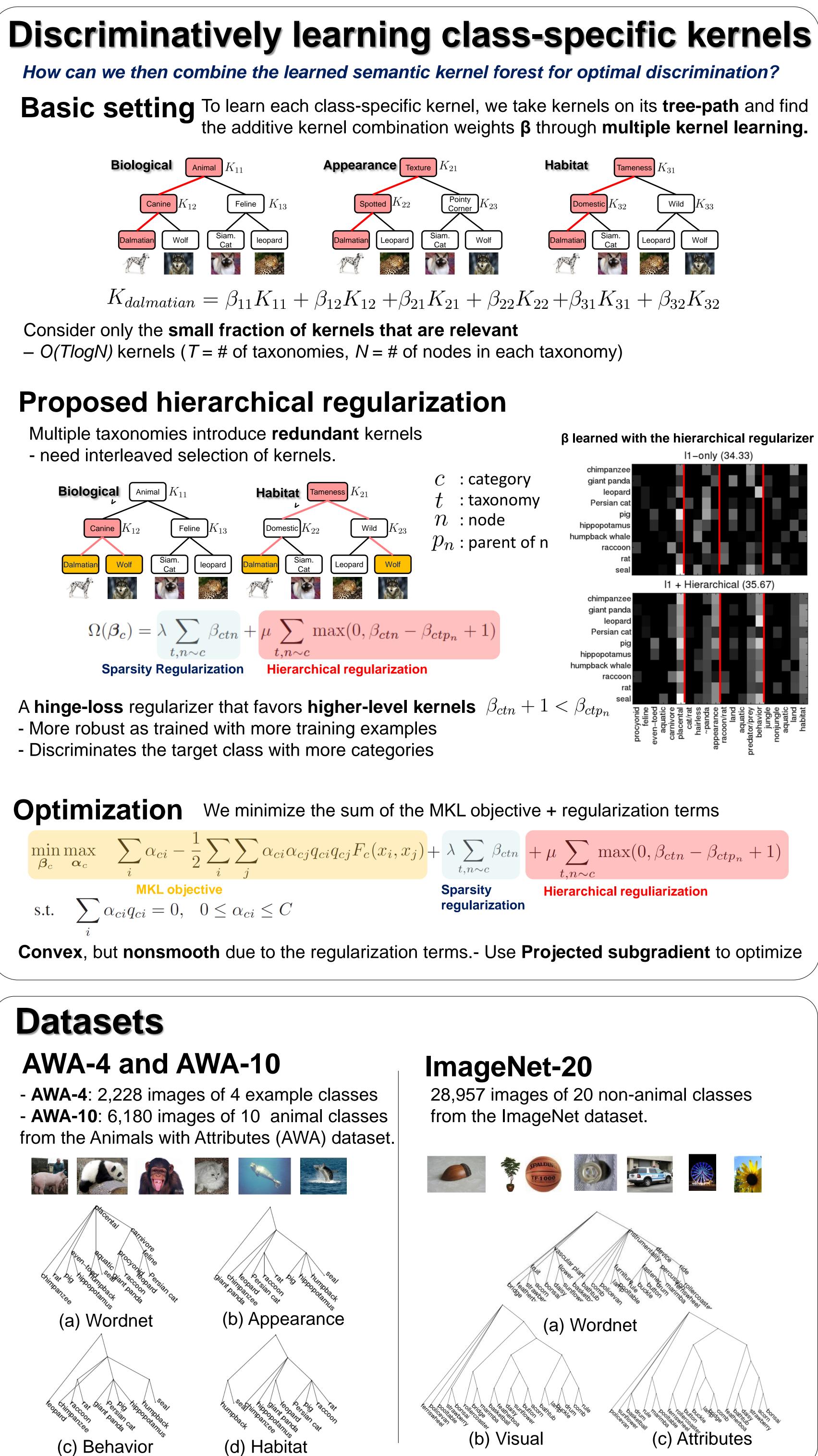
Sung Ju Hwang¹, Kristen Grauman¹, and Fei Sha² ¹University of Texas at Austin, ²University of Southern California



- need interleaved selection of kernels.

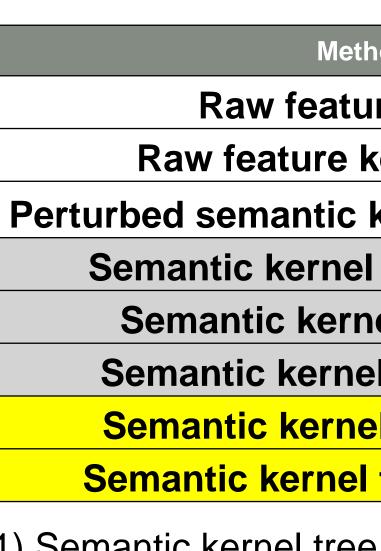


s.t. $\sum \alpha_{ci} q_{ci} = 0, \quad 0 \le \alpha_{ci} \le C$

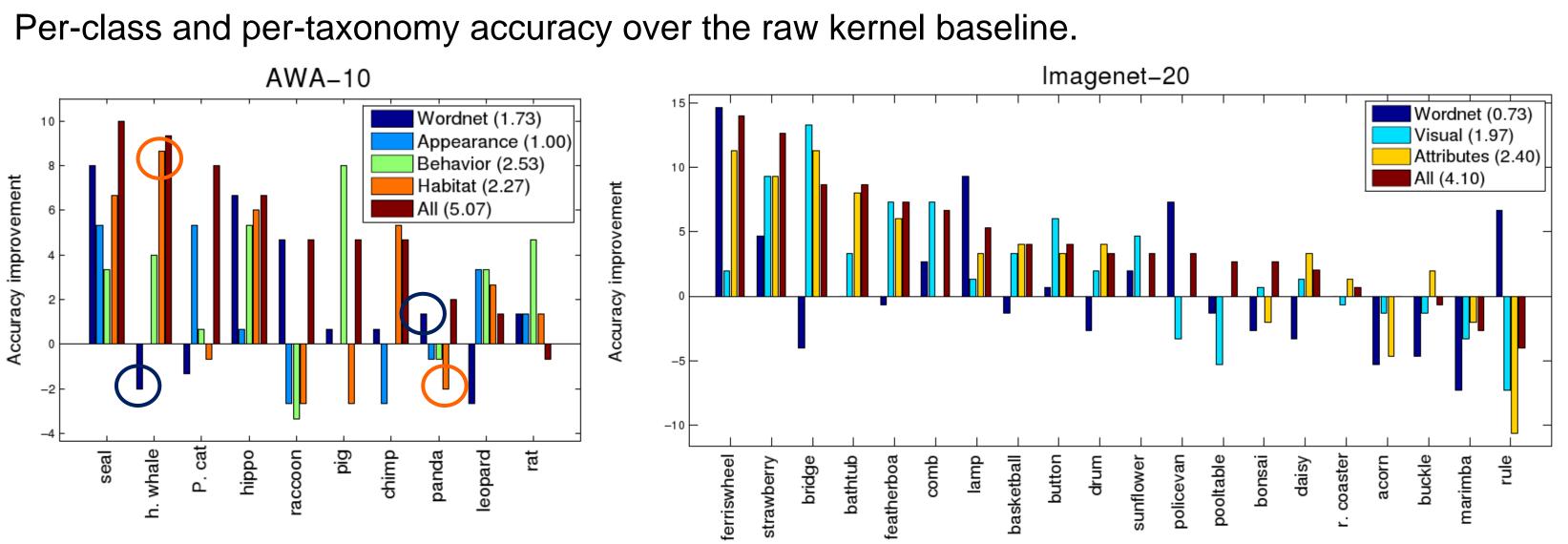


Results

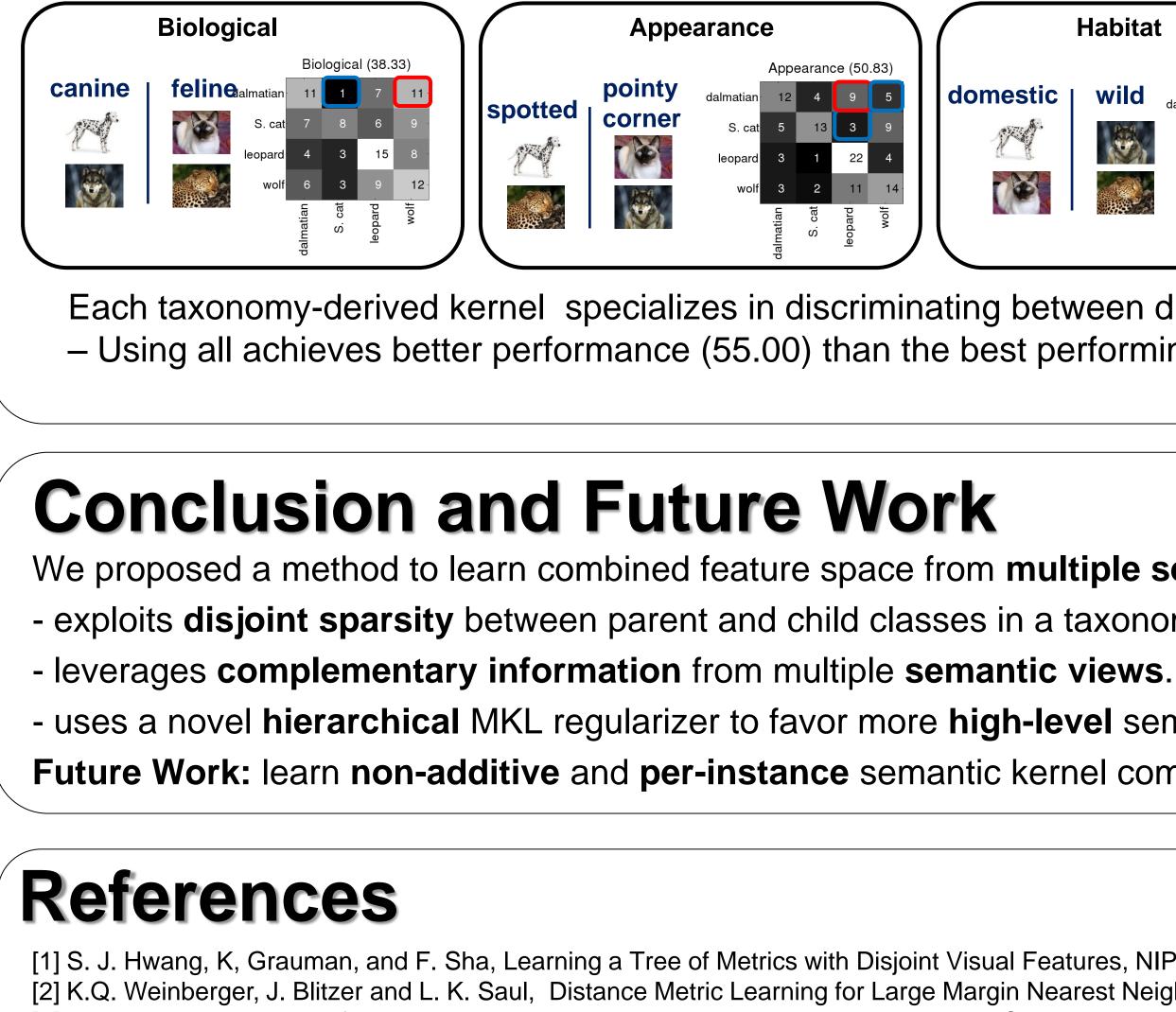
Multiclass classification



Per-class and per-taxonomy results



Confusion matrices

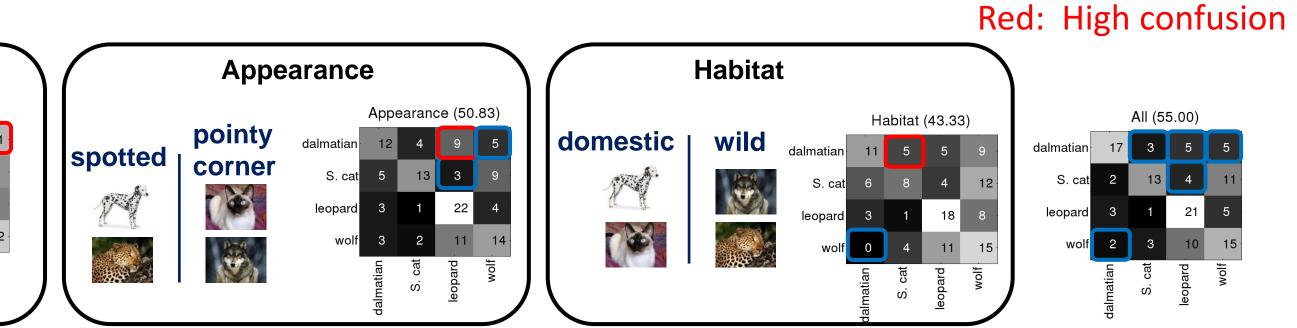


Blue: Low confusion

hod	AWA-4	AWA-10	Imagenet-20
ure kernel	47.67 ± 2.22	30.80 ± 1.36	28.20 ± 1.45
kernel + MKL	48.50 ± 1.89	31.13 ± 2.31	27.57 ± 1.50
kernel tree + MKL-H	N/A	31.53 ± 2.07	28.20 ± 2.02
I tree + Average	47.17 ± 2.40	31.92 ± 1.21	28.97 ± 1.61
nel tree + MKL	48.89 ± 1.06	32.43 ± 1.93	29.74 ± 1.26
el tree + MKL-H	50.06 ± 1.12	32.68 ± 1.79	29.90 ± 0.70
el forest + MKL	49.67 ± 1.11	34.60 ± 1.78	30.97 ± 1.14
forest + MKL-H	52.83 ± 1.68	35.87 ± 1.22	32.30 ± 1.00

1) Semantic kernel tree better than perturbed kernel tree – semantic knowledge useful 2) Multiple taxonomies better than using a single taxonomy – **complementary information** 3) Hierarchical regularizer improves accuracy significantly – semantic structure useful

1) Our method improves accuracy on 9/10 classes for AwA-10, and 16/20 classes for Imagenet-20 2) A single semantic tree useful for some classes, but degenerates performance on others.



Each taxonomy-derived kernel specializes in discriminating between different sets of classes. – Using all achieves better performance (55.00) than the best performing tree (50.83)

Conclusion and Future Work

We proposed a method to learn combined feature space from multiple semantic taxonomies that, - exploits **disjoint sparsity** between parent and child classes in a taxonomy

- uses a novel hierarchical MKL regularizer to favor more high-level semantic grouping/splits.

Future Work: learn non-additive and per-instance semantic kernel combinations

[1] S. J. Hwang, K, Grauman, and F. Sha, Learning a Tree of Metrics with Disjoint Visual Features, NIPS 2011 [2] K.Q. Weinberger, J. Blitzer and L. K. Saul, Distance Metric Learning for Large Margin Nearest Neighbor Classification, NIPS 2006 [3] F. Bach, Exploring large feature space with hierarchical multiple kernel learning, NIPS 2008