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This document supplements Section 3 of the main paper. In particular, it includes the following:

1. Our segmentation initialization system illustrated by example (supplements Section 3.2).

2. Results illustrating the versatility of our segmentation initialization system for three segmentation tools (supplements
Section 3.2).

3. Results illustrating the performance of our predicted initializations against two initialization baselines (supplements
Section 3.2).

4. A variant of our initialization system for interactive segmentation tools which embed a shrinking bias (supplements
Section 3.2).

5. Parallel results to Figure 3 in the main paper showing the benefit of our segmentation initialization system when using
simulated human input (supplements Section 3.2).

6. Our fine-grained segmentation system illustrated by example (supplements Section 3.3).

7. Parallel results to Figure 5 in the main paper showing the performance of our system when evaluating human effort
with respect to number of user clicks (supplements Section 3.3).

8. Methods to collect crowdsourced segmentations (supplements Sections 3.2, 3.3).
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1. Our Segmentation Initialization System: Methods Illustration
Qualitative results exemplifying the steps of our segmentation initialization system (Figure 1). Each column is exempli-

fying how the system deploys the best option (segmentation with red boundary) per image from eight algorithm-generated
options (one algorithm per row). As observed, different algorithms work well for different images. In addition, the six image
examples together demonstrate how the predicted quality scores for all selected segmentations (i.e., row 1, Top Predicted
Jaccard Score) are critical for subsequently ranking the 522 images in our study (Section 3.2 of main paper). The predicted
scores automatically reveal which images to delegate to computers to segment. Specifically, given human annotation effort
for K% of images for the 522 images, the system automatically distributes human effort to the K% of images where algo-
rithms perform the worst (i.e, lowest Jaccard scores) and uses computer effort for the rest of images where the computer is
predicted to have the best chance for success to create accurate coarse segmentations.

Figure 1. Our system intelligently pairs each image with the best option (segmentations with red boundaries) from eight options computed
automatically by eight algorithms. Then, the system produces a relative ordering of images based on the predicted quality of all selected
best computer-generated results for a given batch of images. Finally, the system uses this ordering to automatically decide which images
should receive the allocated human budget.



2. Our Segmentation Initialization System: Results with Three Segmentation Tools
Qualitative results demonstrating the versatility of our system to initialize three different segmentation tools. Results

are shown for biomedical (Figure 2) and everyday (Figure 3) images. Both figures show raw images (column 1) and the
predicted input option from eight automatically generated options (column 2), followed by the resulting segmentation from
the Grab Cut algorithm (column 3), Chan Vese level set algorithm (column 4), and Lankton level set algorithm (column 5).
The ground truth segmentation is shown in column 6. In order to produce segmentations that resemble the ground truth,
segmentation tools require sufficiently accurate initializations, which our system can produce automatically.

Figure 2. Sample results for the biomedical images (i.e., BU-BIL). Given the same initialization, the three segmentation tools can produce
very similar segmentations in some cases (e.g., round cell shown in row 2) and dramatically different segmentations in other cases (e.g.,
spiculated cell shown in row 4).



Figure 3. Sample results for the everyday images (i.e., Weizmann and IIS). In some cases, a segmentation tool can perform well when
using a low quality initialization, as observed for the image of the sheep (row 6, Grab Cut algorithm). In other cases, none of the three
segmentation tools perform well when initialized poorly, as observed for the image of the person (row 4).



3. Our Segmentation Initialization System: Comparison to Baselines
Sample results for the Grab Cut algorithm when initialized with our fully-automated segmentation initialization system

as well as two baselines (Figure 4). As observed in the ”Successes” portion of Figure 4, the quality of segmentation results
is higher with our intelligent selection approach than arbitrarily chosen initial segmentation estimates (Rectangle, Chance).
As observed in the ”Failures” portion of Figure 4, an initial segmentation estimate that does not fully contain the object of
interest can lead to poor segmentation results. See the next Section for a variant of our approach that addresses this problem.

Figure 4. Performance of Grab Cut algorithm when it is paired with different initialization methods.



4. Our Segmentation Initialization System: Variant for Tools with a Shrinking Bias
Due to space constraints in the main paper, we discuss here the variant of our initialization system for use with segmen-

tation tools that embed a shrinking bias. Specifically, while ideally the segmentation tools that refine coarse segmentations
would support both shrinking and growing initial segmentations as needed (e.g., Chan Vese level set algorithm [2], Lankton
level set algorithm [6]), a collection of segmentation tools exclusively shrink (or grow) initial segmentations [1, 7]. As dis-
cussed about the Grab Cut algorithm in the main paper (Figure 3a) and the previous Section of this document, the shrinking
bias can lead to failures. To address the shrinking bias of Grab Cut, we leverage the bounding box of the automatically
produced input from system instead. The results are shown in Figure 5, based on the simulated human input. The aim is to
regularly enforce that the object is always fully contained in the predicted initialization. While there are clear improvements
in the first 40% of human involvement from the bounding box of the predicted input, a valuable area for future work is to
explore the impact of additional variants for “growing” the predicted input (e.g., dilation, convex hull, dilated convex hull).

Figure 5. This plot is an augmented version of Figure 3a from the main paper. We include in this plot one additional curve to show the
results from the bounding box of the automatically produced input from our system (BB of Our Predictor). This reveals a variant of our
approach that may be better-suited for segmentation tools that embed shrinking biases.

5. Our Segmentation Initialization System: Analysis Using Simulated Input
While we show the results for budgeted human allocation based on real human input in Figure 3 of the main paper, we

show here the outcomes when using simulated human input (Figure 6). Specifically, following prior work [4], we simulate
coarse human input by dilating the ground truth segmentations by 20 pixels. Although dilation may not perfectly capture
how humans produce coarse segmentations in practice, it does offer insight into what one may expect when concerns about
finding trustworthy humans are eliminated.

Figure 6. This result is parallel to Figure 3 of the main paper. The only difference is we use simulated human input here and crowdsourced
coarse human input in the main paper. The outcomes relative to the baselines are the same in either case.



6. Our Fine-Grained Segmentation System: Methods Illustration
Qualitative results exemplifying the steps of our system to collect fine-grained segmentations (Figure 7). The six image

examples together demonstrate how the predicted quality scores for all computer-generated segmentations are critical for
ranking the 522 images in our study. As observed, the prediction system typically preserves the quality ordering between
images in a batch. In addition, the predicted scores typically are close to the actual quality scores indicating how similar
the computer-generated segmentation is to the ground truth segmentation with respect to the Jaccard index. Given human
annotation effort for K% of images for the 522 images in our study (Section 3.3 of main paper), the system automatically
delegates that human effort to the K% of images where algorithms perform the worst (i.e, lowest predicted Jaccard scores)
and uses computer effort for the rest of images where the computer is predicted to have the best chance for success to create
accurate fine-grained segmentations.

Figure 7. Our system produces a relative ordering of images based on the predicted quality of all computer-generated results for a given
batch of images. This ordering is then used to intelligently decide when to have a human (i.e., ground truth segmentation) versus computer
(i.e., Lankton level set algorithm initialized automatically) segment images. Images with worst rankings (lower predicted Jaccard scores
for computer-generated segmentation) are selected first to have humans replace computers to create final, fine-grained segmentations.



7. Our Fine-Grained Segmentation System: Analysis Using Number of User Clicks
Our results here complement our analyses for budgeted human allocation in Figure 5 of the main paper. Specifically, here

we quantify human effort with respect to the number of user clicks needed to create the segmentation and there with respect
to the time users took to complete each segmentation (Figure 8). For each image in BU-BIL and Weizmann, we use the
average number of crowd worker clicks across five crowdsourced segmentations. For all images in IIS, we assign the average
number of user clicks across all images in BU-BIL and Weizmann.

Figure 8. This result is parallel to Figure 5 of the main paper. The main difference is we quantify human effort with respect to number of
user clicks to create the segmentation here and time to create the segmentation in the main paper. The outcomes relative to the baselines
are the same in either case.

8. Prediction System Analysis
Due to space constraints, we excluded analyses of features for our prediction system from the main paper. We describe

below which of the currently-used features (all based on binary masks) are most predictive. We report feature weights for
all prediction models learned for ”Ours - Single Set” experiments (Table 1). Shape-based features (S1-S3) most consistently
offered the greatest predictive power amongst the additional boundary-based (B1-B2), coverage-based (C1-C2), and location-
based (L1-L2) features. This suggests that prediction success is not due to overfitting to the size or location of objects.
Features are described in Section 2 of the main paper.

Table 1. Learned weights of predictive features.
Dataset: BU-BIL Weizmann IIS All

B1 - Std Dev of Boundary Distance to Centroid 0.0036 0.0016 0.0014 0.0035
B2 - Mean Boundary Distance to Centroid -0.0006 -0.0007 -0.0008 -0.0005
C1 - Fraction of Bounding Box in Image 0.3742 0.3263 -0.1071 0.3561
C2 - Fraction of Object Pixels in Image -1.0083 -0.5732 -0.2594 -0.9279

S1 - Shape Factor 0.4685 0.5877 0.6805 0.3614
S2 - Extent -0.2196 -1.1679 -1.2402 -0.4161
S3 - Solidity 0.5517 1.4974 1.4257 0.9567

L1 - Normalized X-Coord -0.1527 0 0.2309 -0.0508
L2 - Normalized Y-Coord 0.1044 0.1788 0.3342 0.3074

9. Crowdsourcing Segmentation Systems
All crowdsourced segmentations used for experiments in Sections 3.2 and 3.3 of the main paper are created by crowd

workers from Amazon Mechanical Turk. For Section 3.2, we use the same crowdsourcing system employed in prior work [4]
to collect coarse segmentations (sloppy contours). For Section 3.3, we leverage a collection of crowdsourcing methods. For
Weizmann, we collect five segmentations per image using the image annotation tool LabelMe [8] and then use the pixel
majority vote to create the final segmentation. We pay crowd workers $0.02 per segmentation. For BU-BIL, we use publicly-
shared crowdsourced segmentations from Gurari et al. [3]. For IIS, we use publicly-shared crowdsourced segmentations from
Jain et al. [4] and assign the average quality score from those segmentations to all images missing an annotation.
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