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Abstract

Foreground object segmentation is a critical step for
many image analysis tasks. While automated methods can
produce high-quality results, their failures disappoint users
in need of practical solutions. We propose a resource al-
location framework for predicting how best to allocate a
fixed budget of human annotation effort in order to collect
higher quality segmentations for a given batch of images
and automated methods. The framework is based on a pro-
posed prediction module that estimates the quality of given
algorithm-drawn segmentations. We demonstrate the value
of the framework for two novel tasks related to “pulling the
plug” on computer and human annotators. Specifically,
we implement two systems that automatically decide, for
a batch of images, when to replace 1) humans with com-
puters to create coarse segmentations required to initialize
segmentation tools and 2) computers with humans to create
final, fine-grained segmentations. Experiments demonstrate
the advantage of relying on a mix of human and computer
efforts over relying on either resource alone for segmenting
objects in three diverse datasets representing visible, phase
contrast microscopy, and fluorescence microscopy images.

1. Introduction

A common question people ask when needing to anno-
tate images is whether automated options are sufficient for
their images or they should instead bring humans in the loop
to create accurate annotations. We explore this question for
the task of demarcating object regions, i.e., creating fore-
ground object segmentations. Foreground object segmen-
tation is important for many downstream tasks including
collecting measurements (features), differentiating between
types of objects (classification), and finding similar images
in a database (image retrieval). Our goal is to intelligently
distribute segmentation work between humans and comput-
ers when human effort is only available for K% of images.

Our work is partially inspired by the observation that
fully-automated algorithms can produce high-quality fore-
ground object segmentations when they are successful, yet
their performance often is inconsistent on diverse datasets

Figure 1. Use a human-drawn or computer-drawn segmentation?
We propose a task of automatically deciding when to “pull the
plug” on human annotators and use computers instead to create
the initial foreground segmentations (rows 1, 2) that segmenta-
tion tools refine. We also propose a task of automatically deciding
when to “pull the plug” on computers (row 3) and use humans
instead to create high quality segmentations.

(Figure 1). This is because algorithms embed assumptions
about how to separate an object from the background that
are relevant for specific object and background appearances,
yet restrict their widespread applicability [4, 12, 26, 34, 35].
Consequently, the knowledge of when segmentation algo-
rithms will succeed is currently a highly-specialized skill
often resigned to computer vision experts or applications
specialists who spent years studying the algorithms. More-
over, many researchers agree that there is not a one-size-
fits-all segmentation solution. Thus, lay persons need-
ing consistently high quality segmentations currently face
a brute force approach of reviewing all images with avail-
able algorithm-drawn segmentations to identify images that
should be re-annotated by humans.

Our work is also inspired by the observation that widely-
used segmentation tools that rely on initialization are often
inefficient because of their exclusive reliance on human in-
put [9, 18, 20, 23, 27, 35, 39]. Specifically, humans create
initial bounding boxes or coarse segmentations to localize
the object of interest in every image. A motivation for lever-
aging human guidance per image is that a segmentation tool
can only succeed when initializations are sufficiently close
to the true object boundary [23]. A weakness of relying on
humans is that for numerous methods, including level set
based methods [6, 12, 26, 28], humans typically have to wait
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for minutes or more per image to validate whether the tool
successfully converts their coarse input to high quality seg-
mentations. Intuitively, one may expect that computers at
times can create good enough segmentations to replace hu-
man initialization effort (e.g., Figure 1, rows 1 & 2) and so
minimize human effort both for initialization and validation
of the results. Still, lay persons typically lack the expertise
to decide which images to distribute to computers.

To the best of our knowledge, this work is the first to
predict when to “pull the plug” on humans or computers for
segmenting images. We address two novel tasks. First, we
propose a system that intelligently allocates computer effort
to replace human effort to create initial coarse object seg-
mentations for refinement by segmentation tools. Second,
we propose a system that automatically identifies images to
have humans re-annotate from scratch by predicting which
images the automated methods segmented poorly. Both sys-
tems are designed to empower users to consistently collect
higher quality object segmentations with segmentation tools
while using considerably less human involvement. More
broadly, our systems could be exploited to efficiently create
segmentations as input for downstream tasks (e.g., object
recognition, tracking).

Interactive co-segmentation methods address the issue of
relying on human input to initialize segmentation tools for
every image in a batch [5, 14, 29]. However, unlike our ap-
proach, these methods require that all images in the batch
show related content (e.g., dogs). Moreover, interactive co-
segmentation involves continual back-and-forth with an an-
notator to incrementally refine the segmentation. Avoiding
a continual back-and-forth is particularly important for seg-
mentation tools such as level set methods [12, 26] that take
on the order of minutes or more per image to compute a
segmentation from the initialization. We instead recruit hu-
man input at most once per image and consider the more
general problem of annotating unrelated, unknown objects
in a batch.

Our aim to minimize human involvement while collect-
ing accurate image annotations is shared by active learn-
ing [36]. Specifically, active learners try to identify the most
impactful, yet least expensive information necessary to train
accurate prediction models [7, 36, 37]. For example, some
methods iteratively supplement a training dataset with im-
ages predicted to require little human annotation time to la-
bel [37]. Other methods actively solicit human feedback to
identify features with stronger predictive power than those
currently available [7]. Unlike active learners, which lever-
age human input at training-time to improve the utility of
a single algorithm, our method leverages human effort at
test-time to recover from failures by different algorithms.

Our novel tasks rely on a module to estimate the qual-
ity of computer-generated segmentations. Related meth-
ods find top “object-like” region proposals for a given im-

age [3, 10, 15, 24]. However, most of these methods are in-
adequate for ranking “object-like” proposals across a batch
of images because they only return relative rankings of pro-
posals per image [15]. Another method proposes an ab-
solute segmentation difficulty measure based on the image
content alone [30]. However, this method does not account
for differences in segmentation tools and that they perform
differently when applied to segment the same image.

Our prediction framework most closely aligns with
methods that predict the error/quality of a given algorithm-
drawn segmentation in absolute terms [10, 24]. In particu-
lar, we also perform supervised learning to train a regression
model. Unlike prior work, which was proposed indepen-
dently in the medical [24] and computer vision [10] commu-
nities, we aim to develop a single prediction model that is
applicable across domains. Consequently, we populate our
training data with segmentations resulting from a variety of
algorithms on images from three imaging modalities (visi-
ble, phase contrast microscopy, fluorescence microscopy).
Our approach consistently predicts well, outperforming a
widely-used method [10], on three diverse datasets.

More broadly, our work is a contribution to the emerging
research field at the intersection of human computation and
computer vision to build hybrid systems that outperform
relying on humans or computers alone. For example, hy-
brid systems combine non-expert and algorithm strengths to
perform the challenging fine-grained bird classification task
typically performed by experts [8, 38]. While our hybrid
system design complements existing work by also demon-
strating the advantages of combining human and computer
efforts, our work differs by addressing the image segmenta-
tion task rather than the class labeling task.

2. Segmentations by Humans or Computers?

We first describe two prediction systems for creating dif-
ferent levels of segmentations detail (Section 2.1). Then,
we describe the module used by both systems to predict the
quality of algorithm-generated segmentations (Section 2.2).

2.1. Batch Allocation of Humans & Computers

We call our resource allocation framework PTP which
reflects that the system, for each image in a batch, predicts
whether to “Pull The Plug” on humans or computers. In
other words, our framework involves predicting for each
image whether the annotation should come from a human
or computer. We implement two PTP systems to create
coarse and fine-grained foreground object segmentations re-
spectively. We examine the value of our systems with seg-
mentation tools that require initialization. These tools are
well-suited for studying both systems because they require
coarse object segmentation input and aim to output high
quality, fine-grained object segmentations.



Figure 2. We propose a system to predict when to delegate the task of creating coarse segmentations to an algorithm or a human. The
system decides based on a predicted similarity of each algorithm-generated segmentation (i.e., last eight segmentations per row) to the
unobserved ground truth (i.e., first segmentation per row). Our system is designed for use across domains, to demarcate the foreground
object in fluorescence microscopy (row 1), phase contrast microscopy (row 2), and everyday (row 3) images.

Like existing interactive segmentation methods, we as-
sume the user is interested in a primary foreground ob-
ject [9, 18, 27, 35, 39]. That is, there is a primary object of
interest that the user wishes to isolate from the background.
Foreground object segmentation is therefore distinct from
natural scene segmentation, where methods aim to segment
all objects present in the image or delineate their boundaries
or primary contours [2, 16, 33].

Coarse Segmentation: Computer or Human? Our
first system automatically decides when to delegate the task
of creating coarse segmentations refined by segmentation
tools to computers in an effort to improve upon today’s sta-
tus quo of relying exclusively on human input [5, 14, 29].
The motivation of the system design is to remain agnostic to
the particular segmentation tool. Since some segmentation
tools require minutes or more to refine a single initializa-
tion, we limit our system to run a segmentation tool exactly
once per image with one input. Consequently, in the inter-
est of increasing the chance of computer success, our sys-
tem deploys the best predicted algorithm from a larger list
of eight options for each image.

This system involves six key steps to segment a given
batch of images. First, eight algorithm-drawn foreground
segmentations1 are collected per image (Figure 2). Our

1The system applies algorithms used in current literature for foreground
segmentation [13, 17, 32]: Otsu thresholding[34], adaptive thresholding,
and Hough Transform with circles [4] . The system applies Otsu thresh-
olding and its complement. The system also applies adaptive thresholding
using the local median from a window size of 45 pixels and its comple-
ment as well as a third variant using the local mean from a window size of
45 pixels. Finally, the system applies three variants of Hough Transforms
using a circle radius of 3, 5, and 10. Our system then post-processes each
binary mask by filling all holes and keeping only the largest object.

While other algorithms could easily be integrated into our system, we
found our choices create similar quality for initial segmentations. Specifi-
cally, across the three datasets in our experiments, our choices yield an av-
erage quality (Jaccard index) of 0.59 using the best option per image com-

motivation is to employ fully-automated algorithms appli-
cable across the image modalities investigated in this pa-
per (visible, phase contrast microscopy, fluorescence mi-
croscopy). Then, for each image, the quality of each can-
didate segmentation is predicted using our proposed predic-
tion system discussed in Section 2.2. Third, the top-scoring
segmentation per image is selected as the computer choice.
Next, all images are sorted based on the selected computer
choices, from highest to lowest predicted quality scores.
Fifth, the system allocates the available human budget to
create coarse segmentations for the allotted number of im-
ages with the lowest predicted quality scores. Finally, all
coarse segmentations created by humans and computers are
fed to the segmentation tool of interest for refinement.

Fine-Grained Segmentation: Computer or Human?
A related yet more challenging task is predicting whether a
computer-generated segmentation captures the fine-grained
details describing a true object region or whether humans
should instead segment images from scratch. Whereas
the previous system elicits coarse human input to initialize
a segmentation tool, we now propose a system that elic-
its fine-grained human input to replace segmentation tools
when they segment images poorly. The motivation of the
system design is to offer a better solution than today’s sta-
tus quo of humans reviewing all images with associated seg-
mentations to spot algorithm failures.

This system consists of five key steps to segment a given
batch of images. First, a coarse segmentation is automat-
ically generated for every image. Then, each coarse seg-
mentation is refined by a segmentation tool. Next the pre-
diction framework is applied to all resulting segmentations
from the segmentation tool to estimate the quality of each

pared to 0.57 using MCG’s best option from 8 top-ranked candidates [3],
0.59 using CPMC’s best option from 8 top-ranked candidates [10], and
0.17 using [31].



result. Then, the system sorts all images from highest to
lowest predicted quality scores for the resulting segmen-
tations. Finally, the system allocates the available human
budget to create fine-grained segmentations for the allotted
number of images with the lowest predicted quality scores.

2.2. Predicting Segmentation Quality

Embedded in both the Coarse and Fine-Grained seg-
mentation systems is a module which automatically predicts
the similarity of a given segmentation to an unseen ground
truth segmentation. We propose as our prediction frame-
work a regression model in order to capture that algorithm-
drawn segmentations can range in quality from complete
failures to nearly perfect (Figures 1, 2). Our key design
decisions lie in how to generate training data and choose
predictive features.

Training Instances. We aim to populate our training
data with segmentation masks that reflect the transition of
segmentation quality from perfect (i.e., ground truth), to
reasonable human mistakes, to a variety of failure behav-
iors. Towards this goal, our system collects 11 binary seg-
mentation masks per training image.

We first derive a variety of binary masks using the same
fully-automated algorithms leveraged in our Coarse seg-
mentation system. Specifically, our system produces eight
segmentations per training image using multiple implemen-
tations of the algorithms Hough Transform with Circles [4],
Otsu Thresholding [34], and adaptive thresholding. An im-
portant distinction of our chosen segmentation algorithms
compared to alternative tools [12, 35] is that they do not
incorporate regularizer terms that can conceal typical fail-
ure behaviors, e.g., smoothing highly-jagged edges. Conse-
quently, the different algorithms capture a variety of types
of failure behaviors (Figure 2).

Given that the training data may be insufficiently popu-
lated with higher-scoring segmentations (if all eight algo-
rithm implementations consistently fail), our system aug-
ments three binary masks based on the ground truth seg-
mentations. The system uses the ground truth directly. Our
system also dilates and erodes the ground truth binary mask
by three pixels to simulate a slightly under-segmented and
over-segmented segmentation respectively where fine de-
tails may get smoothed out or chopped off.

Training Data - Labels. To create each output label,
the system computes a score indicating the quality of each
training instance segmentation. We use the standard Jac-
card index which indicates the fraction of pixels that are in
common to both the training instance and ground truth seg-
mentation (i.e., |A∩G|

|A∪G| ).
Training Data - Features. Next, our motivation is to

use knowledge about algorithm behavior on everyday and
biomedical images to choose predictive features. We take
advantage of the observation that the chosen algorithms fail

big when they fail, manifesting appearances unlike what
one would expect from widely meaningful object shapes
(Figure 2). We propose nine features derived from the bi-
nary segmentation mask to capture the failure behaviors.
We hypothesize that, in aggregation, these features may ac-
count for objects of different shapes and sizes. In results,
we will examine their advantages over an off-the-shelf state
of the art image descriptor, i.e., based on CNNs.

Segmentation Boundary. When algorithms fail, result-
ing segmentations often have boundaries characterized by
an abnormally large proportion of highly-jagged edges. We
implement two boundary-based features to capture this ob-
servation. We compute the mean and standard deviation of
the Euclidean distance of every point on the segmentation
boundary to the centroid. The boundary is defined as all
pixels on the exterior of the object in a binary mask using
an 8-connected neighborhood. The centroid is defined as
the center of mass of the segmentation in the binary mask.

Segmentation Compactness. When algorithms fail, seg-
mentations often are not compact. We implement three fea-
tures to capture this observation. Two measures compute
the coverage of segmentation pixels within a bounding re-
gion. Extent is defined as the ratio of the number of pixels in
the segmentation to the number of pixels in the area of the
bounding box. Solidity is defined as the ratio of the number
of pixels in the segmentation to the number of pixels in the
area of the convex hull. We also compute the shape factor
to capture the circularity of the segmentation since a pure
circle is a good measure to indicate highly compact objects.
It is defined as the ratio of region area A to a circle with the
same perimeter P : 4πA

P 2 .
Location of Segmentation in Image. When algorithms

fail, resulting segmentation regions often lie closer to the
edges of images. We compute the normalized x and y cen-
troid coordinates of the segmentation centroid in the image
to capture this observation. Specifically, we compute the x
value of the center of mass divided by the image width and
y value of the center of mass divided by the image height.

Coverage of Segmentation in Image. When algorithms
fail, resulting segmentations often cover abnormally large
and small areas in the image. We implement two features to
capture this observation. First, we compute the fraction of
pixels in the image that belong to the segmentation. Second,
we compute the fraction of pixels in the image that belong
to the bounding box of the segmentation.

See Section 3 for an analysis of the variability of these
cues measured for objects observed within diverse datasets.

Regression Model. We train a multiple linear regression
model with the aforementioned training data. This model
leads to easy to interpret, intuitive systems as it indicates
how to predict the segmentation quality from a weighted
combination of predictive features. Formally, the model
is represented as y = Xβ + e where y denotes an n-



dimensional vector of segmentation quality scores, X de-
notes a matrix containing feature vectors that characterize
every training instance, β denotes the model parameters to
be learned, and e denotes errors measured between actual
quality scores (y) and predicted quality scores (Xβ). The
objective is to learn β so that e is minimized. We train mod-
els with WEKA [22] using M5 feature selection.

3. Experiments and Results
We conduct studies to analyze the reliability of our pre-

diction framework and its value for deciding when to intelli-
gently target computers versus humans to segment images.

Datasets. We evaluate our methods on three datasets
that represent three imaging modalities: Boston Univer-
sity Biomedical Image Library (BU-BIL:1-5) [21] includes
271 gray-scale images coming from three fluorescence mi-
croscopy image sets and two phase contrast microscopy
image sets, Weizmann [1] consists of 100 grayscale im-
ages showing a variety of everyday objects, and Interac-
tive Image Segmentation [19] (IIS) includes 151 RGB im-
ages showing a variety of everyday objects. Each dataset
includes human-drawn segmentations that serve as pixel-
accurate ground truth segmentations for evaluation.

Together, the three datasets exhibit large variability with
respect to object and image properties (Table 1). The
datasets depict objects that vary greatly in size (e.g., BU-
BIL vs IIS), coverage of the image (e.g., BU-BIL vs Weiz-
mann), shape (i.e., large Shape σσσ for all datasets), and tex-
ture (i.e., large FG Var σσσ for all datasets). Furthermore, our
analysis suggests that image backgrounds can be compli-
cated and/or cluttered (i.e., large BG Var µµµ and σσσ). This
diversity is important to ensure our method is challenged to
learn generic cues predictive of segmentation failure.

Table 1. Characterization of studied datasets to reveal the diversity
of image content with respect to object area (# pixels), centroid
location (X Loc, Y Loc), shape (Sec. 2.2; shape factor), and cov-
erage in image ( FG Area

Image Area ) as well as image texture (FG Var, BG
Var = variance of Laplacian values for object and background pix-
els respectively).

BU-BIL Weizmann IIS
µµµ σσσ µµµ σσσ µµµ σσσ

Area 7927 13,109 24,315 16,815 40,119 41,387
X Loc 126 129 146 29 251 80
Y Loc 115 106 158 61 223 63
Shape 0.48 0.25 0.41 0.2 0.4 0.2

FG Area
Image Area 0.12 0.04 0.27 0.14 0.19 0.12
FG Var 54 51 1663 1271 2227 1909
BG Var 28 36 540 835 1568 1521

3.1. Quality Prediction for Algorithm Set

We first analyze the predictive power of our proposed
framework (Section 2.2) to automatically estimate the qual-
ity of foreground object segmentations.

Baselines. We compare our method to the CPMC [10]
approach that also predicts a Jaccard score indicating the
quality of a given object segmentation. This baseline
stresses generality by learning statistics typical for real
world objects. The method learns to predict Jaccard scores
on everyday images using a combination of shape and
intensity-based features. We use publicly-available code.

Given the recent rise of CNN features as standard base-
lines for learning, we also examine the value of a CNN base-
line for making predictions. We employ the same training
instances using features extracted from the last fully con-
nected layer of AlexNet [25] to train linear regression mod-
els. Consequently, each training instance is characterized
with a 4096-dimensional vector that is extracted from the
image patch created by using the bounding box of the auto-
matically generated segmentation.

Evaluation Metrics. We evaluate each prediction model
using Pearson’s correlation coefficient (CC) and mean ab-
solute error (MAE). CC indicates how strongly correlated
predicted scores are to actual Jaccard scores for all fore-
ground object segmentations evaluated. Values range be-
tween +1 and -1 inclusive, with values further from 0 indi-
cating stronger predictive power. MAE is the average size
of prediction errors, computed as the mean absolute differ-
ence between all predicted and actual Jaccard scores.

Ours: Cross-Set Generalization. To minimize con-
cerns that prediction successes are due to over-fitting to the
statistics of a particular dataset, we first evaluate how well
our prediction models trained on two of the datasets perform
on the third dataset. Overall, our approach performs well,
as indicated by high CCs and low MAEs (Table 2, row 3).
The system is successful, even when trained on completely
disjoint datasets; e.g., what the system learned on everyday
images (Weizmann, IIS) can successfully be leveraged on
biomedical images (BU-BIL: CC = 0.61). This is possibly
because algorithms tend to create binary masks that have
consistent properties at various levels of success and failure
severity, regardless of the dataset.

While the CPMC method was designed to generalize
across different object types, it had less predictive strength
than our approach on all studied datasets (Table 2, row

Table 2. Comparison of our model with CPMC [10] and CNN fea-
tures [25] for predicting the Jaccard score indicating the quality
of a foreground segmentation. We report performance scores for
our method learned with cross-set training (“Ours:C”) as well as
single-set training (“Ours:S”). Higher correlation coefficient (CC)
scores and lower mean absolute error (M) scores are better.

BU-BIL Weizmann IIS All
CC M CC M CC M CC M

[10]:C 0.36 0.33 0.61 0.32 0.67 0.31 0.53 0.32
CNN:C -0.01 3.22 -0.1 26.7 -0.01 45 NA NA
Ours:C 0.61 0.31 0.64 0.24 0.68 0.22 NA NA
Ours:S 0.69 0.18 0.69 0.2 0.78 0.18 0.68 0.2



1 versus row 3). This suggests a possible value in learn-
ing the statistics of specific tools one intends to use rather
than relying on one-size-fits-all approaches. In addition,
CPMC’s greater error on the everyday images (Weizmann
& IIS; MAE scores) highlights a potential value of pop-
ulating training data with images from different modali-
ties to promote learning generic algorithm behavior rather
than particular data properties. Finally, our clear predictive
strength over CPMC on the biomedical images (BU-BIL:
CC scores of 0.36 vs 0.61) reveals a plausible limitation
that intensity features do not generalize well for objects ob-
served in images captured with different image acquisition
technologies, while our binary mask features remain rele-
vant across domains.

We observe that the off-the-shelf CNN feature yields
negligible predictive power (Table 2, row 2). We hypoth-
esize the high MAE arises from an accumulation of errors
due to using a high dimensional feature space. Our results
further support our findings that the characteristics of seg-
mentation errors are robustly and sufficiently learned from
a small set of features describing the binary mask alone.

Ours: Single-Set Analysis. We next evaluate our pre-
diction framework per dataset (i.e., Weizmann, IIS, BU-
BIL) as well as across the three datasets (All). To evaluate,
we train and test each of the four configurations using 10-
fold cross-validation. We consistently observe performance
gains over CPMC and cross-set results (Table 2, row 4 ver-
sus rows 1–3). These findings highlight a possible benefit
of learning how an algorithm behaves with a particular type
of image set, when one can know the image type to be en-
countered at test time.

3.2. Initializing Segmentation Tools

We next examine the value of our PTP framework to
predict when to pull the plug on human annotators and use
computers instead, when segmenting a batch of images with
a given human budget. Our focus is on initializing segmen-
tation tools. The status quo is either that humans create
coarse object segmentation input for every image or com-
puters automatically position rectangles based on the im-
age dimensions [6, 11, 12]. Our system, instead, intelli-
gently decides which among multiple automatic initializa-
tion methods is preferable for each image and then decides
whether to involve humans instead (Section 2.1, Coarse
Segmentation system).

We evaluate with all 522 images from Weizmann, IIS,
and BU-BIL. We collect a coarse segmentation per image
from crowd workers on Amazon Mechanical Turk. We
compare the following methods for creating coarse segmen-
tation inputs:

- Ours: For each image, the system deploys either a)
the algorithm from eight options that has the largest
predicted Jaccard score or b) a human. We leverage

cross-dataset predictions (Section 3.1) to estimate the
quality of algorithm-generated segmentations. We chose
this predictor so our method cannot inadvertently learn and
exploit any dataset-specific idiosyncrasies.
- Perfect Predictor: For each image, this system de-
ploys the algorithm from eight options that has the largest
actual Jaccard score. Images are then ordered by the actual
quality scores. Human involvement is allocated to the
images with lowest quality scores. This predictor reveals
the best initializations possible with our system.
- Chance Predictor: For each image, the system ran-
domly deploys one algorithm from the eight options. Then,
images for human involvement are randomly selected. This
predictor illustrates the best a user can achieve today with
the initialization options available in our system.
- Rectangle [6, 11, 12]: This method illustrates the
commonly-adopted automated method of positioning a
bounding rectangle with respect to the image dimensions.
Following [12], we set the foreground region based on
the image boundary. We position the rectangle to occupy
the image region after cropping 5% of pixels from the
minimum image dimension on all sides. We randomly
select images for human involvement.

To illustrate the versatility of our initialization system as a
general-purpose approach for use with segmentation tools,
we integrate our initialization method and the baselines with
three tools important in the computer vision and medical
imaging communities - Grab Cut [35], Chan Vese level
sets [12], and Lankton level sets [26] (Figure 4).

Figure 4. Illustration of the quality of resulting segmentations cre-
ated by three segmentation tools from the initial segmentation se-
lected by our system from the eight initialization options.

Fully-Automated Initialization. For each segmentation
tool, we compute the average segmentation quality resulting
after the tool refines all computer-generated initializations
for all 522 images. As seen on the left side of the three
plots (Figure 3, 0% human involvement), predicting a best-
suited automated input from eight options produces coarse
segmentation estimates that the segmentation tools can re-
fine more successfully than existing baselines (i.e., Chance
Predictor, Rectangle). For example, for the Lankton level
set algorithm, the resulting segmentation quality improves
by 20 percentage points over the Rectangle baseline by us-
ing our approach. The one exception is with Grab Cut ini-
tialized with the Rectangle baseline. We hypothesize this
exception is due to Grab Cut’s shrinking bias, which means
Grab Cut cannot recover when the initialization occupies a



Figure 3. We compare four methods for distributing varying levels of human involvement to create initializations for three segmentation
tools (a-c). Each plot shows the mean quality for 522 segmentations that resulted after the tools refined the initializations. Our pre-
dictor, which identifies the best input option produced by eight algorithms and a human, facilitates segmentation quality comparable to
today’s status quo (Rectangle, Chance Predictor) with significantly less human involvement. The brown circles identify where our system
achieves comparable segmentation quality to relying exclusively on human input. On average, our approach eliminates the need for human
annotation effort for 44% of images while achieving segmentation quality comparable to relying exclusively on human input.

region smaller than the object itself.
Reducing Human Initialization Effort. We next ex-

amine the impact of actively allocating human involvement
to create coarse segmentation input as a function of the
budget of human effort available. For each segmentation
tool, we compute the average segmentation quality result-
ing after the tool refines the collection of chosen computer
and human initializations for all 522 images (Figure 3).
Our approach typically outperforms random decisions (i.e.,
Chance Predictor, Rectangle) regarding how to distribute
the initialization effort to humans and computers for all bud-
get levels. Our approach also has the potential to outper-
form all three baselines for all segmentation tools by greater
margins given improved prediction accuracy, as exemplified
by the Perfect Predictor.

In the more challenging setting of eliminating human
effort without compromising segmentation quality, our
system yields exciting results. Specifically, our system
achieves comparable quality to relying exclusively on hu-
man input (i.e., 100% human involvement) while using
computer involvement for 67.5% of images for Grab Cuts,
35% of images for Chan Vese level sets, and 30% of im-
ages for Lankton level sets (Figure 3; see brown circles).
Our results reveal that different segmentation tools can tol-
erate different amounts of unreliable computer input with-
out compromising the overall segmentation quality attained
when relying exclusively on human input.

Peak Segmentation Quality. Relying on a mix of hu-
man and computer efforts can outperform relying on either
resource alone to create initial segmentations. For exam-
ple, peak accuracy for Grab Cuts with our initialization ap-
proach is achieved with 70% human and 30% computer in-
volvement (Figure 3a). There is a six percentage point im-
provement from relying on a mix of human and computer

input over human input alone. For Chan Vese and Lankton
level sets algorithms, performance gains are slight with the
tools fluctuating around a peak plateau value from 65% to
100% human involvement (Figures 3b,c). We attribute the
latter performance fluctuations to slight differences when
the two tools expand and shrink the human and algorithm
initializations as needed to recover the desired boundaries.
We attribute the larger performance gains for Grab Cut to
the tool’s shrinking bias, which means Grab Cut fails when
humans produce boundaries that do not entirely subsume
the true object region. More generally, our findings reveal
that intelligently replacing human effort with computer ef-
fort is not only desirable to save money and time, but also
to collect higher quality segmentations.

3.3. Segmentation Tool Output

Lastly, we examine the value of our PTP framework to
predict when to pull the plug on computers and use human
annotation instead. For this second task, given segmenta-
tions from algorithms, the system predicts which images
humans should re-annotate in order to recover from failures
(Section 2.1, Fine-Grained Segmentation system).

Implementation. The system automatically feeds ini-
tializations from the best stand-alone method (i.e., Hough
Transforms with radius 5) to the top-performing Lankton
level set algorithm. Quality estimates of resulting segmen-
tations are then predicted using our cross-dataset predictor
(Section 3.1).

Baselines. To our knowledge, no prior work addressed
predicting when to enlist human versus computer segmenta-
tion effort. Therefore, we use as a baseline the related state-
of-art system of Jain & Grauman [23] (J & G) which pre-
dicts how to best allocate a given budget of human time to
annotate a batch of images. In particular, it predicts whether



Figure 5. Predicting when to replace segmentations created by a
semi-automatic segmentation tool with segmentations created by
(a) experts and (b) online crowd workers for 522 images. With
both experts and crowd workers, our system typically achieves
state-of-art performance (J & G method [23]) while saving up to
60 minutes of human effort (b; time difference between curves in
the human budget range of 140 to 190 minutes).

to have humans draw a segmentation from scratch (54 sec-
onds) versus supply a bounding box (7 seconds) or coarse
segmentation (20 seconds) as input to Grab Cut. The sys-
tem was trained on everyday images for Grab Cut. We use
publicly-available code. Note that the J & G [23] system
requires human involvement for every image and so only
becomes relevant at the budget level that supports human-
created bounding boxes for all images (i.e., 61 minutes).
Moreover, that system is designed for Grab Cut, whereas
our system is agnostic to the segmentation tool.

We also compare the quality of predictions from our ap-
proach to perfect and chance predictions for deciding when
humans versus computers should segment images.

Experiments. We conduct studies on all 522 images from
Weizmann, IIS, and BU-BIL. Following prior work [23],
we budget 54 seconds for each segmentation a human cre-
ates from scratch. We examine the impact of actively al-
locating human effort using a budgeted approach, in terms
of minutes, ranging from no human involvement (0 min-
utes) to getting all 522 images manually annotated (470
minutes). We compute the average segmentation quality
resulting for all chosen human-drawn and computer-drawn
segmentations at each allotted time budget.

For human input, we analyze both the settings where seg-
mentations are created locally and remotely. For the local
setting, we leverage the ground truth segmentations as per-
fect expert annotations (i.e., Jaccard score of 1). For the
web-based setting, we collect segmentations from online
crowd workers and measure quality as the Jaccard similarity
of each crowdsourced segmentation to the ground truth.

Results. Our system consistently outperforms the
baselines for a wide range of budgets, both for expert
(Figure 5a) and crowd (Figure 5b) involvement. For ex-
ample, the benefit of our approach is greatest at about 50%
human budget (i.e., 222 minutes), eliminating an average of
70 minutes of human annotation effort to achieve compa-

Figure 6. Examples of images which computers segment more
similarly to experts than crowd workers. As intended, our system
often avoids involving crowd workers for these images.

rable segmentation quality to the Chance baseline. In ad-
dition, our system achieves segmentation quality compara-
ble to the state of art interactive approach [23] but often re-
quires 30-60 minutes less human annotation time. This time
savings to achieve same segmentation quality is typically
observed in the human budget range of 50 to 220 minutes
(Figure 5a). Our findings highlight the value of our generic
prediction framework today as well as its rich potential for
use with future improved segmentation tools.

Finally, our findings reveal that relying on a mix of hu-
man and computer effort can outperform methods that al-
ways assume human involvement. In particular, for the last
100 images assigned to receive human annotations (i.e., im-
ages with highest predicted algorithm scores), the system
appropriately chooses computer-drawn segmentations over
human-drawn segmentations for 10% of images. In other
words, for those 10% of images, computers create segmen-
tations more similar to the ground truth than crowd workers
(i.e., higher Jaccard scores). Example images where algo-
rithms segment better than the crowd are shown in Figure 6.

4. Conclusions

We proposed two novel tasks for intelligently distribut-
ing segmentation effort between computers and humans.
Both tasks relied on our proposed prediction module that
successfully predicts the quality of candidate segmenta-
tions from three diverse datasets, with stronger predictive
capabilities than the baselines. For the first task of creating
initializations that segmentation tools refine, our proposed
system eliminated the need for human annotation effort for
an average of 44% of images while preserving the resulting
segmentation quality achieved when relying exclusively
on human input. For the second task of creating high
quality segmentation results, our proposed system consis-
tently preserved the resulting segmentation quality from a
state of art interactive segmentation tool while regularly
eliminating 30-60 minutes of human annotation time. We
share our code to support application and future extensions
of this work (http://vision.cs.utexas.edu/
HybridAlgorithmCrowdSystems/PullThePlug).
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