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  Motivation The potential use of semantic taxonomies in object categorization is limited 

Basic setting 

  Results 

  Main Idea 

Learning a semantic kernel forest 

Discriminatively learning class-specific kernels 

Proposed hierarchical regularization 

Datasets 

Per-class and per- taxonomy results 

Multiclass classification 

Exploit multiple human-provided taxonomies to learn complementary 

visual features, and combine them for discriminative feature learning 

Conclusion and Future Work  

2) There exists no single optimal hierarchy 1) Semantic hierarchy need not align with 

visual properties 

We proposed a method to learn combined feature space from multiple semantic taxonomies that, 

- exploits disjoint sparsity between parent and child classes in a taxonomy 

- leverages complementary information from multiple semantic views. 

- uses a novel hierarchical MKL regularizer to favor more high-level semantic grouping/splits.  

Future Work: learn non-additive and per-instance semantic kernel combinations 

Method AWA-4 AWA-10 Imagenet-20 

Raw feature kernel 47.67 ± 2.22 30.80 ± 1.36 28.20 ± 1.45 

Raw feature kernel + MKL 48.50 ± 1.89 31.13 ± 2.31 27.57 ± 1.50 

Perturbed semantic kernel tree + MKL-H N/A 31.53 ± 2.07 28.20 ± 2.02 

Semantic kernel tree + Average 47.17 ± 2.40 31.92 ± 1.21 28.97 ± 1.61 

Semantic kernel tree + MKL 48.89 ± 1.06 32.43 ± 1.93 29.74 ± 1.26 

Semantic kernel tree + MKL-H 50.06 ± 1.12 32.68 ± 1.79 29.90 ± 0.70 

Semantic kernel forest + MKL 49.67 ± 1.11 34.60 ± 1.78 30.97 ± 1.14 

Semantic kernel forest + MKL-H 52.83 ± 1.68 35.87 ± 1.22 32.30 ± 1.00 

1) Semantic kernel tree better than perturbed kernel tree – semantic knowledge useful 

2) Multiple taxonomies better than using a single taxonomy – complementary information 

3) Hierarchical regularizer improves accuracy significantly – semantic structure useful 
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Step 1: Isolating granularity-specific features 

Confusion matrices Blue:  Low confusion 
Red:  High confusion 
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- AWA-4: 2,228 images of 4 example classes 

- AWA-10: 6,180 images of 10  animal classes 

from the Animals with Attributes (AWA) dataset. 

28,957 images of 20 non-animal classes 

from the ImageNet dataset.  

(b) Appearance 

(c) Behavior (d) Habitat 

(a) Wordnet 

(b) Visual (c) Attributes 

Feature i  vs. Feature j 

Sparsity regularization  

→ Compact metric on informative features. 

Step 2: Constructing a semantic kernel forest 

Per-class and per-taxonomy accuracy over the raw kernel baseline.  

1) Our method improves accuracy on 9/10 classes for AwA-10, and 16/20 classes for Imagenet-20  

2) A single semantic tree useful for some classes, but degenerates performance on others. 

Each taxonomy-derived kernel  specializes in discriminating between different sets of classes. 

– Using all achieves better performance (55.00) than the best performing  tree (50.83)   
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    Disjoint regularization 
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Sparsity Regularization  Hierarchical regularization 
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β learned with the hierarchical regularizer 

Sparsity  

regularization 

We minimize the sum of the MKL objective + regularization terms 

Hierarchical reguliarization MKL objective 

Convex, but nonsmooth due to the regularization terms.- Use Projected subgradient to optimize 
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ToMs on multiple taxonomies → A set of view- and granularity-specific kernels 

→ Disjoint features at each node 
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Multiple taxonomies introduce redundant kernels  

- need interleaved selection of kernels. 

A hinge-loss regularizer that favors higher-level kernels 

- More robust as trained with more training examples 

- Discriminates the target class with more categories 

To learn each class-specific kernel, we take kernels on its tree-path and find 

the additive kernel combination weights β through multiple kernel learning.  

Dog 

Siamese cat 

Use Tree of Metrics (ToM) [1] to capture granularity-specific features on each taxonomy 

- Large margin metric [2] at each node to discriminate between its subclasses  

- Isolates compact, discriminative features with two regularizers: 

How can we learn granularity-and view- specific features from multiple taxonomies?  

How can we then combine the learned semantic kernel forest for optimal discrimination? 
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Consider only the small fraction of kernels that are relevant  

– O(TlogN) kernels (T = # of taxonomies, N = # of nodes in each taxonomy) 

Features useful for superclass discrimination not useful for its subclass discrimination 

- e.g. features useful for distinguishing canine and feline should differ from those for Siamese vs. 

Persian cat  

Mahalanobis  kernel 

Ancestors vs. Descendants 

Combined feature space Non-linear feature spaces learned at each view and granularity 
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Biological Appearance Habitat 

positive slack 

diag (Mt) 


